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Preface

How to use this handout:

Where derivations are written out extensively here, they will
probably not be reproduced in class, and vice versa. You will be
expected to have understood all of these, and to be able to re-
produce these results and variations that use the same methods.
Derivations obtained in the examples sheets are also part of the
course, and worked out solutions will be made available towards
the end of the course.

Dos:

• Use the handout to follow progress through the course ma-
terial. The structure of the handout is almost the same as
the lectures.

• Integrate the lecture overheads and the handout material
yourself. There is examinable material that only appears in
one place.

• Follow suggestions and think about the questions in the
notes. These are distributed through the text to help you
determine if you are understanding the material.

Don’ts:

• Expect to study only from these notes. You will need the
other main references. Most of all you will need to under-
stand how to use the material and methods presented, rather
than memorising information.

• Expect these notes to be error free. They will contain a
higher density of errors than a typical book! e-mail us if
you think something is wrong or unclear, and the notes will
improve.

• Expect these notes to be even in the level of presentation.
Some paragraphs are minimal, and some section labels are
only place holders for material that will be covered in class.
Instead, use these notes to guide you through the books and
primary literature.
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Disclaimer 1
The topics of soft matter and biological are not like quantum
mechanics or thermal and statistical physics. In most respects
the latter are complete and done. In our opinion, it is unlikely
that both will fundamentally change in the next decades, if ever.
The situation is completely different for soft matter and biological
physics, which are topics which only in the last two decades be-
came a focus of physics departments around the world. This makes
the field exciting to work in but also poses problems for students
and for us; there is no single standard textbook that covers all of
soft matter and biological physics. Thus we decided to provide
some notes in the present form, not to replace a textbook but to
help accessing the material of the course.

These are notes for the Part III ’soft and biological physics’
course and they are and probably always will remain prelimin-
ary. They are neither fully complete, nor fully correct and will
be constantly updated. It is very important that you look at
other material as well to fully understand the topics covered in
the course. Notes like these can almost never replace a proper
textbook (until they become one). This even more so in an ad-
vanced course covering ’hot’ topics discussed at the moment in the
scientific community. This makes it often necessary to read (very
often recent) journal articles. We know that this can be a chal-
lenge but you are expected to be able to do this when you start to
work on your Part III projects - so this is another, perhaps more
painful but also more useful, exercise than you realize during the
course.

Please send corrections to Ulrich Keyser (ufk20 (at) cam.ac.uk)
or Ray Goldstein (reg53 (at) damtp.cam.ac.uk).





Introduction 2
2.1 Recommended books

Books best suited for introductory reading for the course:

(1) Biological Physics, P. Nelson, W. H. Freeman (2007)

(2) Mathematical Biology I. and II., J. D. Murray, Springer
(2007, 2008)

(3) Molecular Driving Forces, K. Dill and S. Bromberg, Garland
Science (2009)

And we recommend the following books for advanced and com-
plementary reading

(1) Soft Condensed Matter Physics in Molecular and Cell Bio-
logy, D. Andelman and W. Poon, Taylor and Francis (2006)

(2) Van der Waals Forces, A. Parsegian, CUP (2005)

(3) Intermolecular and Surface Force, J. N. Israelachvili, Aca-
demic Press (1992)

(4) The Theory of Polymer Dynamics, M. Doi and S. Edwards,
OUP (1986)

(5) Theory of the Stability of Lyophobic Colloids, E. Verwey
and J. Overbeek, Elsevier (1948)

Other interesting books are,

(1) What is life? (Schrödinger)

(2) Stochastic Processes

(3) Mathematical Biology (Murray)

(4) Molecular Biology of the Cell, Alberts, et al.

(5) Lectures on the Physiology of Plants, J. Sachs

(6) for diffusion, random walks, nice introduction: H. C. Berg
”Random Walks in Biology”

2.2 Overview of Course

2.2.1 Microscopic Physics

• Inter-molecular attraction (Van der Waals, Lennard Jones
potentials, fluctuating dipoles, etc.)

• Charged Particles in Solution (Debye-Huckel theory)
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• Membranes of a cell (deformed, charged sheets of positive
ions)

• Bending energy of membranes

2.2.2 Fluctuations and Fluctuation Induced Forces

• Dynamics of polymer chains and DNA (entropic springs)

• Brownian Motion (stochastic differential equations)

2.2.3 Elasticity

• Curve dynamics, elasticity, bending energies, curve shorten-
ing, elasticity in higher dimensions (membranes, etc.)

2.2.4 Chemical Kinetics and Pattern Formation

• Simple kinetic models (Michaelis Mentin, etc.)

• Reaction/diffusion equations, slaving, multiple time scales

• Interface dynamics

• Pattern formation in the Fitz-Hugh Nagumo model

2.2.5 Bioconvection

• Gyrotaxis

• bio-convection/diffusion equations

• Instabilities

2.2.6 Electrokinetic phenomena

• Electrophoresis

• Electroosmosis

• Single molecule sensing

• Coupled Poisson-Boltzmann Navier-Stokes equation

2.2.7 Techniques

• Optical tweezers (calibration)

• Atomic force microscopy

• Single particle tracking

• Resistive-pulse sensing



Microscopic Physics 3
3.1 Review of Molecular Physics

The ideal gas law, as normally used, is

pV = nRT = NkBT
p

kBT
= ρ ,

where p is the pressure, V is the volume, T is the (absolute)
temperature, ρ is the density, R is the ideal gas constant, N is
the number of molecules, n is the number of moles, and kB is
Boltzmann’s constant. In real gases, ρ if often not linearly related
to the pressure, and if the density is sufficiently low p can be
expanded in a so-called ‘virial expansion’ as

p

kBT
= ρ+B2(T )ρ2 +B3(T )ρ3 + . . .

Intuitively, the quadratic term accounts for two-body effects, the
third term to triplet effects etc. Measurements of the second virial
coefficient B2 show the following qualitative curve (left):

As B2 changes sign with temperature it is clearly not simply re-
lated to the underlying intermolecular potential u(r) governing the
pairwise interaction between particles. The point where B2 = 0 is
known as the Boyle point, after the chemist Robert Boyle.

Initial attempts to understand molecular interactions resulted
in a general understanding of the interaction potential (above,
right). Van der Waals conceived of a mean field averaging argu-
ment in the derivation of his eponymous equation of state. He
partitioned the interaction potential into an infinite contribution
below a critical radius, responsible for the non-overlapping of the
atoms or molecules, and an attractive interaction uattr beyond
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that. The strength of that attraction is given by the integral

a = −1

2

∫
d3ruattr(r)

Thus, a is a temperature-independent constant characteristic of a
given species. In a mean-field calculation in which each of the N
particles in a gas sees an average potential whose strength is a,
the total attractive energy is

Uattr = −aNρ = Nρ
1

2

∫
d3ruatt(r)

The pressure arising from this contribution is

pattr = −∂Uatt
∂V

= −aρ2

Modifying the ideal gas pressure with this contribution leads to
the next approximation,

p ' ρkBT − aρ2 .

Further, Van der Waals realized that the effective volume avail-
able to the particles in the gas is reduced from the container
volume V by the “excluded volume” arising from the hard core in-
teractions of the particles. If b is the excluded volume per particle
(4 times the physical volume of each particle), then:

(p+ aρ2)(V −Nb) = NkBT .

