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Preface

How to use these lecture notes:

Where derivations are written out extensively here, they will
probably not be reproduced in class, and vice versa. You will be
expected to have understood all of these, and to be able to re-
produce these results and variations that use the same methods.
Derivations obtained in the exercises on the examples sheets are
also part of the course, and worked-out solutions will be made
available towards the end of the term.

Dos:

• Use the handout to follow progress through the course ma-
terial. The structure of the handout is almost the same as
the lectures.

• Integrate the lecture overheads and the handout material
yourself. There is examinable material that only appears in
one place.

• Follow suggestions and think about the questions in the
notes. These are distributed through the text to help you
spot if you are understanding the material.

Don’ts:

• Expect to study only from these notes. You will need the
other primary references. Most of all you will need to un-
derstand how to use the material and methods presented,
rather than memorising information.

• Expect these notes to be error free. They will contain a
higher density of errors than a typical book! (They derive
originally from one student’s very generous but incomplete
work). e-mail us if you think something is wrong or unclear,
and the notes will improve.

• Expect these notes to be even in the level of presentation.
Some paragraphs are minimal, and some section labels are
only place holders for material that will be covered in class.
Instead, use these notes to guide you through the books,
articles, etc.
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Introduction 1
Soft matter and biological physics are topics very much unlike the
more standard subjects such as quantum mechanics or thermal
and statistical physics. The latter are in many respects complete,
certainly at the level of interest to advanced undergraduate or be-
ginning graduate students. It is safe to say that the core material
in these subjects will not change fundamentally in the next dec-
ades, if ever. In contrast, soft matter and biological physics are
topics which only in the last two decades have become a strong
focus in physics departments around the globe. This makes them
exciting fields in which to work, but also poses the problem for stu-
dents and professors in that there is no single standard textbook
that covers the field. Thus we have decided to provide some notes
in this form, not to replace a textbook, but to help in accessing
the material of the course.

These are notes for the Part III ’soft and biological physics’
course jointly convened between the Cavendish Laboratory and
the Department of Applied Mathematics and Theoretical Physics.
They are and will likely remain ‘preliminary’. They are neither
fully complete, nor fully correct and will be constantly updated. It
is very important that you look at other material as well to under-
stand fully the topics covered in the course. It is also important
to realize that notes like these can almost never replace a proper
textbook. Even more so in an advanced courses replace covering
‘hot’ topics discussed at the moment in the scientific community
it is often necessary to read (very often recent) journal articles.
We know that this can be a challenge but you are expected to be
able to do this when you start to work on your Part III projects
and essays.
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2.1 Review of molecular physics

The ideal gas law,

pV = NkBT = nRT or
p

kBT
= ρ ,

where p is the pressure, V is the volume, N is the number of
molecules, kB is the Boltzmann constant, T is the absolute tem-
perature, n is the number of moles, R = NAkB is the ideal gas
constant (where NA is Avogadro’s number), and ρ = N/V is the
density, is only an approximation. At low densities real gases are
described by a “virial expansion”, a power series in ρ,

p

kBT
' ρ+B2(T )ρ2 +B3(T )ρ3 + · · · .

Intuitively, the quadratic term involves 2-body interactions, the
cubic term captures 3-body effects, and so on. Experimental
measurements (see figure below) of the second virial coefficient
B2 show that it is negative at low temperatures (indicating at-
traction between pairs) and becomes positive (repulsive) at high
temperatures. The temperature TB at which B2 = 0 is known as
the Boyle point.

One of the great early triumphs of statistical physics was to show
how B2(T ) arises from the underlying intermolecular potential,
which typically has a repulsive hard core and an attractive tail
due to van der Waals interactions (figure).
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It was van der Waals who had the crucial idea that the potential
could be thought of as the sum of a purely repulsive part, which led
to excluded volume around each molecule, and a purely attractive
part whose effects on the thermodynamics could be estimated by
a kind of perturbation theory. In this “mean field” calculation
of the latter, we imagine that the density of the gas is uniform
throughout space, rather than trying to address the complex form
of the radial distribution function (RDF) seen in the figure:

Under this assumption the energy Uattr associated with the at-
tractive part of the potential uattr is

Uattr =
1

2
Nρ

∫
d3ruattr(r) ,

where the factor of 1/2 avoids double-counting. It is convenient
to define the quantity a,

a = −1

2

∫
d3ruattr(r) ,

which is a characteristic constant for a given species. The energy
is then Uattr = −aNρ = −aN2/V and the contribution to the
pressure is

pattr = −∂Uattr

∂V
= −aρ2 .

Thus, our first guess at a corrected equation of state is

p ' ρkBT − aρ2 .
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Further, van der Waals realized that effect of the hard-core in-
teractions could be accounted for by subtracting from the total
volume V an amount proportional to the number of particles N ,
with an effective excluded volume per particle b. Putting these
two effects together one has the revised equation of state

(p+ aρ2)(V −Nb) = NkBT

Expanding for small ρ we find

p

kBT
∼ ρ+

(
b− a

kBT

)
ρ2 + . . . .

This shows that B2(T ) = b− a/kBT , a form that is qualitatively
like that seen in experiment. At high temperatures it saturates to
a positive constant, reflecting entropic effects, whereas at low tem-
peratures it is dominated by the attractive part of the potential.
This shows the important point seen in many other contexts (such
as polymer physics), that interaction terms quadratic in a density
often must be interpreted as free energies (involving energy and
entropy) rather than purely energetic.

2.2 Van der Waals interactions

Van der Waals’ name is of course also associated with the long-
range fluctuating-dipole interactions between neutral objects. Let
us first get some insight into the physics responsible for the long-
range attraction between neutral atoms or molecules. We repro-
duce essentially verbatim the very nice derivation in the literature
(Holstein, 2001) which is based on the picture of two charged har-
monic oscillators whose positive charges are fixed in place and
whose negative charges can oscillate back and forth under the ac-
tion of a spring of constant k:

With ω2
0 = k/m, where m is the electron mass, the Hamiltonian

is a sum of the electron kinetic energy, spring energy, and electro-
static interactions,

H = H0 +H1

H0 =
p2

1

2m
+

1

2
mω2

0x
2
1 +

p2
2

2m
+

1

2
mω2

0x
2
2

H1 = e2

[
1

R
+

1

R− x1 + x2
− 1

R− x1
− 1

R+ x2

]
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This is exact but rather cumbersome. If we consider the physically-
interesting limit in which the atoms are separated a distance large
compared to their size, |x1|, |x2| � R, then

H1 ∼ −
2e2x1x2

R3
,

which we recognize as a dipole term from the R−3 fall-off with
distance. To simplify the situation, a coordinate change is made:

x± =
x1 ± x2√

2
x1 =

x+ + x−√
2

x2 =
x+ − x−√

2
,

and the Hamiltonian becomes

H =
p2

1

2m
+

1

2

(
mω2

0 −
2e2

R3

)
x2

+ +
p2

2

2m
+

1

2

(
mω2

0 +
2e2

R3

)
x2
− .

The two terms in parenthesis are modified frequencies,

ω2
+ = ω2

0 −
2e2

mR3
ω2
− = ω2

0 +
2e2

mR3
,

and so

H =
p2

1

2m
+

1

2
mω2

+x
2
+ +

p2
2

2m
+

1

2
mω2
−x

2
− .

Having diagonalized the Hamiltonian, we can easily calculate the
change to the ground state energy of the system due to the Cou-
lomb interactions. This interaction potential u(r) is just the shift
in zero-point energies,

u(r) =
1

2
~ω+ +

1

2
~ω− − 2 · 1

2
~ω0 ' −

1

2
~ω0

(e2/mω2
0)2

R6
+ · · · ,

where we have expanded the frequencies ω± to the lowest non-
vanishing order. In grouping the terms as shown in the final form
above we have isolated a characteristic energy (~ω0) that sets the
overall scale for the interaction (it would be typical of an internal
excitation energy from an s state to a p state, since fundament-
ally the interaction is due to virtual transitions to states with
dipole moments). Recognizing the R−6 dependence, we observe
that e2/mω2

0 must be a characteristic volume (remember we are
working in cgs units!). To check this we note that the simplest
relationship between an induced electric dipole moment d and an
applied electric field E is

d = αE ,

where α is known as the polarizability. As the dimensions of d
are charge×length (Q ·L), and the units of E are Q/L2 (cgs), the
dimensions of α are L3, that is a volume. That it is proper to
interpret e2/mω2

0 as the polarizability can be seen by generalizing
the original Hamiltonian to include an applied electric field of
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magnitude E0 in the x-direction, acting to displace the electrons
only (recall that the positive charges are fixed in place),

H = H0 + eE0x1 + eE0x2

=
1

2
mω2

0

(
x2

1 +
2eE0x1

mω2
0

±
(
eE0

mω2
0

)2
)

+ (1↔ 2)

=
1

2
mω2

0z
2
1 + · · ·

z1,2 = x1,2 +
eE0

mω2
0

,

where the ± term in the second line indicates that we can add
the indicated term to complete a square and then subtract it off
separately. We thus see that we have a new pair of oscillators
whose equilibrium positions are linearly shifted by the field. The
induced dipole moment is thus the electron charge times that shift,
e2E0/mω

2
0, so the polarizability is indeed

α =
e2

mω2
0

.

Finally, in this model the interaction between the two fluctuating
dipoles can be written in the simple form

u(r) = −1

2

~ω0α
2

r6
.

2.2.1 Interaction of extended objects

Now can can use the basic result of the previous section to calcu-
late the interaction energy between atoms and extended objects
through a progression of geometries:

Let us denote the interaction between two point molecules as

V11(r) = −C
r6

.

To calculate the attraction V1S between one such neutral particle
(at the origin) and a semi-infinite medium (a “slab”) lateral in
the x − y plane, and filling the region z > h), we use cylindrical
coordinates to obtain

V1S(h) =

∫ ∞
h

dz

∫ 2π

0
dφ

∫ ∞
0

rdrρV11(
√
z2 + r2)

= −2πCρ

∫ ∞
h

dz

∫ ∞
0

rdr
1

(z2 + r2)3

= −πCρ
6h3

,
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where ρ is the number density of particles in the slab. Note that
the power law r−6 of the particle-particle potential has become
r−3 by three spatial integrals (x, y, z).

With this we can calculate the interaction between two semi-
infinite slabs by adding up all the contributions of the particles at
varying distances from one slab within the other. Since there are
Aρdz atoms each per thickness dz, the interaction energy is

VSS(h) = A

∫ ∞
h

ρV1S(z)dz ⇒ VSS

A
= −AH

12π

1

h2
,

where AH is known as the Hameker constant. In the more general
case of atoms of type 1 and 2 in the two slabs, with densities ρ1,2

and a cross-interaction constant C12 we have

AH = π2ρ1ρ2C12 .

From a scaling point of view, AH ∼ π2~ω(αρ)2, so with π2 ∼ 10,
~ω0 ∼ 3eV and αρ ∼ 0.1 (typical of dense liquids), we estim-
ate Ah ∼ 0.3 eV ∼ 5 × 10−20 J ∼ 5 × 10−13 erg, which is an
order of magnitude larger than thermal energy at 300K. Just as
importantly, this interaction scales with the inverse square of the
distance, which produces a very long-range force.

A simple generalization of the previous calculation yields the
interaction between two laterally-infinite slabs of finite thickness
δ1 and δ2, relevant to the interaction of pairs of nearby lipid mem-
branes. The interaction of a single atom a distance d from the
slab of thickness δ1 is

V1S(d) = −πCρ
6

{
1

d3
− 1

(d+ δ1)3

}
,

which, by integration over slab 2 yields the energy per unit area

VSS(d)

A
= −πCρ

2

12

{
1

d2
− 1

(d+ δ1)2
− 1

(d+ δ2)2
+

1

(d+ δ1 + δ2)2

}
At long distances this interaction scales as d−4. On the examples
sheet we will examine the sphere-sphere interaction, which is dis-
cussed extensively in the book by Verwey and Overbeek.

2.3 Screened electrostatic interactions

Many of the interesting objects in biology interact both through
van der Waals forces and (screened) electrostatic interactions. As
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the former typically decay as an inverse power of distance, and
the latter (as we shall see) decays exponentially, the combined
potential is attractive at long distances. Depending on the length
scales and amplitudes in a given system, at shorter distances there
can be a secondary minimum separated by a potential barrier
from the minimum at the very close separations (see figure). This
complex interplay between the two contributions can give rise to
many interesting phenomena. Our first goal is to understand the
electrostatic contribution.

Two charges in vacuum separated by a distance r have an elec-
trostatic energy (in cgs units) of

E = eφ(r) =
e2

r
,

where φ is the electrostatic potential. If we measure r in the
molecule scale of Å the ratio of electrostatic to thermal energy is

E
kBT

=
(4.8× 10−10)2

4× 10−14 · 10−8
=

580

r[Å]

However, the dielectric constant ε ∼ 80, so even apart from screen-
ing the energy is reduced to e2/εr. Turning this around, we define
the Bjerrum length λB as the point of balance:

λB =
e2

εkBT
∼ 7Å

Even pure water has small amounts of ionic species (H+/OH−)
at equilibrium. These and other ions present will tend to screen
the bare electrostatic interactions considered above. Effectively,
mobile charges opposite in sign to a given charge will cluster
around it in a diffuse cloud, screening it from other distant charges.
The standard formalism to compute the ionic distribution and res-
ulting interactions is known as Poisson-Boltzmann theory, or, in
its linearized form, as Debye-Hückel theory. PB theory is based
on two assumptions.
1. The Poisson equation relating the electrostatic potential φ to
the charge density ρ:

∇2φ = −4πρ

ε
E = −∇φ
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2. The Boltzmann distribution, relating the ionic concentrations
cs of the species s of valence zs to the electrostatic potential

cs = c0e
−zseφ/kBT ,

where c0 is a background concentration.
Combining these into a single self-consistent equation (with β =

1/kBT ), we obtain the Poisson-Boltzmann equation

∇2φ = −4π

ε

∑
species s

zsec0e
−βzseφ .

If we consider the specific case of a z : z electrolyte (1:1, NaCl,
2:2, CuSO4 etc.), we can write this in a more compact form

∇2φ =
8πzec0

ε
sinh(βzeφ) .

This is a very nonlinear equation for which analytical solutions
can be found only in very simplified geometries. Much of the
important physics of screened electrostatics can be seen in the
weak field limit, when βeφ� 1. We then linearize the PB equation
(using sinh(x) ' x+ · · · ) to obtain

∇2φ =
8πz2e2c0

εkBT
φ+ . . .

Comparing the two sides of this equation we infer on dimensional
grounds that there is a characteristic length scale, the Debye-
Huckel length λDH :

λDH =

[
εkBT

8πz2e2c0

]1/2

∼ 10 nm√
c0[mM]

,

where in the final expression we have expressed the concentration
in the biologically relevant units of millimolar (mM). Our first
important conclusion is that this length scale is nanometric for
typical biophysical contexts.

In this Debye-Hückel limit the electostatics is governed by the
modified Helmholtz equation,(

∇2 − λ−2
DH

)
φ = 0 .

Solving this problem first for a surface occupying the y − z plane
(x = 0), we observe that the general solution of(

∂2

∂x2
− λ−2

DH

)
φ = 0

is

φ = Aex/λDH +Be−x/λDH .
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In this case, A = 0 by the requirement of a bounded solution as
x→∞, and if the surface potential is held at φ0, then

φ = φ0e
−x/λDH

There is an induced charge density σ on the surface which can
be computed in the usual way (Gaussian pillbox),

−n̂ ·∇φ|surf =
4πσ

ε
⇒ σ0 =

ε

4πλDH
φ0 ,

where n̂ is the outward normal to the surface.
It is important to note here that the charge density depends on

the screening length in solution. This is a characteristic feature of
this problem. In Debye-Hückel theory there is a linear relationship
between the induced charge and φ0, while in the more general
case the relationship is non-linear, which leads to more interesting
problems like Manning condensation (Manning, 1969).

Once we have the potential everywhere and the charge on the
surface we should be able to find the (free) energy of the system.
Observe that ∇2φ−λ−2

DHφ = 0 is the Euler-Lagrange equation for
the functional

F̃ =
ε

4π

∫
d3r

[
1

2
(∇φ)2 +

1

2
λ−2
DHφ

2

]
where we employ the general Euler-Lagrange formula

δF̃
δφ

= − ∂

∂x

∂(· · · )
∂φx

+
∂(· · · )
∂φ

,

where (· · · ) is the integrand of the functional. We recognize the
first term as the electrostatic energy density εE2/8π. The second
is the weak-field approximation of an entropic contribution.

