Some useful techniques to calculate Gaussian integrals

I - Gaussian regularization

Let f(ix) be a smooth oscillatory function (example: sin(iz))
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To calculate these type of integrals it is very useful to regularize it by multiplying the
integrand by a gaussian and then take the limit; that is, define
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and then
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In the case of f(ix) = e’ I? is absolutely convergent and using Fubini’s theorem and
the change of variables seen in the lectures it is possible to obtain the value for I by
taking the limit as & — 0 at the end. There are many other ways to calculate this
integral including using an analytic extension, which is equivalent to the method shown
above.

(Fubini’s theorem: If a function f(x,y) is integrable in a given domain D = X x Y, i.e.
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which means that the product of the integrals not only gives the same answer but also
the the order of integration commutes.)

Then

IT - Moments of a Gaussian distribution

The moments of a gaussian distribution are defined as:
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Calculating moments for odd n only involves the change of variables t = 22 and inte-
gration by parts. When n is even there is no suitable substitution that can solve the
problem. However, there is a technique rather similar to the one above that makes it
possible to find the value of My, with k € N. Let
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It is now possible to find My, by taking the limit:
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Noting that