Rearranging, we obtain

Pp

kBT
' ρ+ (b− a

kBT
)ρ2 + . . . .

This is the start of a virial expansion and indicates that the second
virial coefficient B2(T ) has the form shown in the figure. It is neg-
ative at low temperatures as the attractive interaction dominates,
and positive at high temperatures due to volume exclusion.

Another way of viewing this is in terms of the radial distribu-
tion function g(r). The RDF is shown below for a semi-realistic
(Lennard Jones) gas and for the assumed gas of Van der Waals,
in which the RDF is constant beyond the hard-core radius.
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3.2 Quantum-mechanical argument for
attraction among neutral molecules

One way to obtain a semi-quantitative understanding of the origin
of the attraction between two polarizable (but neutral) molecules
is to model each as a pair of charges connected by a simple spring,
with the positive charges fixed in place at a separation R (Holstein,
2001).

If we let x1 and x2 be the displacements of each of the electrons
from its associated nucleus, then the Hamiltonian of the system is

H = H0 +H1 = Spring Energy + Coulombic Energy

H0 =
p2

1

2m
+

1

2
mω2

0x
2
1 +

p2
2

2m
+

1

2
mω2

0x
2
2

H1 = e2

[
1

R
+

1

R− x1 + x2
− 1

R− x1
− 1

R+ x2

]
∼ −2e2x1x2

R3
,

The final approximation, which holds in the interesting limit in
which the internal charge separation of each “atom” is small com-
pared to the interatomic spacing, has a bilinear dependence on x1

and x2 which is intuitive; if either one is zero the associated atom
is neutral and has no Coulombic interaction with the other.

It seems intuitive that given the bilinear form of the perturba-
tion H1 some sort of completion-of-squares make sense to simplify
the problem, so we consider the coordinate changes

x± =
x1 ± x2√

2
x1 =

x+ + x−√
2

x2 =
x+ − x−√

2
.

Then, the total energy can be rewritten as a sum of two new
independent oscillators,

H =
p2

1

2m
+

1

2

(
mω2

0 −
2e2

R3

)
x2

+ +
p2

2

2m
+

1

2

(
mω2

0 +
2e2

R3

)
x2
−

The two parenthetical terms define two new frequencies,

ω2
+ = ω2

0 −
2e2

mR3
ω2
− = ω2

0 +
2e2

mR3
,

so we can finally write the energy as

H =
p2

1

2m
+

1

2
mω2

+x
2
+ +

p2
2

2m
+

1

2
mω2
−x

2
− .

Rather than resorting to some complicated second-order perturb-
ation theory in quantum mechanics, we can simply read off the
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change in the ground state energy of the system due to the Cou-
lombic interactions as the change in the zero-point energies of
these oscillators. The interaction energy is thus

U(r) =
1

2
~ω+ +

1

2
~ω− − 2 · 1

2
~ω0

≈ − ~e4

2m2ω2
0R

6
= −1

2
~ω0

(e2/mω2
0)2

R6
,

where, in writing the final form, we have factored out the char-
acteristic electronic energy ~ω0, leaving the remaining terms in a
form that highlights the fact that the factor e2/mω2

0 is a volume.
We shall see that this volume is the polarizability of the model
atom, indicating that the van der Waals energy arises from fluc-
tuating dipoles in which a fluctuation within one atom sets up an
electric field (falling off as R−3 which polarizes the second. To see
this, we recall the relation between the dipole moment d induced
by an electric field E acting on a polarizable atom,

d = αE .

Since the dimensions of a dipole moment d are Q · L, and those
of an electric field are Q/L2, indeed the dimensions of α are L3

(a volume). To confirm that the volume we obtained above is
properly associated with the atomic polarizability, we generalize
the Hamiltonian to include an electric field,

H = H0 + eE0x1 + eE0x2

=
1

2
mω2

0

(
x2

1 +
2eE0x1

mω2
0

±
(
eE0

mω2
0

)2
)

+ (1↔ 2)

=
1

2
mω2

0z
2
1 + · · ·

z1,2 = x1,2 +
eE0

mω2
0

,

where in the second relationship the notation ± indicates that
one adds and subtracts the given quantity, allowing completion of
the square. Ignoring the additive constant we see that the new
Hamiltonian corresponds to oscillators with shifted coordinates
z1,2. At equilibrium we should have z1,2 = 0, allowing us to see
from the induced dipole moment that the polarizability is indeed

α =
e2

mω2
0

.

The attractive (van der Waals) interaction energy can thus be
expressed in the very simple form

uattr(r) = −1

2

~ω0α
2

r6
.
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3.2.1 Attractive interaction of extended neutral
objects

The attraction between two neutral sheets of atoms can be inferred
from the calculated scaling through a progression of geometries:

First, let us denote the attraction between two point molecules
as

V11(r) = −C
r6

Then, the attraction between a neutral atom and a slab is

V1S(h) =

∫ ∞
h

dz

∫ 2π

0
dφ

∫ ∞
0

rdrρV11(
√
z2 + r2)

= −
∫ ∞
h

dz

∫ 2π

0
dφ

∫ ∞
0

rdrρ
C

(z2 + r2)3

= −πCρ
6h3

Finally, extending to two neutral slabs (Aρdz atoms each per
thickness dz):

Vss = A

∫ ∞
h

ρV1s(z)dz ⇒
Vss
A

= −AH
12π

1

h2
,

where AH is the Hamaker constant. In a more general form, al-
lowing for different densities of particles in the two slabs,

AH = π2ρ1ρ2C12 ∼ π2~ω(αρ)2 .

AH scales with π2~ω(αρ)2, allowing an estimate of 5 × 10−20J ,
which is an order of magnitude larger than thermal energy at
300K. Just as importantly, this interaction scales with the inverse
square of the distance, permitting relatively long-range forces.
This work is related to DLVO theory (Derjagum, London, Ver-
way, Overbeck) (Verwey, 1947), as will be discussed below.

3.2.2 Attraction of Finite Slabs and Spheres

One interesting application of these calculations is to the interac-
tion between two lipid membranes, modeled as polarizable slabs
of finite thickness.
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Integrating up the pairwise interactions as before one finds, for
example, the interaction between two slabs of thickness δ spaced
a distance d apart

V (d) = −AH
48π

{
1

d2
+

1

(d+ δ)2
− 2

(d+ δ/2)2

}
.

At large distances this attraction decays as ∼ −δ2/d4, whereas at
short distances it diverges as ∼ −1/d2. In the question sheet we
will look at the sphere-sphere interactions which are extensively
discussed in the book by Verwey and Overbeek.

3.2.3 Competition between electrostatic attraction
and van der Waals interactions

The total interaction between surfaces is a combination of screened
electrostatics and van der Waals interactions. As the electrostatic
interactions will be seen below to fall off exponentially, the van der
Waals forces are more important at both very short and very long
ranges. However, for intermediate r, the electrostatic contribution
can be important.

We start with the electrostatic interaction between two point
charges of magnitude e in vacuum,

ε = eφ(r) =
e2

r
.

If we measure r in Å the ratio of electrostatic to thermal energy
is

ε

kBT
=

(4.8× 10−10)2

4× 10−14 · r · 10−8cm
=

580

r[Å]

This seems absurdly large, suggesting that Coulombic interactions
are vastly more important than thermal effects. But of course
water has a large dielectric constant (ca. 80), so even without
accounting for screening effects the relevant ratio is more on the
order of 7/r. This suggests a characteristic length, the “Bjerrum
length”, which represents the separation at which the electrostatic
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interaction between two elemental charges is comparable to the
thermal energy scale kBT ,

`B =
e2

εkBT
.