Now, here’s the crucial point. If we take the original free energy
and integrate by parts the term involving (∇φ)2, we obtain a
surface term and a new bulk contributiion (that is, using Green’s
first identity),

F̃ =
ε

8π

∫
S
dSφn̂′ ·∇φ− ε

8π

∫
d3rφ

(
∇2φ− λ−2

DHφ
)
,

where σ is the surface charge and here n̂′ is the surface normal
pointing out of the volume containing the ionic medium, and hence
into the surface. Noting that the the bulk term vanishes by the
DH equation, we are left only with the surface term. Re-expressed
in terms of the outward normal of the surface we can rewrite the
energy in terms of the surface charge density σ as

F̃ =
1

2

∫
S
dSσφ .

This is the appropriate energy for a system in which the surface
charge is specified.
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For situations with fixed surface potential rather than fixed
charge, the surface free energy must be Legendre transformed,
which is equivalent to accounting for the work done against the
battery that held the potential fixed. This new free energy F is

F = F̃ −
∫
S
dSσφ = −1

2

∫
S
dSσφ or −

∫
S
dS

∫ φ0

σ(φ
′
)dφ

′
,

the latter relation holding in the more general case of a nonlinear
relationship between charge and potential.

2.3.1 Interaction between surfaces

Now we move on to calculate the interaction of two surfaces, not-
ing some distinctions between the cases of fixed potential and fixed
charge. For two surfaces held at the same potential φ0, located at
x = ±d/2 (see figure),

the potential is the symmetric combination of the fundamental
exponential solutions found previously,

φ = φ0
cosh(x/λ)

cosh(d/2λ)
,

where the denominator is chosen to enforce the boundary condi-
tions, and we write λ for the DH screening length. Using this we
find the charge density at the plate at z = d/2. Here, −n̂ ·∇ =
d/dz, so

σ(d/2) =
εφ0

4πλ
tanh(d/2λ) .

At the left-hand surface we have −n̂ · ∇ = −d/dz, but with
sinh(−d/2λ) = − sinh(d/2λ) the charge density is the same. As
the charge and potential do not vary with position over these flat
surfaces the surface integration will just give a factor of the sur-
face area A. Normalizing by the area of the two surfaces the free
energy is

F(d)

2A
= −1

4
σφ0 = − εφ

2
0

8πλ
tanh(d/2λ)
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The interesting quantity is the difference between this and the
energy at infinite separation,

F(d)−F(∞)

2A
=
εφ2

0

8πλ

[
1− tanh

(
d

2λ

)]
At large arguments tanh approaches unity from below, so this is
clearly a repulsion, as expected. In detail, if d/λ� 1 we note that
tanh(z) ' 1− 2e−2z + · · · , so

∆F(d)

2A
' εφ2

0

4πλ
e−d/λ ,

so the repulsive free energy has the same exponential decay as
the electrostatic potential. The second point of interest is that
the potential is bounded as d→ 0, as the induced charge density
decreases monotonically.

Now we consider the case of two surfaces with fixed charge dens-
ity σ0. Since we require that the derivative of the potential be a
given value on the surface it is easy to see that the required po-
tential has a normalizing denominator that is the derivative of the
numerator,

φ(x) =
4πλσ0

ε

cosh(x/λ)

sinh(d/2λ)
.

The potential at the surface is

φ(d/2) =
4πλσ0

ε
coth(d/2λ) ,

and finally the interaction energy per unit area is

F̃(d)− F̃(∞)

2A
=

2πσ2
0λ

ε

[
coth

(
d

2λ

)
− 1

]
.

The function coth approaches its asymptote from above, so we
again have a repulsive interaction, but this time there is a di-
vergence at short distances due to the condition that the charge
density is fixed.

To put the scale of energies involved in perspective, we examine
typical values of the charge density. A typical lipid has a cross
sectional area of about 50 − 100 Å2. If each head group holds a
single charge, and the Debye-Hückel length λDH is about 1 nm,
then the typical energy is:

F̃
A
∼ 50

erg

cm2

Remembering that the surface tension of water is about 80 erg/cm2

we see that these electrostatic effects can be large.
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2.3.2 An aside on quadratic energy functionals

We will see a number of situations in which quadratic energy func-
tionals show up in soft and biological systems, so it is worthwhile
to remind ourselves of other places they occur. A good example
is found in the computation of the shape of a liquid meniscus
that meets a solid wall at some contact angle θ (figure below).
The shape of the meniscus is a compromise between the effects of
surface tension and gravity.

We assume that this three-dimensional system has translational
invariance in the direction normal to the page, and formulate the
energy per unit length in that orthogonal direction,

E

L
=

∫
dx

γ
√

1 +

(
∂h

∂x

)2

+
1

2
∆ρgh2


where σ is the surface tension and δρ is the density difference
between the fluid below the meniscus and above. The first term
represents the arclength of the curve h(x), while the second is the
gravitational potential energy of the meniscus relative to h = 0.
It is quadratic because it accounts for the potential energy in the
infinitesimal columns of fluid of height h, rather than the linear-
in-h form for a point mass in a gravitational field.

As usual, the pedagogically interesting limiting case is the one
in which the local slope of the interface is small, so we expand the
square root assuming |hx(x)| � 1, with

√
1 + h2

x ' 1 + (1/2)h2
x +

. . . and consider the difference in energy ∆E = E(h) − E(0)
between that for a given function h(x) and the flat state,

∆E

L
≈ 1

2

∫ ∞
0

dx

[
1

2
σh2

x + ∆ρgh2

]
.

Again we will find that there is a characteristic length scale in the
system, which is the capillary length lc,

1

l2c
∼ ∆ρg

σ
⇒ lc ∼

√
σ

∆ρg

which, for water/air, is about 3mm (
√

100/1/1000).

2.3.3 Long, linear, charged objects (e.g. DNA)

We will present a very brief discussion of the unusual statistical
physics associated with charged linear objects, such as DNA. now
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try to merge the two concepts, surface tension and wetting on the
one hand, and electrostatics on the other. We will investigate this
by considering a flexible, charged object like DNA or a biological
membrane. In equilibrium this object is flat, however, here we
will try to see what happens when we are bending it.

Let us imagine there is a linear object of uniform charge density
γ (Manning, 1969):

γ =
zpe

b

where zp is the valence, e is the charge of an electron, and b the
typical charge spacing. In cylindrical coordinates, the energy of a
test charge of valence zi is

Uip = −zie
2γ

ε
ln(r) .

If we assume a probability density that is based on this electro-
static energy we find the power-law form

e−βUip(r) = exp(2zizpe
2/εbkBT ) = r2zizpλB/b

where λB is the Bjerrum length we previously introduced. If we
try to normalize this charge density we are confronted with an
integral of the form∫

2πdre−βUip(r) ∼
∫
drr1+2zizpλB/b

If the test charge is a counterion (zizp < 0) and λB/b ≥ |zizp|−1

then the normalization will fail at the origin. This is the origin
of what is known as Manning condensation, where counter-ions
collapse to the linear polymer (Manning, 1969), canceling the bare
charge and reducing γ to the point of convergence.

2.4 Geometrical aspects of screened
electrostatics

The problem now is to quantify the contribution of charges to the
stiffness of an object. Here, we will use various methods to solve
this problem within an approximation that takes advantage of a
small parameter. We have already identified the screening length λ
which characterizes the width of the electric double layer. This can
be compared to the radius of curvature R of a bent object, whether
a filament or a membrane. In most situations the bending radius
is much larger than λ, so that λ/R� 1 serves as a dimensionless
small parameter.
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Our calculations will be based on the membrane problem, and
we recall that at every point of a surface there are two principal
radii R1 and R2 and from these we can construct two geometric
quantities. One is the mean curvature H = (1/2)(1/R1 + 1/R2)
and the second is the Gaussian curvature K = 1/(R1R2). With
the help of these curvatures we can now write down the energy
function of a membrane, which is a quadratic form

ε =

∫
dS

[
1

2
kc(H −H0)2 +

1

2
kcK

]
.

This was introduced by Helfrich and others for a non-stretching,
bending membrane. There are two elastic constants that describe
the energy cost to produce bends. The quantity H0 is known
as the spontaneous curvature and represents the possibility of a
preferred curvature in the ground state. It is often a constant,
but can vary from place to place if the membrane composition is
spatially variable, for instance.

Our goal is to find the electrostatic contributions to the elastic
constants and the spontaneous curvature. This can be done three
ways.

1. Dating back to work by Winterhalter and Helfrich (Win-
terhalter and Helfrich, 1988) and others, we can compare
the energy of different simple geometries where the various
curvatures are constant. For the plane we have R1 = R2 =
∞. For a cylinder we have one vanishing curvature, and
for the sphere R1 = R2. Comparing the results with the
terms in the Helfrich energy in an expansion in powers of
λDH/R we can find the elastic constants and the spontan-
eous curvature.

2. Construct a perturbation theory around a flat surface. This
provides a good context to understand “boundary perturb-
ation theory”.

3. Use a variant of multiple scattering theory. This is very com-
plicated and not covered in this course, but it is described
in the references.

We will now start with the geometric comparison method and
consider the geometries described above.
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To simplify notation we use κ = 1/λDH . Since we already solved
the electrostatic problem for a plane, we next consider the cylin-
der. We wish to solve the modified Helmholtz equation,

(∇2 − λ−2
DH)φ = 0 ,

with the radial part of the Laplacian

∇2φ =
1

r

∂

∂r

(
r
∂φ

∂r

)
= φ′′ +

1

r
φ′ .

Rearranging, we obtain(
r2∂rr + r∂r − (κr)2

)
φ = 0.

As this is homogeneous in powers of r the solution is only a func-
tion of κr. The two solutions to this are K0(κr) for the outer
problem (decaying at infinity) and I0(κr) for the inner problem
(well-behaved at the origin). These are modified Bessel functions

In the case of a fixed charge, the inner problem has a solution
of the form

φ =
4πσ

εκ

I0(κr)

I1(κR)

and the free energy will involve a ratio of the form

F̃ ∼ I0(κr)

I1(κR)
.

This is very naturally set up for an expansion in inverse powers of
κR, using the asymptotic results

Iν(z) =
ez√
2πz

{
1− µ− 1

8z
+

(µ− 1)(µ− 9)

2!(8z)2
+ · · ·

}
where µ = 4ν2. We see that the prefactors in front of the large
brackets cancel in the ratio I0/I1, leaving the desired expansion.

We leave it to the student to complete the calculation given in
the examples sheet.

Next, we sketch the basic features of a perturbative approach
to finding the energetics of electric double layers near a non-flat
boundary. In the simplest case we imagine a surface that has
some non-trivial height function h(x) in one direction only, and
the surface is held at a fixed potential φ0. That is

φ(x, h(x)) = φ0.

The mathematical problem is centered around the fact that in gen-
eral we do not know the Green’s function of the modified Helm-
holtz operator for the domain bounded by some arbitrary height
function h(x). But, we can perturbatively connect the solutions
at finite h(x) to those at h = 0, where we know the solution.
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Hence, we introduce a dimensionless small parameter ε as a count-
ing device. The boundary condition can then be expanded as

φ(x, εh(x)) ' φ(x, 0) + εφy(x, 0) +
1

2
ε2φyy(x, 0) + ...

where the subscript denotes a partial derivative with respect to y,
φy = ∂φ/∂y.

Now, we expect that the solution itself (in the bulk) also has an
expansion in powers of ε,

φ(x, y)) ' φ(0)(x, y) + εφ(1)(x, y) + ε2φ(2)(x, y) + · · · .

The governing equation does not depend on ε, so at every order
we will have

(∂xx + ∂yy − κ2)φ(n)(x, y) = 0 .

Merging the expansion of the boundary condition with the expan-
sion of the solution we arrive at a sequence of boundary conditions
for each order of solution. Up to second order in ε we have

φ0 = φ(0)(x, 0)) + εφ(1)(x, 0) + ε2φ(2)(x, 0) + · · ·

+εh(x)
[
φ(0)
y (x, 0)) + εφ(1)

y (x, 0) + · · ·
]

+
1

2
ε2h2(x)

[
φ(0)
yy (x, 0)) + · · ·

]
+ · · ·

At order ε0 we simply recover the boundary condition at a flat
surface:

O(ε0) : φ(0)(x, 0) = φ0 ,

and we can immediately write down the solution for all (x, y) as

φ(0)(x, y) = φ0e−κy .

At the next order we find the boundary condition

O(ε1) : φ(1)(x, 0) = −h(x)φ(0)
y (x, 0) = κh(x)φ0 .

Thus, the problem with a boundary condition on a curved sur-
face has become one with a flat boundary but an inhomogeneous
potential. At quadratic order we have a similar kind of result,

O(ε2) : φ(2)(x, 0) = −1

2
h2(x)φ(0)

yy (x, 0)− h(x)φ(1)
y (x, 0) .

A convenient way to solve these boundary-value problems is to
work in Fourier space. Let us define

φ̂(m)(k, y) =

∫
dxeikxφ(m)(x, y) and ĥ(q) =

∫
dxeiqxh(x) .
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The modified Helmholtz equation (∂xx + ∂yy − κ2)φ = 0 then
becomes(

∂yy − κ2
q

)
φ̂(n)(q, y) = 0 , where κ2

q = κ2 + q2 .

This is easily solved, as

φ̂(n)(q, y) = φ̂(n)(q, 0)e−κqy .

Thus, we need to know the Fourier transform of the functions at
y = 0, but this can be determined directly from the order-by-order
boundary conditions. For example, at order ε1 we have

φ(1)(x, 0) = κφ0h(x) ,

so

φ̂(1)(q, 0) = κφ0ĥ(q)

This we must do order by order. In addition, depending on the
boundary conditions, we may need to expand the surface normal
vector,

n̂ = −−hxêx + êy√
1 + h2

x

,

in order to compute the surface charge as

σ(x) = − ε

4π
n̂ ·∇φ(x, εh(x)) .

We leave the details for the problem in the example sheet.





Fluctuations and
Fluctuation-Induced Forces 3
3.1 Review of Statistical Physics

We will not present a complete review of classical statistical phys-
ics, but instead will simply highlight a few key points relevant to
the applications in this course. The fundamental relation is that
the probability p(E) of finding a system in a state of energy E is

p(E) =
e−βE

Z
,

where β = 1/kBT , and the partition function Z is

Z =
∑
i

e−βEi

where the index i runs over all possible states of the system. The
expectation value of a physical quantity A of the system is

〈A〉 =
∑
i

A(Ei)
e−βEi

z
.

We will typically deal with system for which the energy is simply
the sum of kinetic and potential contributions. For a single particle
this might look like

E =
p2

2m
+ U(q)

where q is some generalized coordinate.
The classical partition function for a system of N particles is

simply

Z =
1

N !h3N

∫
d3pN

∫
d3qN exp

(
−β

[∑
i

p2
i

2m
+ exp

(
U(qN )

)])
where we use the notation pN and qN to stand for the whole set
of variables. The prefactor is appropriate for indistinguishable
particles, and there is a phase space normalization factor of h
(Planck’s constant) for every pair of p and q.

Since there is no issue of the non-commutation of positions and
momenta we can perform the momentum integrals exactly, yield-
ing

Z =
1

N !

1

Λ3N

∫
d3qN exp

(
−βU(qN )

)
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where the thermal de Broglie wavelength Λ is

Λ =
h√

2πmkBT
.

Note that h appears only as a prefactor, and thus will play no role
in almost all observables.

When the configurational energy is qudratic in the generalized
coordinate,

E =
1

2
kx2 ,

then the theorem of equipartition holds. Observe that〈
1

2
kx2

〉
=

∫
dx1

2kx
2e−βkx

2/2∫
dxe−βkx2/2

= −∂ lnZ

∂β

. This means that we can view lnZ as a generating function.
Now change variables in Z, pulling the constants out in front,

Z =

∫
dxe−βkx

2/2

√
βk

2

√
2

βk
=

√
2

βk

∫
dqe−q

2
,

and so

lnZ = −1

2
lnβ + terms independent of β − ∂ lnZ

∂β
=

1

2β
=

1

2
kBT .

Thus, the energy per mode or degree of freedom is〈
1

2
kx2

〉
=

1

2
kBT .

3.2 Polymers and Entropic Forces

In this section we will develop basic concepts of polymer physics,
with emphasis on the concept of an entropic spring. Polymers
are defined as long chain molecules with repeating sub-units. Ex-
amples include

(1) DNA: A covalently bonded polymer with nucleotide units

(2) Microtubules: Aggregates of protein monomers, held to-
gether with electrostatics and van der Waals forces. Due
to the weak bonding these polymers fluctuate in length.

(3) Linear/branched: Most proteins are single chains, but mo-
lecules with multiple attachments are possible.

(4) Cross-linked networks: interlocked chains of polymers are
necessary for many cellular functions.
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3.2.1 Simplest model of polymers

The simplest model of a polymer is one in which there are N
identical links of length b, each of which can be oriented up or
down. Consider the case in which it is stretched by a mass pulled
down by gravity.