At 300K, `B is about 7Å.

3.3 Screening Effect of Water
(Debye-Huckel)

Even pure water has small amounts of ionic species (H+/OH−)
at equilibrium. These ions will have a screening effect on any
interactions, effectively forming a neutralizing layer around any
charged species. This interaction can be modeled through the
Poisson-Boltzmann equation, named after the two equations on
which it is based. The Poisson equation,

∇2φ = −4πρ

ε
,

relates the electrostatic potential φ to the charge density ρ, where
as usual the electric field is E = −∇φ. A second relation between
ρ and φ is needed to have a closed system, and this is the Boltzmann
distribution for the concentration c of charges,

cs = cs,0e
−zseφ/kBT ,

where cs,0 is the background concentration of charges of species
s, with valence zs. Combining these two equations into one self
consistent equation (and defining β = 1/kBT ) we obtain

∇2φ = −4π

ε

∑
s

zsecs,0e
−βzseφ ,

the general form of the Poisson-Boltzmann (PB) equation.
If we consider the specific case of a z : z electrolyte (1:1, NaCl,

2:2, CuSO4 etc.), we can write this in the compact form

∇2φ =
8πzec0

ε
sinh(βzeφ) .

In the weak field limit, βzeφ � 1, we can linearize the PB equa-
tion (using sinh(x) ' x + · · · ) to obtain the Debye-Hückel (DH)
equation,

∇2φ ' 8πz2e2c0

εkBT
φ .

From dimensional arguments it is thus clear that there is a char-
acteristic length, the Debye-Huckel length λDH ,

λ2
DH =

εkBT

8πz2e2C0
∼ 10nm

z2c0[mM ]
,
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where we have used typical material constants, and expressed c0

in mM. The DH equation then takes the form of a modified Helm-
holtz equation,

(∇2 − λ−2
DH)φ = 0 .

In one dimension this becomes(
d2

∂x2
− 1

λ2
DH

)
φ = 0 ,

whose general solution is

φ = Aex/λDH +Be−x/λDH .

This provides the basis for the linearized interaction between sur-
faces, provided we implement the proper boundary conditions to
obtain the amplitudes A and B.

If we consider a single surface, away from which the field must
decay to zero at infinity, we set A = 0 and B = φ0, the surface
potential, so

φ = φ0e
−x/λDH .

We are now interested in finding the charge density on the surface
if we fix the the potential at φ0. From electrostatics we know that
the normal component of the electric field is related to the charge
density and the dielectric constant via

n̂ ·∇φ|surf = −4πσ

ε
⇒ σ0 =

ε

4πλDH
φ0

It is important to note here that the charge density depends on
the potential. Within DH theory the relationship between the σ0

and φ0 is linear, which is a direct consequence of the linearization
of the PB equation. In a more general case the relationship is of
course non-linear, which leads to more interesting problems like
Manning condensation (Manning, 1969). As a general statement
we see that next to the surface there is an excess of counterions
(oppositely charged from the surface) which accumulate within
the screening layer. The charged surface and the charged layer of
counter ions together are referred to as the double layer.

We now turn to a calculation of the free energy of this config-
uration. First observe that the DH equation ∇2φ − λ−2

DHφ = 0 is
the Euler-Lagrange equation for the functional

F =
ε

4π

∫
d3r

[
1

2
(∇φ)2 +

1

2λ2
DH

φ2

]
,

where we have used the general Euler-Lagrange formula

δF
δφ

= − ∂

∂x

∂L
∂φx

+
∂L
∂φ

,
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where L is the integrand of F . Thus, we see that the DH free
energy is the sum of the contributions of the electrical energy
(with energy density εE2/8π) and an entropic contribution. If we
integrate by parts the gradient-squared term above we obtain

F =
ε

8π

∫
S
φn̂ ·∇φ− ε

8π

∫
φ

(
∇2φ− 1

λ2
DH

φ

)
,

where S is the surface of the domain under consideration. The
integral term above vanishes by the DH equation, leaving F ex-
pressibly completely as an integral over the surfaces bounding the
domain. Recognizing the expression for the surface charge above,
we finally obtain

F = −1

2

∫
S
σφdS .

. In the more general nonlinear case, this expression is replaced
by a charging integral

F = −
∫
S
dS

∫ φ0

0
σ(φ′)dφ′ .

For situations with fixed charge rather than fixed potential, we
Legendre transform the free energy to obtain

F̃ = F +

∫
dSσφ =

1

2

∫
dSσφ or

∫
S
dS

∫ σ0

0
φ(σ′)dσ′ .

If we apply these ideas to a single surface at fixed surface charge
we find the free energy per unit area of

F
A

=
2πλDHσ

2
0

ε
.

3.3.1 Potential Between Two Surfaces

We now move on to study the interaction of two surfaces bounding
a domain with screening charges. As we will see, there is an in-
teresting distinction in this problem for surfaces with fixed charge
or fixed potentials. Consider two surfaces located at ±d/2, and
solve the DH equation in between assuming fixed potentials.
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By symmetry and inspection the (symmetric) potential distribu-
tion is

φ = φ0
cosh(x/λDH)

cosh(d/2λDH)

The charge density at one surface follows as

σ(d/2) =
ε

4π

φ0

λDH
tanh(d/2λDH) ,

which properly tends to the previously-established value as d →
∞. Finally we calculate the free energy,

F

2A
= −1

2

∫
dSσφ = − εφ2

8πλDH
tanh(d/2λDH)

If we subtract from this energy the value as d→∞ we obtain the
interaction energy

∆calF

2A
=

εφ2

8πλDH
[1− tanh(d/2λDH)] .

This is a repulsive interaction energy tending to a constant at short
distances (so the force vanishes in that limit) and, when d/λDH �
1 following an exponential form (note tanh(x) ' 1− 2e−2x + · · · ),

∆F

2A
' εφ2

4πλDH
e−d/λDH .

3.3.2 Fixed charge

As shown before, there will be an exponentially decaying potential

φ = φ0e
−x/λDH

The charge at the surface can then be calculated

4πσ0

ε
=

φ0

λDH
⇒ φ0 =

4πλDHσ0

ε
φ =

4πλDHσ0

ε
e−x/λ

The energy of interaction between two surfaces of fixed charge is
then

∆F

2A
=

2πσ2
0λDH
ε

[coth(d/2λDH)− 1]σ0

In contrast to the fixed-potential case, this energy diverges at short
distances, and this can be understood as a consequence of forcing
those charges together. A typical charge density would be a single
elementary charge per 50Å2, which yields a surface energy per
unit area of 50 erg/cm2 (in cgs units). This is a very large energy,
comparable to the surface tension of the air-water interface.



3.4 Surface tension and wetting 15

3.4 Surface tension and wetting

To continue gaining familiarity with the kinds of quadratic energy
functionals that show up frequently in soft matter and biological
physics we turn to the problem of understanding the shape of a
meniscus formed when a liquid is in contact with a wall. The
equilibrium shape will be a compromise between the (usually fa-
vorable) interactions with the wall, which causes the fluid to rise
to form a contact angle, and gravity, which acts to keep the surface
flag.

Referencing the figure, in which the meniscus has height h(x), we
assume that the three-dimensional is invariant along the direction
perpendicular to the plane of the paper. The energy per unit
length in that direction is

E

L
=

∫ L

0
dx

[
γ
√

1 + h2
x +

1

2
∆ρgh2

]
,

where γ is the surface tension, ∆ρ is the density difference between
the fluid and the vapor above it, and g is the acceleration of grav-
ity. We adopt the notation hx ≡ ∂h/∂x. The first term reprsents
the extra arclength of the curve h(x) and we note that the second
term has the quadratic form due to the fact that we are counting
the energy in infinitesimal columns of fluid of height h(x).

Pedagogically we focus on the case of a gently tilted interface,
with |hx| � 1 and expand the square root as

√
1 + h2

x = 1 +
(1/2)h2

x + . . . to obtain for the energy difference from the flat
state

E[h]− E0

L
≈
∫ L

0
dx

[
1

2
γh2

x +
1

2
∆ρgh2

]
,

a form that is just like the Debye-Hückel energy in the electro-
static problem considered earlier. Again we will find that there is
a characteristic length scale in the system, termed the capillary
length lc

lc =

√
γ

∆ρg

which, for water/air, is about 3mm (
√

100/1/1000). For a full
analysis of the system we must account the interaction between
the liquid and the surface and enforce the specific contact angle.
A full description of wetting angles etc. can be found in the notes
of the Part II Soft Matter Physics course (?).
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3.5 Long, linear, charged objects (e.g.
DNA)

Here we make some comments about the phenomenon of Man-
ning condensation (Manning, 1969), an important feature of the
energetics of long polyelectrolytes.

Consider a line of even charges separated by b as depicted in the
figure, with a linear charge density

λ =
zpe

b

where zp is the valence and e is the charge of an electron. In 2D
cylindrical coordinates, the energy of a test charge of valence zi is

Uip = −zie
2γ

ε
ln(r)

If we assume a probability density (concentration) based on this
energy we obtain

e−βUip(r) = r2zizplB/b

where lB is the Bjerrum length. The integral of this probability
density is then:∫

2πdrre−βUip(r) ∼
∫
drr1+2zizplB/b

If the test charge is a counterion (zizp < 0) and lB/b ≥ |zizp|−1

the normalization will fail at the origin. This is accounted for
with Manning condensation (counter-ion collapse or condensation)
(Manning, 1969) which cancels the bare charges, reducing γ to the
point of convergence.

3.6 Geometrical aspects of screened
electrostatic interraction

We turn now to the quantification of the charges on an object such
as a membrane to its stiffness or bending rigidity. Here, we will
discuss two methods to find a solution to this problem. In each it is
necessary to work in a regime in which there is a small parameter
to organize the calculation. As we have already established the
existence of the screning length λ we require a second length, and
this is provided by the radius of curvature R of the surface, or
more generally by R1 and R2 the two principal radii of a general
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surface at a given point. The regime of interest is then λ/R� 1,
where the screening charges are confined to a region close to the
surface on the scale of the local inscribed circle(s) that define the
curvatures. Is this a realistic assumption for biological systems?
Cells live on length scales of many microns, artificial vesicles as
well, while the Debye-screening length is on the range of nm in
realistic conditions, so indeed our assumption that λ/R � 1 is
valid. For highly charged molecules like DNA this is not the case
as there bends can happen on the scale of a few nm, which sets a
limit to this analysis.

We will start by evaluating a situation where a charged mem-
brane has a certain curvature. For a surface there are obviously
two principle radii R1 and R2 associated with any point on the
surface.Using R1 and R2 we can construct two second order quant-
ities. One of which we call the mean curvature defined as H =
(1/2)(1/R1 + 1/R2) and the Gaussian curvature K = 1/(R1R2).
With the help of these curvatures we can now write down the en-
ergy function of a membrane proposed and studied separately by
Canham and Helfrich, the quadratic form

ε =

∫
dS

[
1

2
kc(H −H0)2 +

1

2
kcK

]
.

This energy is associated with non-stretching membranes subject
only to a bending energy. The elastic constants kc and kc each
have units of energy, and are typically some multiple of kBT . The
“spontaneous curvature” H0 represents an equilibrium preferred
curvature set by asymmetries between the two sides of the mem-
brane.

We see the electrostatic contributions to kc, kc and H0. There
are three ways to solve this problem.

1. compare the energy of several different membrane geomet-
ries in which calculations are straightforward, i.e. where the
curvatures are constant, and then deduce the unknown by
comparison. For the planar calculation we did earlier we
have R1 = R2 = ∞. If we extend this to a cylinder (with
R1 = R and R2 = ∞ and a sphere R1 = R2 = R we can
complete the calculations.

2. construct a perturbation theory around a flat surface. For
a slightly deformed flat plane which is bending according
to h(x, y) one can calculate the electrostatic energy by an
expansion of the solution of the Debye-Hückel problem. We
will outline the essential features of this ‘boundary perturb-
ation’ method.

3. a ‘multiple scattering method’. This is much more difficult
and not covered in the course, but is the most powerful and
general. It relies on the use of an integral expression for the
Green’s function of th DH problem in an arbitrary domain.
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3.6.1 Geometric comparison method

We will now start with the geometric comparison method and
consider the simple geometries given below

We now solve the modified Helmholtz equation in a cylindrical
coordinate system, with only radial dependence to the potential.
To simplify notation we use κ = 1/λ. The governing equation is

φ′′ +
φ′

r
− κ2φ = 0

Multiplying through by r2 we recognize this as the equation defin-
ing the modified Bessel functions I0 and K0 this equation is solved
by Bessel functions. There are two solutions to this equation, one
for field inside the cylinder and one for the outer problem. De-
manding that the potential be finite at the origin yields

φ = φ0
I0(κr)

I1(κr)
,

while the solution for the outer problem (with the potential van-
ishing at infinity) is given by the Bessel functionK0(κr). As before
one calculates the energy per unit area of the system as (1/2)σφ.

Apart from the cylinder we can find the Solution for a Plane,
which we already developed in class, and led to

φ =

{
φ0e
−(x−a)/λDH x > a

φ0e
−(a−x)/λDH x < −a

For a surface of fixed charge, the potential at the surface will be

φ0 = λDH
σ

ε

The associated energy, as discussed in class, is determined through
the energy necessary to build up the relevant charge

E =

∫ σ

0
φdσ =

∫ σ

0
λDH

σ

ε
e−(x−a)/λDHdσ =

σ

2
φ =

σ2λDH
ε
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The third simple geometry is the Solution for a Sphere. Ex-
panding the Laplacian (for only the radial term, due to symmetry)

∇2φ =
1

r2

∂

∂r

(
r2∂φ

∂r

)
= φ′′ + 2

φ′

r
=

φ

λDH

The general solution is

φ = A
e±r/λDH

r

Since the solution that decays at infinity is desired (outside the
sphere), one solution can be eliminated so that

φ = A
e−r/λDH

r

For a sphere of radius b with fixed potential φ0, this becomes:

φ = φ0b
e−(r−b)/λDH

r

Inside of the sphere, the potential must be bounded at zero so
that the two terms cancel.