With a reference point at zero extension, the energy is E = −mgz,
where the extension z is

z =

N∑
n=1

bsn ,

where sn = ±1 denotes the orientation of the nth link. The par-
tition function is thus

Z =
∑
s1

...
∑
s2

exp
(
βmgb

∑
sn

)
,

which, by the independence of the sn, can be simplified to

Z =
N∏
n=1

∑
sn=±1

eβmgbsn = [2 cosh(βmgb)]N .

From this we can calculate the mean extension as a function of
the force F = mg,

〈z〉 = 〈b
∑
n

sn〉 = −∂ lnZn
∂(βF )

= Nb tanh(βFb) = L tanh(βFb) ,

where L is the fully-extended polymer length.

For a weak force, the average length z can be Taylor expanded

〈z〉 =
Nb2

kBT
F + . . . .

This is nothing but a Hookean spring relationship (force propor-
tional to extnesion), with a spring constant.

k =
kBT

Nb2
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This result is especially interesting because the restoring force
stems entirely from entropy. Work is done to reduce the entropy
when the chain is extended. For example, at full extension there
is only one configuration, so a minimum in entropy.

3.2.2 The freely-jointed chain

Now we examine a more realistic model in which every link is
freely-jointed. Applying a force F to this look like this:

The extension x and energy E are

x =

N∑
n=1

b cos θN E[{θn}] = −Fb
N∑
n=1

cos θn .

The partition function is then

Z =
N∏
n=1

2π

∫
dθn sin θnef cos θn f =

Fb

kBT

=

[
4π sinh(f)

f

]N
.

The average extension follows by differentiation,

〈x〉 = b
∂ lnZ

∂f
= NbF(f) L(f) = coth(f)− 1

f
,

where L is the Langevin function. The spring constant for this
new chain is

k =
3kBT

Nb2

which reflects the three degrees of freedom per link.

3.3 Fluctuating continuous objects

No we consider how to generalize these kinds of analyses to fluc-
tuating continuous objects such as membranes and biofilaments.
of filaments like microtubules or a membrane. A simple place to
being is with a 1D string stretched by two hanging masses, and
thereby under tension:
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The energy of this object, relative to that of a straight string, is
the product of the line tension γ and the excess arclength,

∆E = γ

[∫ L

0
dx
√

1 + h2
x − L

]
,

Where hx = ∂h/∂x. Expanding the squre root under the assump-
tion of a weakly-sloping curve we have

∆E ∼ γ

2

∫ L

0
dxh2

x + . . .

In this form we can not apply equipartition directly as there are
no identifiable independent modes. But, if we note the pinned
boundary conditions at x = 0 and x = L we can use a Fourier
series,

h(x) =
∞∑
n=1

An sin
(nπx
L

)
.

By the orthogonality of the modes, a little algrebra show that

∆E =
γL

4

∞∑
n=1

(nπ
L

)2
A2
n .

This decomposition holds for any particular realization of the
Fourier coefficients An. Note the explicit appearance of the sys-
tem size L. If the string is in thermal equilibrium (e.g. connected
to a heat bath), then the probability distribution of the An is just
a Gaussian, with a mean of

〈An〉 = 0

and an energy per mode of

〈En〉 =
kBT

2
=
γπ2n2

4L
〈A2

n〉 → 〈A2
n〉 =

2kBT

γπ2n2
L .

The average variance of the string can then be calculated:

〈h2(x)〉 =

∞∑
m

∞∑
n

〈AmAn〉 sin
(mπx

L

)
sin
(nπx
L

)
=

2kBTL

γπ2

∞∑
n=1

sin2 (Nπx/L)

n2
.

As a check, γ has units of Energy/Length, so that the sum has
units of Length2. Note again the interesting dependence on the
system size. The variance is linear in L, which should remind you
of a random walk.
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3.3.1 Energy Calculations in Fourier Space

Rather than doing summations over discrete modes, in many cases
we would like to consider a system large enough that a continuum
of modes is reasonable. To that end, we return to the string energy
and write

E =
γ

2

∫
dxh2

x hx =
∑
q

e−iqxĥ(q)

where ĥ(q) is the discrete Fourier transform of h(x). Substituting,
we have

E =
γ

2

∫
dx
∑
q

∑
q′

(−iq)(−iq′)e−i(q+q′)xĥ(q)ĥ(q′) .

This can be simplified with∫ L

0
dxe−ipx = Lδp,0 → E =

γL

2

∑
q

q2|ĥ(q)|2

where δp,0 s the Kronecker δ.
We are now able to use the equipartition theorem:〈

|ĥ(q)|2
〉

=
kBT

γL

1

q2

We denote the thermal average by 〈h2〉. A second average of
interest is the system average, denoted by 〈h2〉,

h2 =
1

L

∫ L

0
dxh2 .

The thermal average fo the system average has a very compact
form,

〈h2〉 =
∑
q

〈|ĥ(q)|2〉 .

This is still a discrete sum. In the continuum limit, we use the
fundamental relation

1

L

∑
q

→
∫
dq/2π ,

so

〈h2〉 =
kBT

2πγ

∫
dq

q2
.

For this and other integrals of this type we may need to introduce
integration cutoffs. These usually occur in either of two forms:

(1) Small scale: Molecular lengths a limit small scale fluctu-
ations.
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(2) Large scale: Limited system size L prevents long wavelength
fluctuations.

Accounting for such cutoffs:

〈h2〉 =
kBT

2πγ

(
1

qmin
− 1

qmax

)
qmin =

π

L
qmax =

π

a
.

Considering the basic object in the energy, we have

〈h2
x〉 ∼

kBT

γ

∫
dq

q2
q2 ∼ kBT

γ
(qmax − qmin) .

As we let L→∞, qmin → 0, and a→ 0, qmax →∞, so that

〈h2
x〉 ≈

kBT

γ

π

a

If we generalize this calculation to d dimensions of space and
hence d− 1 dimensions of the surface we find

〈h2〉 ∼
∫

dd−1q

(2π)d−1

kBT

γq2
∼ kBT

γ

∫
dq
qd−2

q2

∼ kBT

γ

qd−3

d− 3

∣∣∣qmax

qmin

(d > 3)

∼ kBT

γ
ln

(
qmax

qmin

)
∼ kBT

γ
ln

(
L

a

)
(d = 3)

3.3.2 Fluctuations of an interface in a gravitational
field

Now we consider a two-dimensional interface endowed with sur-
face tension and in a gravitational field, with a density difference
∆ρ between the fluids on either side. Once again we expand the
surface deformation

h(r) =
∑
q

e−iq·rĥ(q)

The quadratic energy functional is

E =
1

2

∫ ∫
dxdy

[
σ(∇h)2 + ∆ρgh2

]
=
σA

2

∑
q

(q2 + l−2
c )|ĥ(q)|2

where lc is once again the capillary length. Again by equipartition
we find

〈|ĥ(q)|2〉 =
kBT

σA

1

l−2
c + q2

.
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This shows that the capillary length provides a cutoff on what
would otherwise be divergent fluctuation amplitudes as q → 0.

Introducing both large-scale and small-scale cutoffs, the average
variance of the displacement field is

〈h2〉 =
kBT

2πσ

∫
qdq

l−2
c + q2

kBT

4πσ
ln

[
1 + 2 (πlc/l)

2

1 + 2 (πlc/L)2

]
In the thermodynamic limit (L → ∞), which is now possible at
finite g,

〈h2〉 ∼ kBT

4πσ
ln

[
1 + 2

(
πlc
l

)2
]

It is clear, with kBT ∼ 10−14 erg and σ ∼ 50 erg/cm2 that even
if lc/l ∼ 107 the fluctuations are still on the molecular scale.

3.4 Brownian Motion and Diffusion

3.4.1 Brownian particle in harmonic force field

Brownian motion can be investigated in modern laser trapping
systems, first invented in the 1970’s at Bell Labs (Ashkin, 1970)
The focus beam naturally converges on a small diffraction limited
region:

Radiation pressure acts to push the dielectric particle along the
optical path, while gradients in the electric field magnitude all
point toward the beam waist. If those gradients are sufficiently
large there will be a stable trapping potential, which will be har-
monic for small displacements. Note that the general result that a
dielectric object moves to regions of higher electric field is applic-
able here as long as one recognizes that the typical microspheres
have higher dielectric constants than water at optical frequencies,
while their DC values are smaller than that of water.
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Assuming that the trapping potential is quadratic in lateral dis-
placements x, the overdamped equation of motion of a micro-
sphere in the trap is

ζẋ = −kx+ η(t) ,

where η(t) is a random force. For µm sized spheres and moderate
lasers, k ∼ 10 fN/nm, and the relaxation time scale τ in the well
comes from the spring constant and drag coefficient:τ = ζ/k ∼ 4
ms (see below). The scale of the trap stiffness implies that sub-
micron displacements correspond to pN forces. Thus, attaching
spheres onto motor proteins allows the stall force (typically several
pN) of the motor to be determined from a force clamp.

There are two levels at which we can “solve” the Langevin equa-
tion. For any particular realization of the random noise ξ(t) we
can write down x(t) directly. But we are also interested in aver-
ages over realizations of the noise, suitable to compare with ex-
perimental observations. In the first case, if we rescale the noise
term the equation is

ẋ+
1

τ
x = ξ(t)

We recognize an integrating factor:

et/τ
(
ẋ+

1

τ
x

)
= et/τξ(t)

This allows a direct solution for any particular noise

x(t)− x0e
−t/τ =

∫ t

0
dt′e−(t−t′)/τξ(t′)

Now we find averages over realizations of the noise.

〈x(t)− x0e
−t/τ 〉 =

∫ t

0
dt′e−(t−t′)/τ 〈ξ(t′)〉 = 0 .

Clearly, the average of the noise must vanish for an unbiased sys-
tem, so we conclude

〈x(t)〉 = x0e
−t/τ .

Now we consider the square of the deviation from simple relax-
ation:

〈(x(t)− x0e
−t/τ )2〉 =

∫ t

0
dt′
∫ t

0
dt′′e−(t−t′′)/τe−(t−t′)/τ 〈ξ(t′)ξ(t′′)〉
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The crucial assumption of the Langevin approach is that the cor-
relation inside the integral is a sharply-peaked function of |t′− t′′|,
decaying much faster than any relevant timescale of the particle.
Calling this function φ(t′ − t′′), we make the change of variables
(J = 1/2)

s = t′ + t′′ q = t′ − t′′

The right hand side of the previous equation will then be (ex-
tending limits to ±∞)∫ t

0
dt′
∫ t

0
dt′′e−(t−t′′)/τe−(t−t′)/τ 〈ξ(t′)ξ(t′′)〉

=
1

2
e−2t/τ

∫ 2t

0
dses/τ

∫ ∞
−∞

dqφ(q) ,

where the final integral is just a number (Γ). The average devi-
ation squared is then

〈(x(t)− x0e
−t/τ )2〉 =

Γτ

2
(1− e−2t/τ )

In the long time limit (t/τ →∞)

〈(x(t)− x0e
−t/τ )2〉 = 〈x(t)2〉 =

Γτ

2

However, using the equipartition argument

1

2
k〈x2〉 =

1

2
kBT ⇒ Γ =

2kBT

ζ

Logically, we assume that there is a δ correlation for the noise:

〈ξ(t)ξ(t′)〉 =
2kBT

ζ
δ(t− t′)

A further test of the result is to examine the short-time beha-
viour of the variance in the displacement. If we assume x0 = 0
and t/τ � 1, then

〈x2(t)〉 ∼ Γτ

2

(
2t

τ
+ . . .

)
∼ 2kBT

ζ
t+ · · ·

which is just a random walk in 1D (〈x2〉 = 2Dt). Thus

D =
kBT

ζ

and the Stokes-Einstein relation is recovered. The fun calculation
is to do this in the presence of inertia (see examples sheet).

The diffusion coefficient is just the average

D = lim
t→∞

1

6t
〈(r(t)− r(0))2〉
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where r(t) = r(0) +

∫
u(t′)dt′

This holds provided that the correlation of velocities (〈u(t′)·u(t′′)〉
falls off fast enough. If τ is the time scale for that decay and u is
a typical velocity, then

D =
1

3

∫ ∞
0

dt〈u(t) · u(0)〉 ∼ u2τ

We can apply this to the run-and-tumble locomotion of bacteria.
For E. coli the average velocity is about 20 µm/s, and the bac-
teria executes 1s of movement before randomly changing direction.
This yields a diffusion coefficient of 4 × 10−6cm2/s, which is ap-
proximately the diffusion coefficient of a small molecule in water.

3.5 Brownian Motion and Polymer
Statistics

Consider an arbitrary free polymer with each segment labeled as
rn. Each segment is followed by another random segment of equal
length (|ζn| = b)

rn+1 = rn + ζn

The end-to-end displacement of the polymer is

rN − r0 =

N∑
n=1

ζn 〈rN − r0〉 =

N∑
n=1

〈ζn〉 = 0

by symmetry. The average of the displacement squared is

〈rN − r0)2〉 =

N∑
m=1

N∑
n=1

〈ζm · ζn〉 =

N∑
m=1

N∑
n=1

δmnb
2 = Nb2

The similarity with the Langevin formalism is apparent.

Let us try to formulate the problem more generally. defining the
probability that a polymer will have segment positions at {rk} as

p =
1

Z
G({rk}) G = e−βU({rk})

Let us suppose that the energy is a sum of near-neighbor interac-
tions plus a contribution from some external potential,

U({rk}) =

N∑
j=1

Uj(rj−1, rj) +W ({rk})
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When W = 0, this is just a random flight model. Either way, this
is a local model for the total energy, as it only relies on nearest
neighbor interactions. We then introduce

τj(Rj) = exp[−βUj(Rj)] where Rj = rj − rj−1

and we can take it to be normalized (
∫
dRjτ(Rj) = 1).

We now define the fixed end-to-end-vector partition function as
an integral over all degrees of freedom for which the end position
is R (start at origin):

G(R;N) =

∫
d{Rk}G({Rk})δ(rN −R) =

∫
d{Rk}

N∏
j=1

τ(Rj)δ

 N∑
j=1

Rj −R


We shall see that molecular-level details will be coarse-grained
away...

As an example, consider τ for a fixed-length segment:

τ(Rj) =
1

4π`2
δ (|Rj | − `)

Now we use an integral representation of a delta function,

δ

 N∑
j=1

Rj −R

 =

∫
d3k

(2π)3
eik·(

∑
Rj−R)

The distribution function is then

G =

∫
d3k

(2π)3
e−ik·R

[∫
dRjτ(Rj) exp(ik ·Rj)

]N
The bracketed term is a characteristic function K(k;N), and in
this particular case is

K(k;N) =

(
sin(k`)

k`

)N
We expect N to be on the order of R2 if dominated by diffusive
behavior, and thus quite large. In the limit of large N (small k)

K(k;N) ≈
(

1− k2`2

6
+ . . .

)N
∼ exp(−Nk2`2/6)

Inverse Fourier transforming,

G(R;N) =

∫
d3k

(2π)3
exp(−ik ·R) exp(−N`2k2/6)

=

(
3

2π`2N

)3/2

exp

(
−3R2

2N`2

)
This Gaussian distributiion is nearly universal - its existence de-
pends primarily on the underlying bond length distribution having
a finite second moment, so the central limit theorem holds. In the
more general case, the characteristic length ` derives from the
second moment of that distribution.
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3.5.1 Self-avoidance

We saw previously that the probability distribution of the end-to-
end vector R has the Gaussian form

P (R) ∼ e−3R2/2N`2 .

We are free to interpret the argument of the exponential as the
Boltzmann factor of an effective free energy F (R),

F (R) = −kBT lnP (R) = kBT
3R2

2N`2

which has the form of a (Hookean) entropic spring, with a min-
imum at R = 0. It costs entropy to extend the chain.

Let us now consider how excluded-volume interactions change
this free energy. We imagine that there is a pairwise interaction
of the form

1

2
vkBT

∫ N

0
dn

∫ N

0
dm δ(Rn −Rm)

where we have called the amplitude of the interaction vkBT for
convenience, and abstracted it into a delta function potential.

3.5.2 Flory Theory

Using the mean-field arguments of van der Waals, we estimate the
contribution of these interactions to the free energy as

vkBT ·N ·
N

R3
∼ kBT

vN2

R3

where the local segment concentration is N/R3 (in three dimen-
sions). The total free energy in this Flory theory is thus

Ftot = kBT

[
3R2

2N`2
+
vN2

R3

]

We see a competition between entropy, which favours the smal-
lest R, and excluded-volume effects that tend to swell the chain.
Differentiating to find the optimum, R∗, we obtain

R∗ ∼ N3/5
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Note: 3/5 > 1/2, so excluded-volume interactions
have swollen the chain from its ideal random-walk size.