φ = φ0
a

ea/λDH − e−a/λDH

(
er/λDH + e−r/λDH

r

)
Simplifying to hyperbolic functions and incorporating solutions
for both inside and outside the sphere

φ =

{
φ = φ0a

sinh(r/λDH)
r cosh(a/λDH) r < a

φ = φ0b
exp[−(r−b)/λDH ]

r r > b

For fixed charge, the potential (taken from Hunter) will be

φ0 =
σλDH

ε(1 + λDH/a)

3.7 Solution with perturbation theory

Here we want to look at and understand how perturbation theory
can be applied to solve a problem with a field equation of this
kind. The surface or membrane of interest is not trivial. This
non-trivial shape makes the solution complicated, however with
the method discussed in the following we will be able to find a
solution. It is interesting to note that this kind of problem is very
common and physics and is found both in hard and soft matter
physics.

We will now have to solve this respecting the surface boundary
condition φsurf

φsurf = φ0 = φ(x, h(x))
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which means essentially that this is a function of both x and y =
h(x). In electrostatics we could use Green’s function if the surface
would have a simple geometry. However, this is not the case here
so we have to find another way. We introduce a counting device
ε, which reflects the fact that h is small. Small in this context
means that the curvature is in the range of the screening length
i.e. λDH/R ≈ 1. With ε we can rewrite φ as

φ0 = φ(x, εh(x))

We now use a Taylor expansion which yields

φ(x, εh(x)) ' φ(x, 0) + εφy(x, 0) +
1

2
ε2φyy(x, 0) + ...

where the subscript denotes a partial derivative with respect to y
φy = ∂φ/∂y. This is an expansion for the boundary condition at
y = 0.

However, We are interested in the two-dimensional case. As-
suming that the two-dimensional problem φ(x, y) can be written
in a similar way, as expansion in ε,

φ(x, y)) ' φ(0)(x, y) + εφ(1)(x, y) + ε2φ(2)(x, y) + ...

and remembering that we have the governing equation is

(∂xx + ∂yy − κ2)φ(n)(x, y) = 0

The governing equation does not change due to boundary con-
ditions and thus we solve on every order the same equation. This
means that

φ0 = φ(0)(x, 0)) + εφ(1)(x, 0) + ε2φ(2)(x, 0) + ...

+εh(x)(φ(0)
y (x, 0)) + εφ(1)

y (x, 0) + ...)

+
1

2
ε2h2(x)(φ(0)

yy (x, 0)) + ...)

We can write down the terms now considering the boundary
conditions given above and identify the terms with the boundary
conditions and write down the solution for different orders of ε.
For the zero order ε0 this is simple as this should be the same
solution as for a flat surface:

O(ε0) : φ(0)(x, 0) = φ0 ⇒ φ(0)(x, y) = φ0e
−κy

For the first order ε1 we get

O(ε1) : φ(1)(x, 0) = −h(x)φ(0)
y (x, 0) = κh(x)φ0

which replaces the problem with a boundary condition on a curved
surface with a problem involving a spatially varying potential on
a ’flat’ surface.



Fluctuations and
Fluctuation-Induced Forces 4
4.1 Brownian Motion

The diffusion equation is (Brown, 1828; Einstein and F
”urth, 1956):

∂C

∂t
= −∇ · J = D∇2C

where J = −D∇C is the flux from Fick’s law. To understand
the typical values of diffusion coefficients (say, for small molecules
in water: 10−5 cm2/s) we consider a one-dimensional system in
which particles diffuse and are acted on by a deterministic force,
so

J = JDiffusive + JForce = −DdC
dx

+ cv ,

where v is the velocity that results from the balance of the force
and viscous drag. Since at small length scales (and thus low Reyn-
olds number), inertia is negligible and those forces balance, we can
write

ζ = F = −dφ
dx

,

where φ is the potential energy from which the force is derived.
Thus,

J = −DdC
dx
− C

ζ

dφ

dx
.

At equilibrium, where the principles of statistical mechanics hold,
the total flux must vanish and we can integrate to obtain

C = C0e
−φ/Dζ ∼ e−E/kBT ,

where the second relation is just the Boltzmann factor associated
with an energy. Thus,

Dζ = kBT ⇒ D =
kBT

ζ
,

which is the celebrated Stokes-Einstein relation. Since the dif-
fusion coefficient can be measured from the Brownian motion
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of microscopic particles, and the gas constant is known, Ein-
stein showed that such measurements yield a determination of
Avogadro’s number. This decisive demonstration of the reality of
atoms and molecules as discrete entities was one of the main res-
ults of Einstein’s 1905 paper on Brownian motion (Einstein and
F
”urth, 1956). Assuming a spherical particle, with ζ = 6πηR in a

read Einstein’s paper

fluid of viscosity η, and taking R = 2Å, we obtain D ∼ 10−5cm2/s.

4.2 Review of Statistical Physics

We will not give a whole review of classical statistical physics as
this would require a full lecture course. However, it will be useful
to briefly introduce the main concepts that are relevant for the
material discussed in this course. The probability p(E) of finding
a system in a state of energy E is given by

p(E) =
e−βE

Z

The factor Z that is needed to normalize this probability is called
the partition function,

Z =
∑
i

e−βEi

where the index i runs over all possible states of the system.
The expectation value of a physical quantity A of the system is

〈A〉 =
∑
i

A(Ei)
e−βEi

Z
,

a sum of the values in each state A(Ei) weighted by the probability
of the system being in that state.
Z, the partition function, can be interpreted in various ways.

Here, we will often consider Z to be a generating function of av-
erages. For most of the problems we will encounter in this course
we will discuss continuous states of energy. One example is a mi-
croscopic particle in an optical trap, which can be found at any
position in the parabolic potential. For example, in the case of
a single particle, the energy is a sum of the kinetic and potential
contributions,

E =
p2

2m
+ U(q)

For an N -particle system we use the notation {pN} and {qN}
to denote the set of N momenta and positions. The partition
function of such a system is then the multiple integral

Z =
1

N !h3N

∫
d3pN

∫
d3rN exp

(
−β

[∑
i

p2
i

2m
+ U({rN})

])
,
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where the integrals run over all possible momenta and positions.
The prefactor is a consequence of the assumption of indistinguish-
able particles and a proper normalization of phase space volumes
(the factor involving Planck’s constant h).

In this classical picture of course the momentum integral can
be done directly, yielding

Z =
1

N !

1

Λ3N

∫
d3rN exp

(
U({rN})

)
where we define the thermal de Broglie wavelength Λ as

Λ =
h√

2πmkBT

Thus h appears only in the prefactor Λ in classical system. Unless
we are interested in a few particular quantities like the absolute
entry, h will not enter into any of the observables we compute.

The most important result we shall use is the equipartition the-
orem, which states that each degree of freedom that enters the
energy quadratically will have on average the same energy. This
is easily seen. Consider a potential energy of the form

E =
1

2
kx2 .

The average energy is〈
1

2
kx2

〉
=

∫
dx1

2kx
2e−βkx

2/2∫
dxe−βkx2/2

= −∂ lnZ

∂β
,

where the last relationship highlights the use of Z as a generating
function. The partition function Z can be simplified by changing
variables so as to remove all constants from the exponential (the
trick is simply multiplying by 1) ,

Z =

∫
dxe−βkx

2/2

√
βk

2

√
2

βk
=

√
2

βk

∫
dqe−q

2

lnZ then has a simple β-dependence and remaining terms (· · · )
independent of β,

lnZ = − lnβ

2
+ · · · −∂ lnZ

∂β
=

1

2β
=

1

2
kBT

Thus, the energy per mode or degree of freedom is〈
1

2
kx2

〉
=

1

2
kBT ,

which is precisely the equipartition theorem.
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4.3 Review of Polymer Physics

In this section we develop the notion of an entropic force by ex-
amining the statistical properties of polymers, which act like en-
tropic springs.. This is one of the most important concepts for
polymers is directly related to the statistical nature of these ob-
jects. Before we start discussing the physics we will introduce a
few - well-known - examples for polymers.