Generalizing this to d-dimensions, the only change is that the
local concentration is N/Rd, so the balance of terms is

R2

N
∼ N2

Rd
⇒ Rd+2 ∼ N3 ⇒ R ∼ N3/(d+2)

Thus, Flory theory predicts the exponent values

R ∼ Nν ν =
3

d+ 2

This relation is remarkably accurate:

d = 1 R ∼ N correct

d = 2 R ∼ N3/4 exact (solved)

d = 3 R ∼ N3/5 numerical solution (0.589)

d = 4 R ∼ N1/2 correct

d > 4 R ∼ N3/(d+2) wrong (should be N1/2)



Geometry and Elasticity 4
4.1 Curve Dynamics

In this section we will study some elementary aspects of the mo-
tion of curves and learn how to describe elastically-driven motions
of filamentary objects in a viscous fluid. First, some differential
geometry. Consider a curve r(α) in a plane that is parameterized
by α ∈ (0, 1). The differential of arclength is

ds = |dr| = √gdα g = rα · rα

with rα ≡ ∂r/∂α and g is the metric.

The unit tangent to the curve is

t̂ =
rα√
g

The tangent and normal vectors rotate as we move along the curve
according to the Frenet-Serret equations

∂

∂s

(
t̂
n̂

)
=

(
0 −κ
κ 0

)(
t̂
n̂

)
where κ is the curvature.

If the tangent vector makes an angle θ with respect to a fixed
axis (e.g., the x-axis), then it is easy to show that

κ =
∂θ

∂s
where in general

∂

∂s
=

1
√
g

∂

∂α

In the “Monge representation”, where we have a function h(x)
with no overhangs as a function of an external parameter x,

r(x) = xêx + h(x)êy

rx = êx + hxêy

t̂ = [êx + hxêy] /
√

1 + h2
x
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so θ = tan−1 hx

and the curvature is

κ =
hxx

(1 + h2
x)3/2

' hxx

Let us look at the example of an elastic filament, weakly de-
formed, to understand a bit more about curvature and variational
principles. The simplest elastic energy is (Landau & Lifshitz, etc.)

E =
A

2

∫ L

0
dsκ2

where A is an elastic modulus and s is arclength. Note that the
units of A are energy·length, so we can always express A as kBTLp,
where Lp is the persistence length. This has physical meaning in
that if the curvature κ ∼ 1/R ∼ 1/L then E ∼ A ·L ·1/L2 ∼ A/L,
and if we ask that such bending cost kBT , then the length scale is
on which this occurs is L ∼ A/kBT . Thus the persistence length is
the length over which thermal energy can induce a filament-length
bend.

DNA Lp ∼ 50 nm (∼ 150 base pairs)
actin Lp ∼ 10− 15 µm

microtubules Lp ∼ 5 mm

Note the definition of the Young’s modulus:

Force

area
= E

∆L

L

and a force/area is an energy/volume. Since [A] = energy · length,
we conclude

A ∼ E · radius4

Returning to the elastic energy if the slope is small everywhere,
we can approximate this as

E ' A

2

∫ L

0
dxh2

xx

To find equilibria of this energy functional we need to look at the
variation δE when h is changed by δh. Repeatedly integrating by
parts,
we find

δE = A

∫
dxhxxδhxx = A

{
hxxδhx

∣∣∣L
0
−
∫
dxh3xδhx

}
= A

{
hxxδhx

∣∣∣L
0
−hxxxδh

∣∣∣L
0

+

∫
dxh4xδh

}
This implies that the functional derivative of E is

δE

δh
= Ah4x
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If the “surface” terms vanish for arbitrary δh and δhx then we
require

hxx(0) = hxx(L) = 0 [Ahxx] = energy = torque

h3x(0) = h3x(L) = 0 [Ah3x] = energy/length = force

These are the natural boundary conditions of no torque and no
force at the (free) ends. If this is the case, the ∂4x is a self-adjoint
operator and its eigenfunctions are real. These are eigenfunctions
satisfying

AW4x = k4W

just as sin qx and cos qx are eigenfunctions satisfying fxx = −q2f .
A simple superposition of sin kx and cos kx will not work, as

this can not allow successive derivatives to vanish. Instead,

W (x) = A sin kx+B cos kx+D sinh kx+ E cosh kx

An exercise for the student is to show that the boundary condi-
tions imply

cos kL cosh kL = 1

This yields an infinite discrete set of wavenumbers k analogous to
the trigonometric numbers nπ/L.
If we express h(x) as a sum of biharmonic eigenfunctions

h(x) =
∑
n

anW
(n)(x) then h4x =

∑
n

anλnW
(n)(x)

where λn is the nth eigenvalue.
This impliest that the bending energy can be separated into

modes:

A

2

∫
dxh2

xx =
A

2

∫
dxhh4x =

A

2

∫
dx
∑
m

∑
n

amanλnW
(m)W (n)

=
A

2

∑
n

λna
2
n

by the orthogonality of the W s (and their assumed normalization).
And we can compute the variance:

h2(x) =
∑
m

∑
n

amanW
(m)(x)W (n)(x)

and, since the am are independent, Gaussianly distributed vari-
ables,

〈h2(x)〉 =
kBT

A

∑
n

W (n)(x)2

λn

Here is a graph of the first few normalized eigenfunctions.
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The above result on fluctuations has recently been tested in ex-
periments on actin filaments in microfluidic devices. As shown
below, a cross-flow geometry can be used to trap individual fila-
ments at the stagnation point. Under extensile flow the filament
is stable and its fluctuations are decreased by tension created in
the filament.

The variance, normalized by its endpoint values, displays a ‘W’
shape that is just the square of the first mode, the minima asso-
ciated with the zeroes of that function.

Under compression the filament buckles and reorients to the
stable direction. As a function of increasing tension one finds
higher-order buckling modes:
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4.1.1 Dissipation

We need first to incorporate dissipative contributions into the
usual Lagrangian formulation of classical dynamics. Assume the
Lagrangian is

L(q, q̇) = T − V

The minimum action principle is

δS = 0, S =

∫
dtL ⇒ d

dt

∂L
∂q̇
− ∂L
∂q

= 0

With a kinetic energy term T = (1/2)mq̇2 the Euler-Lagrange
equation is

mq̈ = −∂V
∂q

.

In the limit of zero inertia (vanishing Reynolds number), simply
dropping the kinetic energy term leaves us with no dynamics at
all, so we need to introduce a generalized force associated with
dissipation. If the viscous force is ζq̇, the rate of dissipation is
ζq̇2. So, we introduce the Rayleigh dissipation function

R =
ζ

2
q̇2 ,

proportional to the rate of dissipation. The new variational prin-
ciple is

d

dt

∂L
∂q̇
− ∂L
∂q

= −∂R
∂q̇

= −ζq̇

In the overdamped limit we then have the Aristotelian law

ζq̇ = −∂U
∂q

The simplest generalization of this to a moving curve involves a
local drag coefficient, call it Γ, such that

R =
Γ

2

∫
dα
√
gr2
t with − δR

δrt
= −Γ

√
grt ,
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and by recognizing that the potential energy function V is really
our generalized energy functional E for the curve we arrive at the
equation of motion

Γrt = − 1
√
g

δE
δr

.

The simplest example of an energy functional is the length L of
a curve,

L =

∫ 1

0
dα
√
g

This is a function of rα alone, so

− 1
√
g

δL

δr
=

1
√
g

∂

∂α

[
1

2

1
√
g

2rα

]
=

∂

∂s
t̂ = −κn̂ ,

so restoring force from line tension is proportional to the curvature.
A second calculation involves the area A enclosed by a (closed)

curve,

A =
1

2

∫ 1

0
dαr× rα

where the cross product is here interpreted as a scalar: (a×b)i =
εijaibj . A short calculation shows that

− 1
√
g

δA

δr
= n̂

4.2 Elastohydrodynamics

We recall that the viscous drag on a sphere of radius a in low
Reynolds number flow is given by the Stokes formula

F = ζrt ζ = 6πηa

For a long, slender object of length L and radius a, the calcu-
lation of the drag is a complicated nonlocal problem, but often
the dominant behaviour is well-described by the introduction of
local drag coefficients (so-called Resistive Force Theory) ζ⊥, ζ‖,
and ζr for motion perpendicular and parallel to the rod axis, and
for rotational motion. These are

ζ⊥ = 2ζ‖ =
4πη

ln(L/2a) + c
ζr = 4πηa2

where for rotation motion there is a balance between the moment
m and angular frequency of the form m = ζrω. With this an-
isotropic drag law, the equation of motion of the filament would
be (

ζ⊥n̂n̂ + ζ‖t̂t̂
)
· rt = − 1

√
g

δE
δr
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These are two pedagogical problems involving viscous fluids
driven by the motion of a boundary parallel to itself. Starting
with the Navier-Stokes equation

ρ (ut + u · ∇u) = −∇p+ η∇2u

we recognize for wall-driven flow that the nonlinear term vanishes
by symmetry, and we can ignore the pressure gradient. As the
velocity will be of the form u = u(y)êx, the problem boils down
to the solution of the diffusion equation

ut = νuyy

We will consider two situations:

(1) Starting at t = 0, the wall begins to move with velocity U
in the x-direction. Only length scale is

√
νt.

(2) The wall’s velocity oscillates, as Ueiωt. Only length scale is√
ν/ω.

Searching for a similarity solution of the form

u = Uf

(
y√
νt

)
uyy = Ufξξ(ξ)

(
1

νt

)
ut = Ufξ(ξ)

(
−1

2t
ξ

)
ut = νuyy then becomes an ODE in ξ

fξξ = −1

2
ξfξ

Boundary conditions: f(0) = 1, f(∞) = 0. Letting g = fξ

gξ
−1

2
ξg =⇒ g = Ae−ξ

2/4 .

Invoking boundary conditions we obtain

f(ξ) = 1− 1√
π

∫ ξ

0
dξ′e−ξ

′2/4
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and thus the similarity solution exists. The velocity is

u

U
= 1− erf

(
y/2
√
νt
)

For the oscillating Stokes problem, we consider the situation
post-transients, where we expect a similarity solution of the form

u = UeiωtF

(
y√
ν/ω

)

and the PDE becomes an ODE in ξ = y/
√
ν/ω

Fξξ = iF

Looking for exponential solutions, F ∼ eλξ gives

λ2 = i λ± = ±(1 + i)√
2

So F = e−ξ/
√

2e−iξ/
√

2 .

And we take the real part, giving the damped traveling-wave solu-
tion

u = Ue−ξ/
√

2 cos

(
ξ√
2
− ωt

)
.

For the oscillating EHD problem, the PDE governing small-
amplitude deviations of the filament is

ζ⊥ht = −Ahxxxx

and we will consider the situation post-transient in which the left-
hand side is forced as h(0, t) = h0 cos(ωt), hxx(0, t) = 0 and the
distant end is free. Dimensional analysis shows there is a new
elastohydrodynamic penetration length

`(ω) =

(
A

ζω

)1/4

.

We expect a similarity solution of the form

h = h0Re

{
eiωtF

(
x

`(ω)

)}
→ Fξξξξ = −iF

Looking for exponential solutions, F ∼ eλξ gives λ4 = −i, and
when the dust settles we have (C8 = cos(π/8), S8 = sin(π/8)),

h(x, t) =
1

2
h0

{
e−C8ξ cos (ωt+ S8ξ) + e−S8ξ cos (ωt− C8ξ)

}
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Let us estimate the EH penetration length. Writing A = kBTLp
and taking Lp ∼ 10 µm (actin), and measuring frequency in Hz,
we find

`(ω) ∼
(

4× 10−14 · 10−3

4π · 10−2 · 1

)1/4

∼ a few microns

ω1/4

So, if we oscillate an actin filament at many Hz we will create
undulations on a scale smaller than Lp. This can be done by
optical trapping.

A second point (Machin, 1958), is that if we examine the shapes
of undulating filaments that are end-actuated, the amplitudes of
the subsequent peaks of the waveform are very small, totally un-
like what is seen with e.g. sperm cells. This led Machin to the
conclusion that eukaryotic flagella must not be actuated simply at
their ends, but throughout their length. This is true!

Returning to our two-dimensional problems of curve motion, we
observe that the general equation of motion can be written as

rt = U n̂ +W t̂

where U = U(r, κ, . . .) and W = W (r, κ, . . .) are the normal and
tangential velocities. This is an intrinsic equation of motion. If
we calculate the time derivative of the tangent vector we obtain

∂t̂

∂t
=

∂

∂t

1
√
g
rα =

rαt√
g
− 1

2g3/2
2rα · rαt = ∂srt − t̂t̂ · ∂srt

Now, writing

t̂ = cos θêx + sin θêy

n̂ = sin θêx − cos θêy
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we see that ∂t̂/∂t = −θtn̂, so

θt = −Us + κW

With a bit more work it is straightforward to show that the
curvature itself obeys the PDE

κt = −
(
∂ss + κ2

)
U + κsW .

These two results indicate that there are intrinsic geometrical non-
linearities due to the fact that the vector r and the arclength s are
not independent. Note also that in many ways the tangential ve-
locity is something we can choose (like a gauge), as it corresponds
to a particular time-dependent parameterization.

Now consider motion by mean curvature in the simplest case of
2-D motion,

U = −γκ and W = 0 .

This corresponds to an energy functional E = γL, for which the
tangent angle and curvature evolve as

θt = −Us + κW = γθss , κt = γ
(
κss + κ3

)
.

Since we derived this by a variational principle from the energy
functional E, it stands to reason that E is driven downhill. To
check this we compute

∂E
∂t

= γ

∫
dα

1

2

1
√
g

2rα · rαt = γ

∫
dst̂ · ∂srt

Since rt = −γκn̂, ∂srt = −γκsn̂− γκ2t̂, so

∂E
∂t

= −γ2

∫
dsκ2 ≤ 0

Thus, the length is driven downhill (the “curve-shortening equa-
tion”). It is easy to show that the area A enclosed by a curve
evolves as

At =

∫
dsU so, here At = −γ

∫
dsκ = −2πγ .

So the area vanishes in a finite time!

4.3 Euler Buckling

Here we consider the classic problem of Euler buckling, in which
an elastic filament subject to thrusting forces at its ends deforms
at a critical force.



4.3 Euler Buckling 45

A nice experimental realization of this is the work of Fygenson,
et al., in which microtubules were grown inside lipid vesicles and
buckled due to the membrane surrounding them:

The energy functional associated with this configuration is just

E [θ] =

∫ L

0
ds

[
A

2
θ2
s + F cos θ

]
where the second term represents the work done by the force in
moving the end,

X(L)−X(0) =

∫ L

0

dx

ds
ds =

∫ L

0
cos(θ(s))

where the components of the curve in the x, y directions are just(
dx/ds
dy/ds

)
=

(
cos(θ(s))
sin(θ(s))

)
The equilibrium condition is

δE
δθ

= 0 = − d

ds

∂ · · ·
∂θs

+
∂ · · ·
∂θ

→ Aθss + F sin θ = 0 ,

otherwise known as the pendulum equation. [Think of L = T −V,
with T = (1/2)mq̇2 and V = mg(1 − cos q).] Let us consider
clamped boundary conditions, θ(0) = θ(L) = 0. We expect a
shape with a single bump in the middle, which is a sin function
for θ,

θ(s) ' a sin

(
2πs

L

)
.
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This will only solve the linearized Euler-Lagrange equation θss '
−(F/A)θ provided

F

A
=

4π2

L2
or F = Fc =

4π2A

L2
= 4π2

(
kBT

Lp

)(
Lp
L

)2

.

Consider microtubules. Lp ∼ 0.1 cm, and take L ∼ 20 µm
= 2× 10−3 cm (as in expt). Then Lp/L ∼ 50 and

Fc ∼ 40 ·
(

4× 10−14

0.1

)
· (50)2 ' 0.5 pN

Near the bifurcation, we expect that nonlinearities will stabilize
the buckled shape at some finite amplitude. If we continue with
the single-mode approximation and variational approach we seek
an energy functional of higher-than-quadratic order to achieve
this. Expand the force near Fc and the geometric term in the
energy,

F = Fc(1 + f) cos θ = 1− 1

2
θ2 +

θ4

24
+ . . .

The energy functional is then

E [θ] '
∫ L

0

[
A

2
θ2
s + Fc(1 + f)

(
1− 1

2
θ +

θ4

24
+ . . .

)]
' Ec + Fc(1 + f)L+

FcL

2

[
−fa2

2
+
a4

32
+ . . .

]

Thus, we have a Landau theory for the bifurcation, in which the
relevant part of the energy functional has the form

E [θ] ' FcL

2

[
−fa2

2
+
a4

32
+ . . .

]
When f < 0 (below the bifurcation), there is a single minimum
at a = 0, while above (f > 0) there are two minimum at

a = ±
√

8f

the characteristic of a pitchfork bifurcation.
After buckling, the deformed rod behaves like a Hookean spring,

whose properties we can find by comparing the compression length
to the applied force. The difference in length (from before) is just

X(L)−X(0) =

∫ L

0
ds cos θ '

∫ L

0
ds

(
1− 1

2
θ2 + . . .