Polymers are defined as long chain molecules with repeating
(identical) sub-units. A few examples are:

(1) DNA: Covalently bonded polymer with nucleotide units

(2) Microtubules: Aggregates of protein monomers, held to-
gether with electrostatics and van der Waal forces. Due
to the weak bonding these polymers can fluctuate in length.

(3) Linear/branched: Most proteins are single chains, but mo-
lecules with multiple attachments are possible.

(4) Cross-linked networks: interlocked chains of polymers are
necessary for many cellular functions.

An example of a polymer is styrene, with monomers of ethyl
benzene. One important degree of freedom of this chain is the
freedom of rotation around single bonds, such as C − C bonds in
proteins. This introduced (potentially many) additional internal
degrees of freedom to the chain. As discussed before, both short
and long range interactions are possible. For example, one re-
gion might interact with a polymer segement far down the chain,
both by electrostatics and by excluded-volume interactions. Local
physical and chemical interactions are also very important and de-
termine for example the chain stiffness.

4.3.1 Simplest model of polymers: A Chain Units
with Discrete Conformations

The simplest model of a polymer is a chain of N links, each with
length b, which can point up or down. Let us imagine the chain
is stretched by a weight which pulls the chain with force mg, as
in the figure.
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The change in energy of a configuration relative to the state with
highest energy is directly related to the length z of the chain

∆E = mgz z =

N∑
n=1

bsn

where sn = ±1, denotes whether the elementn is pointing up or
down.The partition function is simply a sum over all possibilities
of the spin variables sn,

Z =
∑
s1

...
∑
s2

exp
(
βbmg

∑
sn

)
.

Since all the sums are independent of each other

Z = [2 cosh(βmgb)]N .

Thus, the average extension z is

〈z〉 = b〈
∑
N

sn〉 =
−∂ lnZ

∂(βmg)
= Nb tanh(βmgb) = L tanh(βmgb) ,

where L is the total length of the chain. This defines a force-
extension curve z/L vs. βmbg as in the figure.

For a weak gravitational force, the length z can be Taylor expan-
ded to yield

z =
Nb2mg

kBT
+ · · · ≈

(
Nb2

kBT

)
mg

This is analogous to a Hookean force F = −kx, with spring con-
stant k. Here we have

k =
kBT

Nb2

This result is especially interesting because the restoring force
stems entirely from entropic forces. Work is done to reduce the
entropy when the chain is extended. For example, at full extension
there is only one configuration, so a minimum in entropy.

4.3.2 More realistic freely jointed chain

After discussing the easiest chain model we now consider a more
realistic one in which every link is free to move in continuously in
three dimensions (two angles). Applying a force F to the chain
end we have a configuration as in the figure.
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For this situation the projected lengthx and energy E are:

x =
N∑
n=1

b cos θn E({θn}] = −Fb
N∑
n=1

cos θn

The partition function is then

ZN =
∏
n

∫
dθn sin θn2πef cos θn f =

Fb

kBT

=

[
4π sinh(f)

f

]N
.

This can then be used to find the average extension

〈x〉
b

=
∂(lnZN )

∂f

〈x〉 = bN
∂

∂f
ln

sinh(f)

f
= NbL(f) L(f) = coth(f)− 1

f

where L is known as the Langevin function. The spring constant
for this model is easily calculated,

k =
3kBT

Nb2
.

This is intuitively sensible, since there are two more degrees of
freedom than in the simple case above. This is exactly analogous
to molecular velocity distributions, with each degree of freedom
having an energy of kBT/2.

These considerations are true as long as we leave the chain freely
hinged, meaning that there is no energy associated with bending
the chain by an angle. However, for most realistic scenarios, an
energy is associated with this and then we will have to develop
another description. This will lead to the worm-like chain model.

4.3.3 Fluctuating continuous objects

Our model for the freely hinged chain can be generalized to con-
tinuous surfaces. This is relevant for the description of filaments
like microtubules or a membrane. We start with a simple 1D
string that is stretched by two masses and hence under tension.
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The energy of this string, relative to the straight state, is simply
the tension multiplied by the extra arclength,

∆E = γ

[∫ L

0
dx
√

1 + h2
x − L

]
.

Here, hx ≡ ∂h/∂x is the local slopen and γ is the tension. Adopt-
ing a ‘long-wavelength’ approximation we expand the square root
and obtain

∆E ∼ γ

2

∫ L

0
dxh2

x + . . .

We cannot apply equipartition directly to this integral as the de-
grees of freedom are not isolated. Instead we decompose the dis-
placement field h(x) into discrete modes. Considering the bound-
ary conditionsh(0) = 0 and h(L) = 0 we use sin-waves for the
modes, essentially taking the Fourier sine transform,

h(x) =
∑
n

An sin
(nπx
L

)
The energy of the surface is then just a sum over the energy of
each constituent mode.

∆E =
1

2
γ
∞∑
m=1

∞∑
n=1

AnAm

(nπ
L

)(mπ
L

)∫ L

0
dx cos

(nπx
L

)
cos
(mπx

L

)
=

1

2
γ
∞∑
m=1

∞∑
n=1

AnAm

(nπ
L

)(mπ
L

)(δmnL
2

)
=
γL

4

∞∑
n=1

(nπ
L

)2
A2
n

If the string is in thermal equilibrium (e.g. connected to a heat
bath), so the probability distribution of the coefficients An is
a Gaussian centered at zero, then we immediately deduce from
equipartition that

〈En〉 =
kBT

2
=
γπ2n2

4L
〈A2

n〉 ,

and hence

〈An〉 = 0

〈A2
n〉 =

2kBT

γπ2n2
L .

The average variance of the string position can then be calculated,

〈h2(x)〉 =

∞∑
n

∞∑
m

〈AmAn〉 sin
(mπx

L

)
sin
(nπx
L

)
=
∞∑
n

∞∑
m

δmn〈A2
m〉 sin

(mπx
L

)
sin
(nπx
L

)
=

2kBTL

γπ2

∞∑
n=1

sin2 (nπx/L)

n2
.
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On dimensional grounds, γ has units of Energy/Length, so that
the sum has units of Length2.

4.3.4 Energy Calculations in Fourier Space

Rather than focusing explicitly on the boundary conditions and
the modes they determine, we can adopt a more general Fourier
space description, eventually passing to a continuous distribution
of modes. Starting again from the initial string energy and intro-
ducing the Fourier representation of hx, we write

h(x) =
∑
q

e−iqxĥ(q)

where ĥ(q) is the discrete Fourier transform of h(x). We can then
write down the energy as

E =
γ

2

∫
dx
∑
q

∑
q′

(−iq)(−iq′)e−iqxe−iq′xĥ(q)ĥ(q′)

This can be simplified with the help of∫ L

0
dxe−ipx = Lδp,0 so ĥ(q)ĥ(q′) =

γL

2

∑
q

q2|ĥ(q)|2

where δp,0 s the Kronecker δ.
We are now able to use the equipartition theorem:〈

|ĥ(q)|2
〉

=
kBT

γL

1

q2

We have been using the angular bracket notion 〈h2〉 to denote as
thermal average. It is useful to introduce the concept of a system-
average, denoted by · · ·, where

· · · = 1

L

∫ L

0
dx · · · .

One finds easily that the thermal average of the system average is〈
h2
〉

=
∑
q

〈|ĥ(q)|2〉 .

In the continuum limit, we replace the sum by the rule

1

L

∑
q

→
∫

dq

2π
,

which leads to 〈
h2
〉

=
kBT

2πγ

∫
dq

q2

Now we must address the need for cutoffs on this integral. These
usually occur in either of two forms:
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(1) Small scale: The continuum theory does not hold below
some molecular length awhich limit small scale behavior

(2) Large scale: The system size L prevents fluctuations on ar-
bitrarily large wavelengths

Introducing these cutoffs we have〈
h2
〉

=
kBT

2πγ

(
1

qmin
− 1

qmax

)
qmin = π/L qmax = π/a

Clearly, we can safely take a→ 0, but must keep L finite, to obtain
a finite result. On the other hand, if we calculate the energy itself
we find

∆E ∝
∫
h2
x ⇒

〈
h2
x

〉
∼ kBT

γ

∫
dq

q2
q2 ∼ kBT

γ
(qmax − qmin)

Now there is no problem setting L→∞, qmin → 0, but the energy
is dominated by the small-scale cutoff a,

∆E ≈ kBT

γ

π

a

4.3.5 Check against physical systems

Since kBT ∼ 4 × 10−14erg, γ ∼ 1 − 100 erg/cm, a ∼ 10−8 cm,
the average slope 〈h2

x〉1/2 is on the order of 10−3 − 10−2, which is
quite small indeed.

4.3.6 Fluctuations of an interface in a gravitational
field

Now we add a gravitational field to the problem and consider a
two-dimensional surface.

The energy is

∆E =

∫ ∫
dxdy

[
1

2
σ(∇h)2 +

1

2
∆ρgh2

]
.

Now we represent h in Fourier space,

h(r) =
∑
q

e−iq·rĥ(q) ,

and use ∫
d2rei(q+q′)·r = Aδq+q′,0 ,
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to obtain

∆E =
σA

2

∑
q

(q2 + l−2
c )|ĥ(q)|2

where lc is once again the capillary length. The average displace-
ment is then 〈

h2
〉

=
kBT

4πσ
ln

[
1 + 2 (πlc/l)

2

1 + 2 (πlc/L)2

]

In the thermodynamic limit (L → ∞), which is now possible at
finite g,

〈h2〉 ∼ kBT

4πσ
ln

[
1 + 2

(
πlc
l

)2
]

4.4 Brownian Motion and Diffusion

As discussed earlier, the diffusion equation and Stokes-Einstein
relation are

Ct = D∇2C D =
kBT

ζ

where ζ is the drag coefficient. The diffusion equations suggests
the dimensional relationship between time and length l ∼

√
Dt.

For example, with the diffusion of a small molecules in water (D =
10−5cm2/s, l = 30µm

√
t we expect in one second for molecules to

explore a region of size 30µm, which is very much larger than
a bacterium and greater even then many eukarytoic cells. This
suggests that the concentrations of free molecules inside such cells
would rapidly homogenize without additional mechanisms at work
(e.g. membrane localization, etc.). On the other hand, for the very
largest eukaryotic cells found in aquatic plants, which can be up to
10 cm in length, the diffusive time scales reach to months, and cells
require additional active transport mechanisms (e.g. cytoplasmic
streaming) in order to survive. comparable to the length of a cell.

4.4.1 Brownian particle in harmonic force field

Brownian motion is now studied routinely using the latest tech-
niques of image acquisition and manipulation, particular that of
optical trapping. This method was first invented in the 1970s at
Bell Labs (Ashkin, 1970). A laser beam is shined through a high
numerical aperture microscope objective to a diffraction-limited
spot. For sufficiently tight focus the beam waist acts as a trap in
the sense that the are inward forces drawing a dielectric particle
to the center of the trap dominate over radiation pressure pushing
the particle along the beam path.
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The forces acting on a moving particle within the trap are
Stokes drag, the restoring force of the trap, and random, fluc-
tuating forces from collisions of water molecules with the particle.
Near the trap centre the restoring force is harmonic, and a model
equation of motion for the position x of the particle is

ζẋ = −kx+ ξ′(t) ,

which is known as a Langevin equation.

For µm size spheres and moderate laser power, the spring con-
stant k is typically on the order of 10 fN/nm or 0.01 pN/nm.

Interestingly, the so-called ‘stall force’ for motor proteins is typic-
ally a few pN. This implies that a particle displaced a few hundred
nm from the trap centre will experience forces comparable to those
of motors. Note from the Langevin equation that there is a char-
acteristic time τ = ζ/k ∼ 4ms. This is the relaxation time of
the particle moving back towards the trap centre. At the same
time, recalling that thermal energy kBT ∼ 4pN · nm, we see by
equipartition that the typical excursion of a particle in a trap will
be hundreds of nm.

Let us now try to solve the Langevin equation in the sense of de-
ducing its statistical predictions about the motion of a particle and
determining the strength of the noise needed for consistency with
statistical mechanics. Dividing through by the drag coefficient ζ
and rescaling the noise as ξ = ξ′/ζ we see observe a convenient
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integrating factor et/τ , which allows a solution to be found,

ẋ+
1

τ
x = ξ(t) (ξ rescaled)

et/τ
(
ẋ+

1

τ
x

)
= et/τξ(t)

x(t)− x0e
−t/τ =

∫ t

0
dt′e−(t−t′)/τξ(t′) ,

where x0 is the initial position. Before deducing anything further,
we observe from this formula that the relaxation time introduces
a memory into the system.

If we denote averages over realizations of the noise by angular
brackets, the average position of the particle obeys

〈x(t)− x0e
−t/τ 〉 =

∫ t

0
dt′e−(t−t′)/τ 〈ξ(t′)〉 ,

and since the noise must have zero mean so as not to bias the
particle we obtain

〈x(t)〉 = x0e
−t/τ

Next we examine the variance in the position,

〈(x(t)− x0e
−t/τ )2〉 =

∫ t

0
dt′
∫ t

0
dt′′e−(t−t′′)/τe−(t−t′)/τ 〈ξ(t′)ξ(t′′)〉 .

Here we invoke the assumed separation of time scales between the
random forcing and the deterministic motion of the particle. That
is, we assume that the last term is a sharply peaked function of
|t− t′′|, say φ(t′ − t′′). With the change of variables

s = t′ + t′′ q = t′ − t′′

the r.h.s. of the previous equation becomes

1

2
e−2t/τ

∫ 2t

0
dses/τ

∫ ∞
−∞

dqφ(q) .

Note that we have extended the integration limits on the final
equation to ±∞ in recognition of the separation of time scales.
The final integral is then just a constant we term Γ. The average
deviation squared is then

〈(x(t)− x0e
−t/τ )2〉 =

Γτ

2
(1− e−2t/τ ) .