)
' L− La2

4
+ . . .
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So, the displacement due to a force beyond Fc is La2/4. With the
knowledge that a =

√
8f ,

∆x ' L

4
8f = 2L

(
F − Fc
Fc

)
=⇒ F − Fc =

Fc
2L

∆x

Thus, beyond the critical force the rod behaves as a spring with
effective spring constant Fc/2L. Solutions farther from the bifurc-
ation are possible through a numerical approach. For clamped
ends (left) and hinged ends (right) we obtain





Chemical Kinetics and
Pattern Formation 5
The key article on pattern formation that started the field in its
modern direction was by Alan Turing (Turing, 1990). He showed
that the combination of nonlinear chemical kinetics and diffu-
sion can produce spatio-temporal patterns. These were finally
observed experimentally decades after the prediction (?). To un-
derstand these remarkable results we need first to appreciate the
basic laws of mass action for chemical reactions.

5.1 Michaelis-Mentin kinetics

The essential idea behind this simple model of enzyme-substrate
dynamics is the reaction scheme

E + S
k1

GGGGGGBFGGGGGG

k−1

ES
k2

GGGAE + P

where E is the enzyme, S is the substrate, P is the product,
and ES is the enzyme-substrate complex. k1, k−1, k2 are the rate
constants (empirically measured quantities). For notation, let s =
[S], e = [E], c = [ES], p = [P ]. The concentration is defined as
the average concentration (for a CSTR - continuously-stirred tank
reactor). The law of mass action is then that the reaction rate is
proportional to the concentration or products of concentrations for
bilinear reactions. Thus, the differential equations for the time-
evolution of the various species are

de

dt
= −k1es+ k−1c+ k2c

ds

dt
= −k1es+ k−1c

dc

dt
= k1es− k2c− k−1c

dp

dt
= k2c .

It is worth noting that we have neglected the back-reaction of
the product to the complex. One can imagine many different
types of initial conditions, but the simplest is that in which the
substrate and enzyme concentrations are given, but the complex
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and products are zero:

s(0) = s0 c(0) = 0 e(0) = e0 p(0) = 0 .

Note that p is completely decoupled from the other reactions, so
that

p(t) = k2

∫ t

0
c(t′)dt′ .

Hence, it is not necessary to consider the dynamics of p any fur-
ther.

The structure of the reaction scheme is such that no enzyme is
destroyed, so the total amount is conserved in time. That is, the
quantity e+ c must be conserved,

de

dt
+
dc

dt
= 0

which is indeed satisfied. Given our initial conditions, e+c = e0 at
all times. The system of reactions thus reduces from four coupled
differential equations to just two

ds

dt
= −k1e0s+ (k1s+ k−1)c s(0) = s0

dc

dt
= k1e0s− (k1s+ k−1 + k2)c c(0) = 0

As in all problems of this type, it is useful to identify appropriate
scalings. The concentration of the enzyme/catalyst is generally
much smaller than the concentration of the substrate, so that a
small parameter is ε = e0/s0. Let the rescaled time be τ = k1e0t,
and

u(τ) = s(t)/s0 λ =
k2

k1s0

v(τ) = c(t)/e0 k =
k1 + k2

k1s0

Then we have the final equations for the substrate and complex,

du

dτ
= −u+ (u+ k − λ)v u(0) = 1

ε
dv

dτ
= u− (u+ k)v v(0) = 0

Although ε is small, neglecting it would remove the highest time
derivative in one equation, and is thus a singular perturbation.

Here we refer to the Matlab program Michaelis-Menten.m avail-
able on the website, which shows the nature of the solution, namely,
a kind of boundary layer at early times when the complex concen-
tration rapidly rises, followed by slow evolution afterwards. It is
this slow evolution we study in the next section.
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5.1.1 Naive method of solution

Suppose that ε � 1. Then we can assume the second equation
(for the complex) will rapidly reach a quasi-equilibrium in which
dv/dτ ∼ 0, and so

0 = u− (u+ k)v or v =
u

u+ k
.

In unscaled units this is

k1es ∼ (k−1 + k2)c e = e0 − c c = e0
s

s+Km

where Km = (k2 + k−1)/k1. However, this only works if there is
a large separation in time scales between the two reactions. The
“fast” variable is then coupled to the slow one, which obeys a
nonlinear relation. The rate of reaction would then be

dp

dt
≡ V = k2c = k2e0

s

s+Km
= Vmax

s

s+Km
.

The unknown constants Km and Vmax are determined from a
plot of 1/V = (1 + Km/s)/Vmax vs 1/s. This is the so-called
Lineweaver-Burk plot.

However, this only works if there is a large separation in time scales
between the two reactions. The “fast” variable is then “slaved” to
the slow variable, which obeys a nonlinear relation. That is the
saturating curve giving the production rate (basically, the complex
concentration) in terms of the substrate concentration

dp

dt
= k2c with c = e0

s

s+Km
,

as in the figure below.

5.1.2 Cooperativity in Reaction Rates

This Michaelis-Menten scheme is an example of a “non-cooperative”
reaction. Cooperativity arises from e.g. initial binding effects
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altering the probability/kinetics of subsequent binding, as with
oxygen and hemoglobin. The binding of oxygen to hemoglobin
involves a tetramer of four proteins that each bind oxygen. The
binding of each site is linked to the number of bound oxygens, so
that the second oxygen is easier to bind than the first, and so on.
This allows for cooperativity and very large change in absorbed
oxygen over a relatively small shift in oxygen concentration (per-
fectly tuned for lungs).

This is essentially as switch.
Consider another reaction network

E + S
k1

GGGGGGBFGGGGGG

k−1

C1

k2
GGGAE + P

C1 + S
k3

GGGGGGBFGGGGGG

k−3

C2

k4
GGGAC1 + P

The reduced equations are

du

dτ
= f(u, v1, v2) ε

dv1

dτ
= g1(u, v1, v2) ε

dv2

dτ
= g2(u, v1, v2)

where v1 = c1/e0, v2 = c2/e0. Then,

ds

dt

∣∣∣∣
t=0

= e0s0
(α+ βs0)

γ + δs0 + s2
0

with a general result of a rate

rate ∼ sn

Km + sn

which is known as the Hill equation, with n being the Hill coef-
ficient. The larger is n, the more sigmoidal and cooperative the
reaction.

5.1.3 Slaving

Suppose that there are two degrees of freedom p, q, with a slow
reaction and a fast one:

dq

dt
= αq − βpq slow

ε
dp

dt
= γp− δq2 fast

where γp is an autocatalytic term. In the steady state

γp ∼ δq2 p ∼ δ

γ
q2
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so that

dq

dt
= αq − βδ

γ
q3 = −∂V (q)

∂q
V (q) = −1

2
αq2 +

βδ

4γ
q4 ,

which looks like a potential. This corresponds to the physical
scenario of overdamped dynamic, and in fact produces a bifurc-
ation as a function of α, from a function with a single minimum
for α < 0 to the double-well potential shown below for α > 0.

The key point to understand here is that by slaving fast variables
to slow ones we can end up with very strong nonlinearities in
the effective equations of motion for the slow degrees of freedom,
which can exhibit bifurcations, bistability, or even multistability.

5.1.4 Front Propagation

There are many many examples in biological physics in which
problems of pattern formation are defined by the boundaries between
regions of different behaviour of some generalized field, a chemical
concentration, population level, etc. A classic example is provided
by the spread of the plague in the middle ages, as shown by the
advancing contour lines in the figure below.

There are many examples in reaction-diffusion systems in which
multiple boundaries occur, as shown schematically below
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To understand the general problem of front propagation we
add diffusive effects to the nonlinearities considered so far. The
simplest class of one-dimensional models takes the form

ut = muxx + f(u) , where f(u) = −∂F
∂u

The function F (u) is shown below.

In this case, we can have a kink or front between two locally-stable
states, or a stable and an unstable state:

The fundamental question is: How fast does the front move? A
simple pedagogical model for f(u) involves the cubic nonlinearity

f(u) = −F ′(u) = −u(u− r)(u− 1) for 0 < r < 1

The function f(u) is shown below

Here, r is a control parameter that will tune the properties of
the front, and

F (u) =
1

4
u2(1− u)2 +

(
r − 1

2

)(
1

2
u2 − 1

3
u3 − 1

12

)
in which an integration constant has been chose to symmetrize the
potential so that F (0) = −(r − 1/2)/12 and F (1) = (r − 1/2)/12
and the energy difference between the two minima is

∆F = F (1)− F (0) =
1

6

(
r − 1

2

)
For r < 1/2 the state u = 1 is the more stable, and for r > 1/2
the state u = 0 is more stable.
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We first need to establish some terminology and methods that
will be useful for many subsequent discussions. The chief tech-
nique is a linear stability analysis of a steady state (or stationary
state). Let us examine in turn the three states that are zeros of
the function f(u), since these will satisfy ut = 0.

Near u = 0,

ut = muxx − ru+ . . .

and let u = eikxeσt. If σ < 0, u is stable, while if σ > 0 u is
unstable. Substituting for u, we deduce that

σ = −r −mk2 .

Graphically,

Thus, σ is always negative, regardless of r (thus, stable).
Near u = 1, let u = 1 + û. Then

ût ∼ mûxx − (1− r)û
σ = −(1− r)−mk2

which is also always stable. Thus, both global minima are stable
for all k.

Near u = r, we let u = r + ũ and find

ũt = mũxx + r(1− r)ũ
σ = r(1− r)−mk2

and thus there is a band of unstable modes below a critical k. The
obvious question is what happens between u = 0 and u = 1 when
r ∼ 1/2.

Stationary front (r=1/2)

muxx − u
(
u− 1

2

)
(u− 1) = 0
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Multiplying through by ux and integrating we find

1

2
mu2

x − F (u) + C = 0

where the constant C can be seen to vanish from the boundary
conditions (u→ 1 as x→ −∞, u→ 0 as x→∞). This yields

u =
1

2

[
1− tanh

(
x

2
√

2m

)]
yielding a transition with a width controlled by m.

To determine the behavior of the case r 6= 1/2, a systematic
perturbation theory is necessary. Here, instead, our goal is to
derive heuristically the front motion of a 1D PDE with a generic
nonlinearity. Consider

ut = muxx − F ′(u)

Imagine, after some transient period, a steady uniformly moving
solution exists. We then seek a traveling solution of the form

u(x, t) = U(x− vt)

for some unknown v. The simplest case is for an F (u) like that
below.

From the traveling-wave ansatz, we have

mUzz + vUz = −(−F ′(U))

which is similar to Newton’s second law (mq̈ + bq̇ = force) with
m being the “mass” of a fictitious particle, U its “position”, and
z the “time”, and with an effective potential −F (U).
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Now, looking at −F instead of F , the situation can be viewed
as a ball moving down a hill. The key point is that there ex-
ists a unique front speed v (a unique damping coefficient in the
mechanical analogy), to achieve u→ 0 as t→∞.

If instead the front consists of a stable-to-unstable situation, the
analogy will be In this case, any damping coefficient v greater than
a critical value vc will ensure u→ 0 as t→∞.

In this case, any damping coefficient v greater than a critical value
vc will ensure u→ 0 as t→∞.

Unfortunately, not every class of problems in pattern formation
can be reduced to a system as simple as this one, but from a
pedagogical point of view this is very instructive.

We now seek a first integral to the differential equation

mUzz + vUz = −(−F ′(U))

mUzUzz + vU2
z = F ′(U)Uz

1

2
mU2

z

∣∣∣∣∞
−∞

+ v

∫ ∞
∞

dzU2
z =

∫ ∞
−∞

dF

dU

dU

dz
dz = F (0)− F (1)

which is precisely the energy difference −∆F between the two
locally stable minima. We can then formally solve for the front
velocity:

v =
−∆F∫∞
−∞ dzU

2
z

The denominator is like a drag coefficient, and is dominated by
the front region.
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If we approximate the solutions using Ustationary, which holds
when ∆F = 0, we can then approximate the velocity. Note that
for the stationary solution ∆F = 0, v = 0

mUzz = F ′(u)

which is just the Euler-Lagrange equation for∫
dz

{
1

2
mU2

z + F (u)

}

We can understand that the front shape is a compromise between
two types of energetic penalties. The first is that for gradients,
which would be minimized by making U constant, but this is in-
consistent with the far-field boundary conditions. But it would
tend to spread out the width of the front to be arbitrarily large.
On the other hand, the function F (u) will be minimized by keep-
ing the function U at either of the competing minima of F , thus
tending to shrink the transition zone to zero. The balance is what
we have found above.

5.2 Phenomenology of Reaction-Diffusion
Systems

We consider equations of the form

ut = Lu+N (u) , Lu = αu+Duxx

For solutions of the form u ∝ eikx+σt, σ(k) = α−Dk2. In k-space,
the graph is simple (left) and corresponds to excitations of long
wavelength. A more interesting possibility is when both long and
short wavelength are damped (see the second plot). In this case,
there is a well defined k∗ corresponding to the fastest growing
mode, leading to a pattern on that scale.

This leads to a fundamental question: How can diffusion (gov-
erned by a second derivative) produce a k-dependence other than
k2?.
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Since σ = σ(k2) (by left-right symmetry), we would require

σ(k) ∼ α+ βk2 − γk4 + . . .

ut = αu− βuxx − γu4x + . . .

but such higher-order derivative theories for a single degree of
freedom are rare. Instead, two coupled reaction-diffusion equations
can produce this behavior.

The FitzHugh-Nagumo model. The FHN model was first de-
veloped as a simplification neuronal dynamics. Two chemical spe-
cies are involved: u, the activator, and v, the inhibitor. Under
suitable rescalings it typically takes the form

ut = D∇2u+ f(u)− ρv
εvt = ∇2v + αu− βv .

Notice that the inhibitor diffusion constant has been rescaled to
unity. We may be interested in a whole range of values for ε, not
necessarily small. The various terms on the RHS of the equations
are:

f(u) Autocatalysis & bistability
ρv Inhibition
αu Stimulation
βv Self-limitation

The presence of the relative diffusion constant D can produce
lateral inhibition for D � 1 (different length scales).
Depending on the terms f,D, ε, the FHN model can produce ho-
mogeneous states, strips, or other periodic patterns, spiral waves,
etc.

It is sometimes useful to write the FHN model in a more sym-
metric form

ut = D∇2u+ f(u)− ρ(v − u)

εvt = ∇2v + u− v

Does this model have any definite variational structure? Many of
the terms conform to a gradient flow:

ut = −δEu
δu
− ρv

εvt = −δEv
δv

+ u

The remaining terms are actually Hamiltonian!

ut = −ρv εvt = u
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Consider the simplest regime (like in Michaelis-Mentin kinetics),
the fast inhibitor limit. Here we set ε = 0 and obtain a local in
time but nonlocal in space relationship between v and u:

(∇2 − 1)v = −u

Given a Green’s function for the operator (∇2 − 1), we can solve
this:

v(x) =

∫
dx′G(x− x′)u(x′)

For example, in one dimension,

G(x− x′) =
1

2
e−|x−x

′|

and in two dimensions,

G(x− x′) =
1

2π
K0(|x− x′)

So, in the fast inhibitor limit we have

ut = D∇2 + f(u) + ρu− ρ
∫
dx′G(x− x′)u(x′)

which is a closed, nonlocal equation of motion. In fact, u is vari-
ational,

ut = −δE
δu
, E =

∫
dx

{
1

2
D|∇u|2 + F (u)− 1

2
ρu2

}
+

1

2
ρ

∫
dx

∫
dx′u(x)G(x− x′)u(x′)

The nonlocal term reminds us of electrostatics. In a later paper
(Lee et al., 1993), a non-locality was observed where interfaces
don’t cross and the action of inhibitor fronts are also sharp.

5.3 The Turing Instability

Consider a 2-species model, with concentrations u(x, t) and v(x, t)
in a bounded domain D. We assume Neumann boundary condi-

tions of no flux in or out, so n̂ ·∇u
∣∣∣
∂D

= n̂ ·∇v
∣∣∣
∂D

= 0

The pair of reaction-diffusion equations is

ut = Du∇2u+ f(u, v)

vt = Dv∇2v + g(u, v) ,

where f and g are some smooth functions of their arguments,
representing, for example, autocatalysis, feedback inhibition, etc.
We suppose that f and g are such that there exists a stable, uni-
form steady state (so f(u0, v0) = g(u0, v0) = 0), i.e. the Jacobian

J =

(
fu fv
gu gv

)
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has

Tr = fu + gv < 0 and Det = fugv − fvgu > 0

at (u0, v0).
These requirements arise from linearizing the equations of mo-

tion via u = u0 + δu, v = v0 + δv, to obtain the dynamics

∂t

(
δu
δv

)
=

(
fu fv
gu gv

)(
δu
δv

)
As this is a linear equation it has solutions of the form eσt, and σ
will be determined by the determinental condition∣∣∣ fu − σ fv

gu gv − σ

∣∣∣
This is just σ2−Trσ+Det, with solutions σ± = (1/2)

{
Tr±

√
Tr2 − 4Det

}
.

For stability, we require the real part of both roots of σ to be neg-
ative. So, if Tr < 0 the root in which we choose the negative sign
in front of the square root is clearly negative. There are two cases
that will allow the second root to be negative. If 0 < Det < Tr2/
the square root is real but less then |Tr| and the root is negative,
while for larger values of Det the square root yields an imaginary
contribution, and still the real part of σ is negative.

Now we examine what happens when we perturb this homogen-
eous steady state with spatial-temporal variations, u = u0+p(x, t),
v = v0 + q(x, t), to obtain the dynamics

pt = fup+ fvq +Du∇2p

qt = gup+ gvq +Dv∇2q ,

It is always possible to expand a function of x in the domain D
as an infinite series of eigenfunctions of the (Helmholtz) equation

∇2wk+λ
2
kwk = 0 (in D)

n̂ ·∇wk = 0 (on ∂D)

For example, in d = 1 with D = [0, L], we have wk = cos(kπx/L)
and λk = kπ/L. More generally, if we write

p =
∑
k

p̂ke
σktwk(x)

q =
∑
k

q̂ke
σktwk(x)

and substitute (and drop the suffix “k”) for convenience, Then
the new equation governing the growth rate will be similar to
the homogeneous case, but with the diffusive contributions on the
diagonal. ∣∣∣∣∣ (fu −Duλ

2 − σ) fv
gu (gv −Dvλ

2 − σ)

∣∣∣∣∣ .
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This will have a nontrivial solution if and only if

σ2 +
[
(Du +Dv)λ

2 − fu − gv
]
σ + (Duλ

2 − fu)(Dvλ
2 − gv)− fvgu = 0

Now we note that the sum of the roots satisfies

σ1 + σ2 = −(Du +Dv)λ
2 + fu + gv < 0 ,

where this negativity arises from the fact that the assumption of
a stable homogeneous state already required fu + gv < 0, and the
new diffusive contributions are clearly negative. The product of
the two roots satisfies

σ1σ2 = DuDvλ
4 − (Dvfu +Dugv)λ

2 + Det ,

where Det is that of the homogeneous system.
To repeat:

σ1σ2 = DuDvλ
4 − (Dvfu +Dugv)λ

2 + Det ,

Now, since the sum is < 0, one root can have a positive real part
only if the product is < 0 (actually, then both roots are real).
Thus, a necessary condition for instability is the possibility of a
negative product, and since the λ4 term is clearly positive and Det
is positive, we require the overall coefficient of λ2 be negative, or

Dvfu +Dugv > 0 .

Without loss of generality, we can take Dv > Du > 0. But if
fu+gv < 0, we need fu and gv to have opposite signs, with fu > 0
and gv < 0. The condition above is not a sufficient condition for
instability, since it must be possible to find a permitted λ that
makes σ1σ2 < 0. That is, the equation (with x = λ2)

h(x) = DuDvx
2 − (Dvfu +Dugv)x+ Det = 0

must have positive roots. This requires

(Dvfu +Dugv)
2 > 4Det ·DuDv .

Our sufficient condition is so provided one of the permitted λs
lies between λ− and λ+,

λ2
± =

1

2DuDv

{
Dvfu +Dugv ±

√
(Dvfu +Dugv)2 − 4DuDvDet

}
So our sufficient condition is

Dvfu +Dugv > 2
√

Det
√
DuDv

Now define d = Dv/Du > 1. Then

dfu − 2
√

Det
√
d+ gv > 0 .
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This will clearly be true if d is sufficiently large. Looking at the
crossing point (LHS=0) we find

√
d =

√
Det +

√
Det− fugv
fu

So finally we can write the inequality (recall fugv < 0)

√
d ≥ 1

fu

(√
Det +

√
Det− fugv

)
> 0 .

Finally, we can examine the typical length scale of the instabil-
ity. At onset, λ = λc, where h(λ2

c) = 0 is a double root. Then

Dvfu +Dugv = 2
√

Det
√
DuDv and λ2

c =

√
Det√
DuDv

And then the unstable wavelength is

`c =
2π

λc

Let’s look at an example (Murray, 1st edition, §14.2). Autocata-
lytic chemical reactions

ut = Du∇2u+ k1 − k2u+ k3u
2v

vt = Dv∇2v + k4 − k3u
2v .

This can be simplified by suitable rescalings. We can always find
P,Q,R, S such that

∂

∂t
→ P

∂

∂t
, u→ Qu , v → Rv , ∇→ S∇ .

The result is the system

ut = ∇2u+ a− u+ u2v

vt = d∇2v + b− u2v .

where as usual d = Dv/Du > 1. With f(u, v) = a − u + u2v and
g(u, v) = b− u2v the homogeneous fixed point is

u0 = a+ b , v0 =
b

(a+ b)2
.

The Jacobian of the linear stability problem is then(
(−1 + 2u0v0) u2

0

−2u0v0 −u2
0

)
.

Thus, Tr = −1− u2
0 + 2u0v0 and Det = u2

0 > 0. Substituting, we
find

Tr =
b− a− (a+ b)3

a+ b
.
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Thus, the spatially uniform system is linearly stable is b− a <
(a+ b)3. The necessary conditions are

fu > 0→ −1 + 2u0v0 > 0→ b > a

dfu + gv > 0→ d(b− a) > (b+ a)3 .

The sufficient condition is

dfu + gv > 2
√

Det
√
d or

√
d >

(b+ a)2

(b− a)

(
1 +

√
2b

b+ a

)

Exercise: construct a stability diagram in a-b space.
In the 1990s there were two independent discoveries of true Tur-

ing instabilities in chemical systems. Here is the abstract from the
Austin group’s famous paper and examples of the patterns they
found:

5.4 Phenomenology of Dictyostelium
discoideum

One of the most well-studied pattern-forming systems in biology
is the slime mould Dictyostelium discoideum, which can exhibit
both unicellular and multicellular lifestyles (see diagram below,
from Wikipedia). In the former the cells feed on bacteria in the
enviroment and have little if any communication with each other.
When a population is starved for some hours, it transitions to a
multicellular form by emitting propagating waves of cyclic AMP
(cAMP) which engender chemotaxis toward the wave centers and
the formation of a dense multicellular body.
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That object can move around on the substrate and eventually
settles, forming a base with a stalk supporting spores. The latter
can be carried by wind, water, or larger organisms to more fertile
environs, where the life cycle begins again.

Of the many fascinating aspects of this organism’s life cycle,
the formation of cAMP waves has been among the most widely
studied. Experiments show that they can take the form either of
rotating spirals or target patterns, raising general issues of pattern
selection.



66 Chemical Kinetics and Pattern Formation

With this as motivation, we study next the simplest model in
which cellular motion results from chemical gradients.

5.5 The Keller-Segel Model of Chemotaxis

This is a model with two variables: n, the cell concentration, and c
the chemoattractant concentration. In the absence of cell division,
n must obey a conservation law of the form

nt = −∇ · J ,

where the cell current has diffusive and chemotactic contributions,

J = −Dn∇n+ rn∇c .

Here, the response coefficient r might be a function of the chemoat-
tractant concentration c, as in oxygentaxis. For run-and-tumble
locomotion, we expect Dn ∼ `2/τ , with ` ∼ uτ , where u is the
swimming speed. Accounting for release and degredation of c the
KS eqns are

nt = Dn∇2n−∇ (rn∇c)

ct = Dc∇2c+ fn− kc .

Clearly there is a steady state with n = n0 and fn0 = kc0, so
c0 = fn0/k.
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We perform a linear stability analysis in one spatial dimension
by setting

n = n0 + η , c = c0 + χ .

which yields

ηt = Dnηxx − rn0χxx

χt = Dcχxx + fη − kχ .

The linear stability problem for perturbations of the form eiqx+σt

is just ∣∣∣∣∣ −Dnq
2 − σ rn0q

2

f −Dcq
2 − k − σ

∣∣∣∣∣ = 0 .

If we write this as σ2 + bσ+ c = 0, with b = k+ (Dn +Dc)q
2 and

c = Dnq
2(Dcq

2 + k)− frn0q
2, then σ± = (−b±

√
b2 − 4c)/2, and

we require b2 − 4c > 0 for real roots. The stability condition is
c > 0, or

Dn

(
Dcq

2 + k
)
> frn0 .

Thus, as q → 0 an instability is possible if

frn0

Dnk
> 1 .

5.6 Advection and Diffusion

Let us return to the competition between advection and diffusion
discussed at the beginning of the course to understand the import-
ant concept of boundary layers. If a concentration field is subject
to transport by a fluid flow field u in addition to diffusion, then

∂c

∂t
+ u ·∇c = D∇2c .

By the usual scaling arguments we suppose there exists a charac-
teristic speed U and length scale L, implying a time scale L/U .
Then if we introduce

t′ = t/(L/U) , x′ = x/L , u′ = u/U ,

the advection-diffusion equation becomes

U

L

∂c

∂t′
+ Uu · 1

L
∇′c = D

1

L2
∇′2c ,

or

Pe

(
∂c

∂t′
+ u ·∇′c

)
= ∇′2c ,
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Consider now a two-dimensional example in which a uniform
fluid velocity field moves from left to right, u = (U, 0), so

∂c

∂t
+ U

∂c

∂x
= D∇2c .

This might be flow sweeping past a small pointlike source in the
plane or, as we consider here, parallel to a surface at y = 0 held
at c0. In the steady state, the only length scale in the problem is
D/U , so if we scale space by that we have

∂c

∂x
= ∇2c ,

with c = c0 at y = 0 and c→ 0 as y →∞.
The key point is that if a region in which c 6= 0 remains thin

then ∣∣∣∂2c

∂y2

∣∣∣� ∣∣∣ ∂2c

∂x2

∣∣∣
Then,

∂c

∂x
' ∂2c

∂y2

The problem

∂c

∂x
' ∂2c

∂y2

is just a disguised version of the previously-solved time-dependent
diffusion equation (t→ x, x→ y), so we read off the answer as:

c = c0erfc

[
y√
4x

]
= c0erfc

[
y√

4Dx/U

]
= c0f(η)

which we recognize as a similarity solution with a length scale
δ ∼ (Dx/U)1/2.

Is the original assumption justified?

cx ∼ c0
ηf ′(η)

x
, cy ∼ c0

(
U

4Dx

)1/2

f ′(η) ,

so |cy| � |cx| if(
U

Dx

)1/2

� 1

x
, or x� D/U .
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6.1 Some Literature

• general polymer physics and dynamics: Rubinstein ”Poly-
mer Physics”, chapters 7-9

• for reptation and relaxation times: Strobl ”The Physics of
Polymers”, Chapter 3,8

• Electrophoresis modern perspective, Viovy, Electrophoresis
of DNA and other polyelectrolytes: Physical mechanisms,
Rev. Mod. Phys. (2000)

• concise treatise of all major phenomena: Hunter et al., ”Meas-
urement and interpretation of electrokinetic phenomena”, J.
Coll. Interface Sci. (2007)

• Zimm and Levene, ”Problems and prospects in the theory
of gel electrophoresis of DNA” Qart. Rev. Biophys (1992)

• technical development paper: Otto, et al. ”Optical tweezers
with 2.5 kHz bandwidth video detection for single-colloid
electrophoresis” Rev. Sci. Instr. (2008)

• forces in nanopores 1: Keyser, van Dorp, Lemay, ”Tether
forces in DNA electrophoresis”, Chem. Soc. Rev. (2010)

6.2 Background

We briefly discussed the Poisson-Boltzmann (PB) equation earlier.
Here we will discuss the implication of the PB equation for the
motion of charged particles and macromolecules in aqueous solu-
tions subject to an electric fields. As Hunter et al. state in their
very nice review article: ’Electrokinetic phenomena (EKP) can be
loosely defined as all those phenomena involving tangential fluid
motion adjacent to a charged surface. They are manifestations of
the electrical properties of interfaces under steady-state and iso-
thermal conditions. In practice, they are often the only source of
information available on those properties. For this reason, their
study constitutes one of the classical branches of colloid science,
electrokinetics, which has been developed in close connection with
the theories of the electrical double layer and of electrostatic sur-
face forces.’

Electrokinetic phenomena which will be discussed here include
electro-osmosis, electrophoresis and streaming currents. While the
first two are created by an electric field the latter is due to a mech-
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anical force acting ion charges at the liquid-solid interface. As will
become apparent in the following discussion, electro-osmosis and
-phoresis are intimately related and a distinction is only possible
in the most simple situations. In most realistic situations like dur-
ing the electrophoretic motion of a DNA molecule in a gel during
gel-electrophoresis this will be discussed in detail.

6.3 Definitions

Electrophoresis is the movement of charged particles or mac-
romolecules (these are often called polyelectrolytes in this con-
text), under the influence of an external electric field. The main
observables are the electrophoretic velocity, ve (units ms−1) and
electrophoretic mobility, ue (m2V−1s−1). The latter is defined as
ue = |ve|/E,wheer E is the electric field strength. The mobility
is counted positive if the particles move toward lower potential
(negative electrode) and negative in the opposite case.

Electro-osmosis is the motion of a liquid over an immobilized
charged surface with an electric field applied parallel to it. The
motion is the result of the force exerted by the electric field on
the movable counter-ions. The counter-ions transfer momentum
to the liquid thus giving rise to the electro-osmotic flow. The
electro-osmotic flow velocity, veof (units ms−1), is the uniform
velocity of the liquid far from the charged interface. Far is in
relation to the screening length in the liquid. Other important
quantities here are the volume flow rate Qeof,E (m4V−1s−1) di-
vided by electric field strength. Obviously this fluid flow will give
rise to an electro-osmotic counter-pressure, ∆peof , which gives the
the pressure difference that must be applied across the system to
stop any volume flow.
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Streaming potential Ustr and current Istr are intimately re-
lated to each other. Ustr, is the potential difference at zero electric
current, caused by the flow of liquid over a charged surface. These
are usually encountered in fluid flows through charged capillary
tubes, micro- or nanofluidic channels. The potential difference
is usually measured across the channel. Streaming potentials are
due to charge accumulation since the movable counter-ions are dis-
placed by the applied flow. The corresponding streaming current,
Istr (A), is simply the current when the two sides of the capillary
of channel are short-circuited.

In the literature there a number of other phenomena which are
closely related but are beyond the scope of this chapter. Hunter
et al. give a very good and complete overview of electro-kinetic
phenomena.

6.4 Fundamental problem and the
Zeta-potential

The reason for the still active interest in electrokinetic phenom-
ena stems from the fact that a proper understanding is involved
due to the intimate coupling to hydrodynamic phenomena. Thus,
very often for a complete understanding it is not enough to just
consider the PB equation and its solution for the respective geo-
metry but the (Navier-)Stokes equation has to be solved at the
same time. This brings about a very rich behavior with some
counter-intuitive results. In addition there is the problem of the
finite size of ions. As we calculated earlier the screening length
can be easily approach dimensions of 0.3 nm in salt concentra-
tions of e.g. 1M KCl. Even at physiological conditions with an
ionic strength of about 150 mM we have to work with a screening
length of roughly 1 nm. Compared to the diameter of a water
molecule of about 0.2 nm this shows that a description ignoring
the finite size of water and counter-ions will probably fail at these
short length-scales. Amazingly this is often not the case.

One common approach to keep the interpretation of real systems
simple a new parameter is introduced which has achieved wide-
spread acceptance. This is the zeta-potential which combines a
number of assumptions and (quite amazingly) works quite well for
specific experimental conditions. The definition is best explained
by considering a more detailed image of the electric double layer
on charged surfaces in liquids as shown below (from ()).
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The most important thing to remember is that the zeta-potential
denotes the potential at the no-slip plane at distance dek from the
surface with surface charge σ0 and surface potential Φ0. The
zeta(ζ-potential is always smaller than the bare surface potential
and includes a number of simplifications:

• there is a thin layer that does not contain any charges due
to an absorbed water layer etc. Thus at the inner Helmholtz
plane (IHP) we have potential Φi < Φ0

• the surface will have a certain potential Φ0 but this will
be reduced by adsorbed (fixed) ions in the outer Helmholtz
plane (OHP) with Φd < Φi

• these ions are fixed and have another charge free layer thus
zeta < Φd which can be significantly smaller than Φ0 this
defines also the no-slip plane

• shear is generated only at the slip plane since only there
water and ions can start moving

The IHP and OHP are often referred to as Stern layer. The
Stern layer does not distinguish between the IHP and OHP en-
compassing everything close to the surface below the no-slip plane.