To determine Γ we take the limit t/τ → ∞ where we expect
equilibrium statistical mechanics to hold, and obtain

lim
t→∞
〈(x(t)− x0e

−t/τ )2〉 = 〈x(t)2〉 =
Γτ

2
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But we know from equipartition that

1

2
k〈x2〉 =

1

2
kBT so Γ =

2kBT

ζ

Returning to the original formulation, we clearly might just as
well have assumed from the beginning that the noise is δ-function
correlated,

〈ξ(t)ξ(t′)〉 =
2kBT

ζ
δ(t− t′)

Let us consider the small-t behavior of the variance,

〈x2(t)〉 ∼ Γτ

2

(
2t

τ
+ . . .

)
∼ 2kBT

ζ
t

which is just a random walk in 1D (〈x2〉 = 2Dt). Thus

D =
kBT

ζ

and the Stokes-Einstein relation is recovered.
As an aside, we can justify the assumption of no inertia for

small particles. If a 1µm bacterium moving under it’s own power
at 10µm/sec stops propulsion, it will stop within a subatomic
distance. Thus, there is negligible inertia and no drifting at these
length scales.

4.4.2 Brownian Diffusion

The diffusion coefficient is just the average of the movement rate
per time at long times

D = lim
t→∞

1

6t
〈|(r(t)− r(0)|2〉

where r(t) is

r(t) = r(0) +

∫
dt′u(t′)

The diffusion coefficient term above holds provided that the cor-
relation of velocities (〈u(t′) · u(t′′)〉 falls off fast enough. This
yields

D =
1

3

∫ ∞
0

dt〈u(t) · u(0)〉 .

For E. coli the average velocity is about 20 µm/s, and the bac-
terium executes 1s of movement before randomly changing direc-
tion. This yields a diffusion coefficient of 4 × 10−6 cm2/s, which
is approximately the diffusion coefficient of a small molecule in
water. Thus, E. coli use propulsion to achieve diffusion that
their large size does not allow, allowing them to effectively ex-
plore space.
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4.4.3 Brownian Motion and Polymers

Consider a free polymer

with each segment labeled as rn. Each segment is followed by
another random segment of equal length

rn+1 = rn + ζn

The total and average length of the polymer is then

rN − r0 =

N∑
n=1

ζn 〈rN − r0〉 =

N∑
n=1

〈ζn〉 = 0

by symmetry. The average of the displacement squared is

〈(rN − r0)2〉 =
N∑
n=1

N∑
m=1

〈ζm · ζn〉 =
N∑
n=1

N∑
m=1

δmnb
2 = Nb2 .

Now, more generally we can say that the probability that a
polymer will have segment positions at {rk} is

p =
1

Z
G({rk}) G = e−βU({rk})

We will consider the case in which the energy U is a local function,

U({rk}) =

N∑
j=1

Uj(rj−1, rj) +W ({rk})

where W represents an external potential (electric, gravitational,
etc.). When W = 0, this is just a random flight model. Either
way, this is a local model for the total energy, as it only relies
on nearest-neighbor interactions. Following Doi & Edwards, we
then define a term to represent the energy exponential between
two elements

τj(Rj) = exp[−βUj(Ri)] Rj = rj − rj−1

The function τj is assumed to be normalized, and can also be used
to calculate the end position, assuming the starting position is the
origin 0, ∫

dRiτi(Ri) = 1 rN =

N∑
j=1

Rj .

Thus, molecular level structures are effectively abstracted away
and we can consider a whole class of models for the distribution
of segments,
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For example, one could even imagine a spring connecting beads
together, so

p(x) ∼ exp(−kx2/2kBT )

Eventually, we are interested in the probability distribution of
the end-to-end vector of the polymer and the way it depends on
properties of the function τ . The quantity of interest is the fixed
end-to-end vector partition function, the integral over all degrees
of freedom for which the end position is R, is then

G(R;N) =

∫
d{Rk}G({Rk})δ(rN −R)

=

∫
d{Rk}

N∏
j=1

τ(Rj)δ

 N∑
j

Rj −R

 .

4.4.4 Example of Nearest Neighbor Interaction

An example of τ is that for a fixed-length distribution,

τ(Rj) =
1

4πl2
δ(|Rj | − l) ,

which is the simplest model for a self-avoiding chain. The trick to
performing the calculation is the use an integral representation of
a delta function,

δ

 N∑
j=1

Rj −R

 =

∫
d3k

(2π)3
exp

ik ·
 N∑
j=1

Rj −R

 .

The distribution function is then

G =

∫
d3

(2π)3
e−ik·R

[∫
dRjτ(Rj) exp(ik ·Rj)

]N
The bracketed term is a characteristic function K(k;N), which in
this case is

K(k;N) =

(
sin(kl)

kl

)N
.
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We are interested in the regime N � 1 and thus need only focus
on the small-k behavior of K,

K(k;N) ≈
(

1− k2l2

6
+ . . .

)N
∼ exp(−Nk2l2/6) .

Thus, we obtain

G(Rj ;N) =

∫
d3k

(2π)3
exp(−ik ·R) exp(−Nl2k2/6)

=

(
3

2πl2N

)3/2

exp

(
−3R2

2Nl2

)
.

More generally we would recognize an effective bond length defined
in terms of the second moment of the distribution function τ .
Provided there is nothing pathological about τ the central limit
theorem guarantees us a Gaussian distribution.

4.4.5 Self-avoidance and Flory Theory

Real polymers have excluded-volume interactions that change the
relationship between the end-to-end distance R and the number
of segments N .

We saw previously that the probability distribution for the free
chain takes the form

P (R) ∼ e−3R2/2Nl2 ,

and this can be used to define an effective free energy via the
relation

F (R) = −kBT lnP (R) = kBT
3R2

2Nl2
.

This looks like the energy of a spring (quadratic in the displace-
ment R), with a spring constant of entropic origin.

In the simplest treatment of self-avoidance, we introduces an
energetic cost of contact interactions between segments,

kBTvδ(Rm −Rn) ,

where we measure the interaction energy for convenience by kBT .
In the mean field argument pioneered by Flory, we estimate the
contribution of this term to the free energy through the segment
concentration N/R3 as

vkBT ·N ·
N

R3
.

Adding this to the entropic contribution we arrive at the total free
energy

Ftot = kBT

[
3R2

2Nl2
+
vN2

R3

]
.

Thus, there is a trade-off between the two competing effects, with
entropic elasticity favoring a compact chain and self-avoidance
swelling it.
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Minimizing Ftot with respect to R we find

fracRN ∼ N2

R4

and hence

R ∼ N3/5 .

It is conventional to denote the exponent of the relation ν. For
the ideal random walk we have

〈R〉 ∼ Nν , ν = 1/2 ,

and thus self-avoidance does indeed swell the chain. Note that the
concentration of segments is

Cseg ∼
N

R3
∼ N1−3ν

{
∼ N−1/2 ideal

∼ N−4/5 self-avoidance

so the concentration is reduced.
If we generalize this to d dimensions the only change is in the

expression for the concentration of segments, so balancing the
terms in the free energy yields

R2

N
∼ N2

Rd
⇒ Rd+2 ∼ N3 ⇒ R ∼ N3/(d+2)

This relation is remarkably close to the available results for 1 ≤
d ≤ 4:

d = 1 R ∼ N exact (trivial)

d = 2 R ∼ N3/4 exact (solved)

d = 3 R ∼ N3/5 Renormalization group and numerical solution (0.589)

d = 4 R ∼ N1/2 correct

d > 4 R ∼ N3/(d+2) wrong (should be N1/2)
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