It is important to emphasize here that the exact position of
the slip plane is not known (and under debate). The ζ depends
on the type and valency of the counter-ions, the salt concentra-
tions and the geometry of the system complicating the situation.
Thus ζ is a very successful fudge-parameter which should always
be taken with a grain of salt when you find the claim that some-
body measured THE ζ-potential and thus THE surface charge of
a polyelectrolyte like DNA.
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6.5 Double-layer capacitance

Despite its complications of the electric double layer it is non-
etheless a very important concept since most hydrophilic surfaces
carry some kind of charge. The double layer in fact is nothing
else than a capacitor and thus the barrier for the transport of
charges in salt solutions/electrochemical cells (batteries) as it also
exists on any biased metal surface. Measuring the the differential
capacitance yields information about rearrangements in the inner
and outer Helmholtz planes. Since this technique is useful we just
summarize it here.

To access the thickness of IHP and OHP on ecan simply measure
the differential capacitance

Cdiff =
dQ

dV

with Q as the charge on the capacitor and V the applied voltage.
With IC = dQ/dt we get

IC =
dQ

dt

dV

dt
= Cdiff

dV

dt
.

A typical measurements looks like this:
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where φnull denotes the Galvani potential between liquid and elec-
trode material. The substructure is due to reorientations in the
layers.

To get an impression about the order of magnitude we can es-
timate the capacitance. In strong aqueous electrolytes and as-
suming that the double layer is a parallel plate capacitor, we can
estimate the capacitance per unit area to be C/A = ε0εr/d. Here
d is around 0.2 nm which is the thickness of the IHP. This yields
C/A ≈ 350 µFcm−2. This is a factor of 7 too large compared
with the measured values of 5-50 µFcm−2. This discrepancy is
due to the reduced εr of about 6 compared to free water. The
water dipoles are fixed and thus εr is reduced.

In a realistic description, there are two capacitors in series at
the IHP and OHP and εr is a function of distance from the surface.
So the capactiance of the Stern layer CStern is

1

CStern
=

1

Cdipole
+

1

CIHP−OHP
≈ aH2O

εdipole
+

a/2

εIHP

where aH2O is the diameter of water and a/2 is the radius of the
hydrated counter ions. This is valid for short screening length
below 1 nm and has to be extended for small salt concentrations
taking into account the diffuse layer capacitance beyond the Stern
layer.

The details go beyond this course and can be found in any
electrochemistry textbook. However, It is important to remember
this. It is interesting to note that upon application of a few 100 mV
and given the thickness of less than a nm the field strength in the
Stern layer can easily reach 108 V/m. This is enough to alter the
stability of weak molecular bonds near the electrode surface and
lead to the dissociation of weak acids.
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It is also possible to build ionic transistors and diodes by ap-
plying the double layer and either a fixed surface charge or with
electrode materials. These systems are under active development
at the moment as they could be used for desalting solutions or
control of molecular flow.

6.6 Electrophoresis

6.6.1 Helmholtz-Smoluchowski equation

In order to model electrophoretic motion of charged particles with
charge ze) in solution we can start by calculating the force an
electric field E.

Fe = zeE = ze
dV

dx

where V (x) is the potential distribution. However since we are in
luiquid we have to take the friction coefficient β into account and
thus in steady state we have Fe + veβ = 0. Using that diffusion
current Je = cve we get with the concentration of [particles c

Je = −zec
β

dV

dx

. Remember that 1/β is the mobility of the ion.
Transferring this to macroscopic particles with micron sized di-

mensions and a double layer as depicted above is straightforward.
It can be noted that εrε0ζβ/η has the units of a charge. With this
major simplification we can can write

Je = −εrε0βζc
βη

dV

dx

It directly follows for the electrophoretic velocity ve

ve =
εrε0ζ

eta

∂V

∂x

and the Helmholtz-Smoluchowski equation for the mobility ue

ve =
εrε0ζ

eta
.

This is valid when we can ignore any details about the particle
namely that the the diameter is much larger than the screening
length.

6.6.2 Limitations

As the concept of ζ-potential this is also a simplified approach
which neglects several important phenomena:
(i) it does not include the treatment of strongly curved surfaces
(i.e., surfaces for which the condition for the screening length does
not apply);
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(ii) surface conduction in the diffuse and the OHP is not taken
into account
(iii) polarization of the electric double layer.

Checking the validity of (i) is straightforward, (ii) will be ex-
plained later and is only relevant when ζ > 50 mV. Polarization
would account for the accumulation of charge in front and back of
the moving particle which would result in a dipole moment and
thus an additional field.

6.6.3 Single colloid AC electrophoresis

A system which quite nicely allows to test the ζ-potential concept
is a single colloid trapped in the focus of an optical trap. Assuming
that the electrical field is constant and just a function of time we
can easily measure electrophoretic mobility ue = ve/E. Since we
work with optical trap we also have the optical tweezers restoring
force F = −κ∆x thus we get for the effective speed veff of the
colloid in the optical trap

veff (t) = −κ∆x(t)

6πηr
+ ueE(t)

where ∆x(t) is the maximum excursion of the colloid from the
optical trap center.

If E(t) oscillates with frequency f , the average velocity over a full
period is veff = 4∆Xf . It follows

veff = 4∆xf = −κ∆x(t)

6πηr
+ ueE

and thus we get

|ue| =
4∆Xf

E
+

κ∆X

6πηrE

and ∆X/E can be simply extracted from the data. Assuming that
we can use the ζ-potential which is true for frequencies of a few
100 Hz and lower we get

ζ =
η

εr
ε0ue.

Typical experimental data on colloids with radius r = 1.11 µm
in 1 mM KCl at pH=8 at f = 80 Hz. The electrophoretic mobility
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is extracted from the gradient of the fit to the experimental data.
This measurements can be performed on a single colloid. The
amplitude of the motion at lowest field strength is only 1 nm.
The data leads to a ζ-potential of 33 mV.

These experiments are performed at a distance of around 50 mi-
cron from any surface.

6.6.4 Influence of electroosmosis on colloid
electrophoresis

The data is almost perfectly linear and shows that this interpreta-
tion works. However when investigating the frequency dependence
of this effect we find

which is non-linear. The reason is that - as any real system -
we have to consider the charges on the wall of the measurement
chamber which gives rise to an electro-osmotic flow with flow ve-
locity

veof = −εrε0
η
ζ

which is exactly the same as for the electrophoretic case except the
opposite sign. So every fixed charges give rise to an EOF and thus
in a real experiment we have charged glass surfaces. However, the
frequency dependence shown above already hints that there is a
straightforward solution. In order for the EOF to influence the
colloid motion the water has to start moving. You can then define
a characteristic length scale for the coupling given by

leof =

√
η

2πfrho
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where ρ is the electrolyte density. With the numbers from above
we can estimate the coupling length to be 90 micron at f = 20 Hz
and 45 micron at f = 90 Hz. Since the colloid is held more than
50 micron above the surface electroosmosis is diminished in this
situation as indicated by the flattening of the experimental data.
This finding can be further tested when the colloid is held closer
to the surface we would expect a stronger influence of the EOF
and thus a change in amplitude

it is obvious that the influence of the EOF is detectable until
the end of the measurements range while for the 80 Hz it is only
measurable at 30 micron and less.

6.7 Electrophoretic separation of DNA
molecules

The separation of DNA molecules by gel electrophoresis the pro-
cess of driving the molecules through a dense network of cross-
linked polymer with an applied electric fieldcounts among the most
important techniques in biochemistry and molecular biology. Des-
pite the importance of the applications of DNA electrophoresis,
however, the fundamental underlying mechanisms responsible for
separation have not been fully elucidated, and doing so represents
a substantial challenge. Conceptually, it requires understanding
the interplay between polymer dynamics, electroosmosis, the to-
pology of the gel and, in many cases, specific interactions between
the DNA and the gel matrix. Experimentally, elucidating the role
of these different contributions requires probing at or near the
molecular scale. In addition to the fundamental interest from the
point of view of polymer science and soft matter physics, present
attempts to better understand electrophoresis are motivated by
our increasing ability to construct sophisticated fluidic systems
for manipulating DNA and other macromolecules. Such under-
standing may provide the insight necessary for developing new
separation methods capable of outperforming the traditional gel.

Because of its emphasis on quantitative understanding, the con-
temporary literature on DNA electrophoresis may be difficult to
access for researchers from outside the field. In particular, it is
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often difficult to separate the well-understood basic ideas from
further refinements and details aimed at improving quantitative
accuracy. It is the aim of this section of the course to introduce
some of the basic ideas while concentrating on conceptual under-
standing rather than quantitative accuracy of gel electrophoresis.

6.7.1 Gel electrophoresis

Gel electrophoresis is one of the most important separation tech-
niques for long charged macromolecules. As you will show in one
of the problem sheets, long DNA molecules are behaving as ’free-
draining’ coils if they are long enough (longer than ∼400 bp).
This is a direct consequence that long polymer coils can be de-
scribed with the ζ-potential and thus mobility is NOT depend-
ing on length. Separation can then be achieved by letting the
polymer migrate in a gel matrix containing a mesh of polymers.
Obviously the interactions between the electrophoretically driven
DNA and the mesh will depend on the length of the molecule.
Gel electrophoresis was the basis for most sequencing techniques
until 10 years ago and was used for the Human Genome Project.
Recent advances in sequencing technology have replaced gel elec-
trophoresis as a tool for ultra-fast sequencing but the technique is
still of major importance for the separation of macromolecules by
length, mass and ζ-potential.

In order to produce a gel one can use molecules extracted from
cell walls of agarophyte red algae. The agarose monomer and a
typical mesh (SEM image) is shown below

and effectively creates a network of pores. This system is very sim-
ilar to concentrated polymer solutions. The DNA moves through
this gel by driven diffusion. The mobility of the polyelectrolyte
is controlled by the effective pore diameters. The pore diameters
can be simply controlled by the density of agarose in the water
when the gel is formed.

6.7.2 Polymer dynamics - Rouse model

In the simplest approach we can assume that a long polymer can
be described as a string of N beads connected by freely jointed
chain. The monomers can move through each other. Each bead
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has a friction coefficient β and thus the diffusion coefficient in the
Rouse model of the polymer is just DR = kbT/Nβ. The Rouse
time τR can then be defined as the time it takes the chain to diffuse
along its end-to-end distance RN . For an ideal chain we get

τR =
βb2

6π2kBT
N2.

The characteristic time τ0 for a monomer is roughly given by

τ0 ≈
βb2

kBT
and thus τR ≈ Nτ0

.
There are obvious problems with this model since we assumed

an ideal chain, unrealistic hydrodynamics (beads are independent)
and there are no knots. So a more realistic approach taking into
account the hydrodynamic by defining a no-slip boundary condi-
tion on the chain we get the Zimm model. Hereβ ≈ ηr of the
monomers and thus the Zimm diffusion coefficient DZ is

DZ =
kBT

ηR
≈ kBT

ηbnν

where ν is the Flory-exponent which is depending on the chain
characteristic. For ν − 0.5 we have an ideal chain while with
ν = 0.588 ≈ 3/5 we can describe a self-avoiding chain.

The Zimm relaxation time τZ is then

τZ ≈
R2

DZ
≈ η

kBT
R3 ≈ ηb3

kBT
N3ν ≈ τ0N

3ν .

The main difference to the Rouse time is the slightly weaker N
dependence of the τZ compared to τR.

The polymer dynamics can also broken down into sub-chains
which behave in the same way as the entire chain. There are N
modes of the chain depending of the number of monomers p =
1, 2, ..., N we get

τp = τ0

(
N

p

)2

.

One can then get the mean square displacement of a segment with
p monomers

< |rj(t)− rj(0)|2 >≈ b2N
p
≈ b2

(
τp
τ0

)1/2

which is directly related to the relaxation time τp of the relaxation
modes. At times below the Rouse time (τ0 < t < τR) this is

< |rj(t)− rj(0)|2 >≈ b2
(
τp
τ0

)1/2

.

For Fickian diffusion one would get

< |r(t)− r(0)|2 >= 6Dt.
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Thus in the Rouse regime the mean-square displacement is sub-
diffusive as for the Zimm modes which by following the same ar-
guments is given by

< |rj(t)− rj(0)|2 >≈ b2
(
τp
τ0

)2/3

for τ0 < t < τZ .

6.7.3 Reptation

In a gel the Zimm and Rouse models have to be modified since
the chain segments cannot move independently from one another.
This is very similar to the situation to a polymer melt of entangled
chains which can overlap and cannot cross each other. For polymer
melts Edwards developed the reptation model which assumes that
the chain is moving in a tube defined by the surrounding chains.
The tube diameter rt is given by rt ≈ b

√
Ne where Ne is the

averaged number of monomers between two entanglements. rt is
also known as the entanglement length. Moving from the concept
of monomers to a more coarse grained interpretation of the chain
one can define the extension of the Edwards tube R0 as

R0 ≈ rt
√
NNe ≈ b

√
N.

One can also define a coarse grained contour length of the chain
that is closely related to rt and Ne

< L >≈ rt
N

Ne
≈ b2N

rt
≈ bN√

Ne
.

The diffusive motion in this tube is called reptation and the dif-
fusion coefficient is the Rouse diffusion coefficient Dc = kBT/Nβ.
With this we can define the reptation time τrep for the chain to
diffuse out of its tube of length < L >

τrep ≈
< L >

Dc
≈ βb2

kBT

N3

Ne
=

βb2

kBT
N2
e

(
N

Ne

)3

with the lower limit for the reptation time for N = Ne

τe ≈
βb2

kBT
N2
e

and thus
τrep
τe
≈
(
N

Ne

)3

.

Now we can write down the mean-square displacements of the
entangled case in the same way as in the free Rouse case. At t < τe
this is the motion of the monomers:

< |rj(t)− rj(0)|2 >≈ b2
(
t

τ0

)1/2

.
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At time τe < t < τR the motion is confined by the reptation tube
and thus we get a new coordinate sj along the tube

< |sj(t)− sj(0)|2 >≈ b2
(
t

τ0

)1/2

≈ r2
t

(
t

τe

)1/2

related to the reptaion tube diameter rt. The reptation tube itself
is a random walk with step length rt

< |r(t)− r(0)|2 >≈ rt
√
< |sj(t)− sj(0)|2 > ≈ r2

t

(
t

τe

)1/4

which is even slower than the unrestricted Rouse motion, as ex-
pected in entanglement. Finally we for times longer than the rouse
time τR < t < τrep the whole chain is moving and thus all segments
are correlated. Thus the whole chain diffuses in the reptation tube
with the curvilinear diffusion coefficient Dc

< |s(t)− s(t)|2 >≈ Dct ≈ b2N
t

τR
≈ r2

t

N

Ne

t

τR

whilce the random walk of the reptation tube is

< |r(t)−r(0)|2 >≈ rt
√
< |sj(t)− sj(0)|2 > ≈ r2

t

(
N

Ne

)1/2( t

τR

)1/2

.

And finally at t > τrep the chain motion averages over all tubes and
Fickian diffusion has to be recovered < |r(t) − r(t)|2 >= 6Drept

where Drep ≈
R2

0
τrep
≈ kBT

β
Ne
N2 .

The four regimes can be summarized into a plot

indicating the sub-diffusive motion at small time scales while the
scaling with t1 is recovered for long times. At these long time
scales polymers behave as simple liquids while at the shorter time
scales dynamics are slowed down due to entanglement, and finally
on the monomers the connectivity of the segments described by
Rouse and Zimm determines the polymer dynamics.

6.7.4 Gel electrophoresis

Charged polymer diffuses through a gel due to applied potential.
The reptation picture describes polymer motion very well if the
field strength is low and the polyelectrolyte is long enough com-
pared to the pore size of the gel. DNA moves in the direction



6.8 Resistive-pulse sensing 83

of the applied field as expected. In contrast to the free solution
electrophoresis we expect a 1/L dependence of mobility as well as
a dependence on the pore size of the gel. This is experimentally
observed

and in general holds for DNA which is much longer than the Debye
screening length. At the same time the chains should be longer
than the typical pore diameter in the gel. For very long polymers
model breaks down as trapping and knots become more and more
dominating.

Since for very short DNA the mobility is almost the same for all
length the polyelectrolytes have to be separated over long times-
cales. For separation of DNA with a length of several tens of
kilo-basepairs in length there are better methods like pulsed field
gel electrophoresis. There are also intensive efforts to replace these
gels with artificial gels made by semiconductor nanotechnology.

6.8 Resistive-pulse sensing

Resistive-pulse sensing is a brilliant and simple idea for the label-
free detection of single molecules in solution. It is in fact using a
single pore not a mesh to detect the presence of a single particle
or molecule in solution. The sensing principle is shown below
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This technique was invented already 60 years ago and the first
potent was issued in 1953. This is the basis of the Coulter counter
for the detection of counting of small particles in solution.

Recently there is renewed interest in the technique which a res-
ult of improvement of the Coulter counter principle down to true
molecular scale. This was demonstrated first by sensing single
polymers in solution. This first success lead to increased interest
and the first detection of RNA and DNA molecules a few years
later. This latter work, in particular, sparked the imagination of
a large number of researchers since it offered a completely new
approach to ultra-fast sequencing technology with the possibility
of long read lengths. The advancement of the nanopore field was
further fueled by the development of solid-state nanopores making
use of the powerful arsenal of techniques developed for nanotech-
nology. In 2010 several groups, almost at the same time, demon-
strated graphene nanopores for biosensing both experimentally
and theoretically for DNA sequencing.

For label-free sensing of single molecules, the availability of suit-
able nanopores is crucial. Although a number of methods exist
to fabricate porous structures and filter membranes, obtaining a
single hole in a thin membrane is a significant challenge. There are
two main sources for nanoporesbiological protein pores, extracted,
for example, from bacteria like Escherichia coli (e.g. outer mem-
brane protein F) or Staphylococcus aureus (e.g.a-haemolysin), and
fabricated ones derived from silicon nanotechnology. Despite the
abundance of biological nanopores, it was a challenge to find a
nanopore that is stable for hours and has large enough inner dia-
meter to enable macromolecules like DNA to pass through them.
To date, the most important sensing pore is without doubt a-
haemolysin, which owing to its commercial availability is used
for sensing in an ever-growing number of laboratories around the
world. One striking feature of biological nanopores is their atomic
precision in assembly while providing almost perfect repeatabil-
ity of nanopore structure. Another main advantage of biological
nanopores over man-made structures is the ability to use genetic
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modification to fine tune the nanopore properties. This enables al-
most a free choice over their properties down to the single amino
acid and even atomic level by mutagenesis. In effect, this was
used in one of the earliest demonstrations of control of DNA in
a nanopore whereby a single DNA strand in the pore was used
to immobilize translocating DNA. A notable disadvantage, how-
ever, is most biological nanopores have diameters of less than 2
nm. This is suitable for sensing and sequencing of single-stranded
DNA, RNA and unfolded protein chains but impedes the sensing
of proteins in their native folded state or even double-stranded
DNA. The search for larger diameter biological nanopores that
possess tunable diameters is ongoing. Some of the shortcomings
of biological nanopores have been addressed by the use of solid-
state nanopores, with tunable diameters. Solid-state nanopores
can be made in a variety of membrane materials by means of a
focused electron or ion beams. The most common as carrier ma-
terials for the nanopores are silicon nitride membranes. Diameter,
length and shape are only limited by the thickness and robustness
of the membrane in salt solutions. For silicon nitride membranes,
the thickness was reduced recently to a few nanometres, while with
graphene nanopores, the nanopore length could be cut down to a
single atomic layer. Recently, glass nanocapillaries were shown to
be a relatively simple alternative approach for DNA sensing.

The nanopore connects two reservoirs containing aqueous salt
salt solution. A voltage is applied by means of silve/silve-chloride
electrodes and the ionic current through the nanopore is measured.

The nanopore can be estimated as a cylindrical channel with
length h and radius r in a membrane.
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For this system we can easily write down the total resistance
Rcyl

Rcyl =
1

gsalt(T )

(
h

πr2
+

1

2r

)
where gsalt is the temperature-dependent ionic conductivity of the
respective aqueous salt solution. The first term is the resistance
due to the central part of the channel while the second part de-
scribes the so called access resistance 1/2r. This is due to the finite
drop of voltage outside of the nanopores and effectively leads to
an increased length. This also increases the sensing length of the
nanopore and reduces the spatial resolution of the detection.

This formula ignores the influence of the surface charge of the
nanopore material (will be discussed in the lectures). At high salt
concentration above 100 mM ionic strength in the solution this
is valid as bulk conductance dominates - however at lower salt
concentrations surface corrections become important.

When a molecule like DNA is in the nanopore the number of
charge carrier is changed and leads to an increase in the resistance
of the nanopore - hence the term resistive-pulse technique. The
total change in conductance ∆G is given by

∆G =
1

Lpore

(
−πr2

DNA(uK + uCl)nKCl
)

where uK and uCl denote the mobility of the cat- and anions and
Lpore is a parameter describing the nanopore with an effective
length including the access resistance.

6.9 Tether force in electrophoresis

We focus on a single aspect of electrophoresis, the so-called tether
force. This is the force that is needed to hold a charged object
in place against the action of an externally applied electric field.
This situation loosely corresponds to a DNA molecule that is tem-
porarily trapped in a metastable configuration inside a gel.

In order to focus on the key concepts, we first introduce a system
with the very simple geometry

The system consists of a charged surface with a uniform surface
charge density s separated from a second, parallel surface that is
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electrically neutral. For most systems of interest, σ has a negative
value; while this is not assumed in our derivation, the plots in
the figures correspond to this case. The charged surface has a
surface area A, and the surfaces are separated by a distance d.
We assume that the lateral dimensions of the charged surface are
sufficiently large that edge effects can be neglected; under these
conditions all of the relevant equations become one-dimensional.
The volume between the two planes is filled with an electrolyte,
which is in diffusive equilibrium with a bulk reservoir. We take
the electrolyte as consisting of water containing a number density
n0 of a fully dissociated monovalent salt. A good example of the
latter is potassium chloride (KCl), which dissociates into K+ and
Cl− ions in water. This implies that in bulk solution there is a
number density n0 of both positive ions (also known as cations)
with charge +e and negative ions (anions) with charge −e, where
e is the charge of the electron. We treat water as a homogeneous
medium with permittivity εw = 80ε0. A uniform electric field with
magnitude E is applied parallel to the surface and permeates the
region between the surfaces. The direction of this electric field is
defined as z, while the direction perpendicular to the planes is x
(with x = 0 corresponding to the position of the charged surface
and x = d to that of the neutral surface). We will further assume
that s is small and that d is large, as defined more quantitatively
below.

The ion distribution in the double layer is most commonly de-
scribed within the so-called PoissonBoltzmann formalism. At
equilibrium, the average concentration of charged molecules at
position x is assumed to follow the Boltzmann distribution,

n±(x) = n0e
∓eφ(x)/kBT

with φ(x) the local average potential and n+ and n− are the local
number densities of cations and anions, respectively. We have also
introduced the convention that φ(x) = 0 corresponds to the bulk
reservoir far from any charged object, where n+ = n− = n0. In
this section we will further assume that φ(x) is much smaller than
kBT so that the Poisson-Boltzmann equation can be linearized.
And thus

n±(x) = n0(1∓ φ(x)

kBT
)

. (3) In order to determine self-consistently the electrostatic po-
tential φ(x) we employ the Poisson equation from electrostatics,
∇2φ(x) = ρ(x)/εw. Here ρ(x) = e(n+(x) + n−(x)) is the charge
density. The result is a differential equation that can be solved
for the electrostatic potential φ(x),

d2φ(x)

dx2
=
kBTεw
2e2n0

φ(x) =
φ(x)

λ2

. In the last step we introduced the Debye length again, defined as
λ =

√
kRTεw/2e2n0). The Debye length depends on fundamental
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constants and the salt concentration of the solution. For pure pH
7 water at room temperature (which contains 107 M of H+ and
OH− ions), λ ≈ 1 µm. Under typical physiological conditions
(approximately 0.1 M of monovalent salt), λ ≈ 1 nm.

The general solution for this equation you saw now several times
already φ(x) = Ae−x/λ + Be+x/λ. With the boundary conditions
at x = 0 and x = d dφ(0) = −σ/εw and dφ(d)/dx = 0 we can
easily write down the solution for the electrostatic potential

φ(x) =
σλ

εw

(
e−x/λ − e−2d/λ+x/λ

1 + e−2d/λ
.

)
For d� λ we get

φ(x) =
σλ

e −x/λ
.

This is the case when the neutral wall is far enough from the
charged wall to ensure that there is no influence on the charge
distribution. This situation is illustrated below.

Our result shows that electrostatic interactions decay to zero in
electrolytes over a characteristic distance λ.

We already now from our discussion of the electric double layer
that both charges can be present in the screening layer especially
at low surface charges. Thus in this limit the ions are distributed
as Boltzmann factors:

n±(x) = n0 ∓
σ

2eλ
e−x/λ.

The net charge density in the diffuse layer is

ρ(x) = −σ
λ
e−x/λ.

Like the potential φ(x), the charge density ρ(x) drops to zero with
increasing distance from the charged surface with a decay length
λ. Integration of this equation with respect to x also directly
demonstrates that the total charge in the diffuse layer is equal
and opposite to that of the surface being screened.

In the presence of an electric field E, each ion moves with an
average drift velocity veof = ueofE. ueof has a different value for
different species of ions, and it is positive for cations and negative
for anions. Ions in a solvent move at constant velocity and do not
accelerate like charges in vacuum because they experience drag
from the solvent. By Newtons third law, each ion therefore ex-
erts a reaction force on the solvent. Averaged over a microscopic
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volume of bulk solution large enough to contain several ions, how-
ever, the net force averages to zero since the solution is neutral
and the reaction forces from cations and anions exactly cancel each
other. This cancelation does not occur near a charged surface. As
there is an equal and opposite net charge next to it in the double
layer. An electric field thus exerts gives rise to the electro-osmotic
flow introduced above.

In order to solve the flow problem, we make further approxim-
ations. We are interested in describing flows that vary on length
scales of microns or less. At these length scales and for typical
velocities encountered in electroosmotic flows, the Reynolds num-
ber is very small and all flows are expected to be laminar. Fur-
thermore, from symmetry the fluid velocity can only be oriented
parallel to the electric field (z-direction) and can only vary per-
pendicular to the surface (x-direction). Under these conditions
the NavierStokes equations that describe fluid motion reduce to
the simple form

d2veof
dx2

+
rho(x)E

η
= 0

where ρ(x)E is the force per unit volume exerted by the electric
field.

Using ρ(x) this simplified Navier-Stokes equation can be directly
integrated

veof =
Eσλ

η
e−x/λ +Bx+ C.

With the susual no-slip boundary conditions at the two walls
veof (0) = veof (d) = 0 the flow profile is

veof = −Eσλ
eta

(
1− e−x/λ − x

d

)
.

This is shown below together with the distribution of ionic species
for walls separated by d = 25 nm and d = 50 nm, respectively.

We now have all of the ingredients required to calculate the
tether force Fmech that must be applied to hold the charged surface
in place against the action of the electric field. The relevant forces
are
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where the superscripts σ and 0 refer to the charged and uncharged
surfaces, respectively. The total force applied to the charged sur-
face by the electric field can be decomposed into two compon-
ents that always act simultaneously. First, the electric field acts
directly on the charges of the surface. We refer to this compon-
ent as the bare force, F σbare, since this is the force that would
be experienced by the bare surface if it was suspended in va-
cuum. This force follows simply from Coulombs law and is given
by F σbare = AσE. The electric field simultaneously acts on the
oppositely charged screening cloud and sets up an electroosmotic
flow, as discussed in the previous paragraphs. Because this flow
causes the fluid to be sheared at the boundary with the charged
surface, it exerts a drag force F σdrag on the charged surface whose
value is given by Newtons relation as

F σdrag = aη

∣∣∣∣dveof (x)

dx

∣∣∣∣
x=0

= −aeσ
(

1− λ

d

)
= −

(
1− λ

d

)
F σbare.

The mechanical tether force follows directly from the above and
is given by

F σmech = −F σelec = −(F σbare + F σdrag) = −AEσλ
d
.

This result contrasts strongly with what would be expected in the
absence of the drag force induced by the screening charge: in that
case we would expect F σbare = −AEσ, which is larger than the
correct answer by a large factor, d/λ.

Our calculation thus indicates that drag from the counterions,
far from being a minor correction, is in fact a dominant factor
in determining the magnitude of electrophoretic forces. Further-
more, its influence does not depend solely on local properties in
the vicinity of the charged surface, but instead encompasses all
aspects of the environment that modify the electroosmotic flow.
This is made explicit by the appearance of d in our equation for
F σmech. It is also manifest in the distribution of ions and potential
φ(x) which are essentially independent of d (so long as d � λ).
However the flow profile shown above is strongly affected by the
value of d.
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Further insight can be gained by considering the uncharged wall.
Although the electric field does not act directly on this wall, the
electroosmotic flow does exert a drag force on it since the shear
stress is non-vanishing at x = d. Following the same steps as
above we have for this force

F 0
mech = −Aη

∣∣∣∣dveof (x)

dx

∣∣∣∣
x=0

= AEσ
λ

d
= −fσmech.

The forces on the two walls are thus equal and opposite, which
may at first appear surprising. It is however easily understood by
considering that the electric field exerts no net force on the system
as a whole since the force exerted on the charged wall is exactly
compensated by the force on its screening charge. Any external
mechanical force on the charged wall must therefore be balanced
by a second external force. Equivalently, one can consider that
the total force on the screening charge is transmitted to the two
surfaces through shear in the fluid. The fraction that reaches
the uncharged surface is λ/d, while the fraction that reaches the
charged surface is (1 − λ/d). It follows directly that F σmech =
−(F σbare + F σdrag = −F 0

mech.
Our result predicts that the tether force F σmech goes to zero

as the distance d is increased toward infinity, and therefore that
there is no tether force on a charged surface far from any bound-
ary. This counterintuitive result is actually an artefact caused by
the approximations that we have made. In particular, we have
neglected edge effects and essentially treated the charged surface
as infinite. For a finite-sized surface, a small but non-zero force
remains due to a back flow of fluid on the size scale of the surface
itself. More generally, we have neglected inertial effects by using
only the Stokes equation to describe the motion of the fluid. On
large enough length scales, however, inertia becomes relevant and
this approximation breaks down.

In simple electrostatics, the force on a charged object is pro-
portional to its charge multiplied by the local electric field. As
we saw in the previous section, on the other hand, the net tether
force on a charged object in an electrolyte is not simply given by its
bare surface charge density, and is instead much smaller due to an
important contribution from the screening layer. To an observer
who is unaware of what is happening in solution and who simply
measures the tether force in response to a known electric field,
however, it is natural to describe the force as resulting from an ef-
fective surface charge density σeff , such that F σmech = −AσeffE,
with |σeff | < |σ|. σseff is thus also defined by the geometry of
the experiment and σeff = σ(λ/d).

The effective charge, as introduced above, is a well-defined quant-
ity, both experimentally and theoretically. Nevertheless, the au-
thors feel that the use of the concept of effective charge should
usually be discouraged. There are several reasons for this. First,
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the effective charge does not correspond to a physical charge, but
rather includes factors that depend on the geometry of the hydro-
dynamic environment around the charged object. Second, because
the effective charge is not an intrinsic property of the charged ob-
ject, instead depending on geometry parameters such as d, its
value cannot be compared directly between different experimental
configurations. Comparisons between tether force and electro-
phoretic mobility experiments are even more difficult, as the rela-
tion between the effective charges that are commonly defined in
these two experimental situations is model-dependent. Third, the
concept of effective charge is ineffective as a pedagogical tool: it
has been our experience that, upon first encountering it, many
readers are left with a vague notion that the effective charge con-
sists of the bare charge of the object, minus some countercharge
which is physically immobilized on the object. While this sort of
complexation can certainly be an important contribution in real
systems, thinking about electrophoresis solely in this manner ob-
scures the fact that the tether force is expected to be smaller than
the bare value even if there are no immobile countercharges.

6.9.1 More complex situations

The above calculation holds so long as the surface charge density
is sufficiently small that the condition |σ| < kBTεw/eλ is satis-
fied. At higher surface charge densities, we have to solve the full
Poisson-Boltzmann equation

d2φ(x)

dx2
=

2en0

εw
sinh

(
eφ(x)

kBT

)
.

Because of its non-linearity, this equation is considerably more
difficult to solve. When d � λ, an analytical solution can non-
etheless be obtained for the geometry with the two parallel plates

φ(x) =
2kBT

e
ln

(
1 + γe−x/λ

1− γe−x/λ

)

with γ = −λGC/λ + (1 + λ2
GC/λ

2)1/2. Here we introduced a
new parameter λGC = 2kBTεw/(e|σ|) which is known as the
GouyChapman length. Qualitatively, lGC is a measure of the
strength of the electrostatic interactions between ions and the sur-
face, with a small λGC corresponding to strong interactions.

This result for φ(x) is shown below for a range of values of the
surface charge σ. From bottom to top, the curves correspond to
values of the surface charge density s of 0.001, 0.003, 0.005, 0.01,
0.025, 0.05, 0.1, 0.5 and 1.0 Cm−2 in 20 mM KCl at 300 K. For
low values of σ, the curves follow the DebyeHückel result. Devi-
ations from this linear behavior are evident at low x for the four
topmost curves. The inset shows the counter- and coion distribu-
tion for 0.025 Cm−2 at 20 mM KCl. The coions are depleted in
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close proximity to the surface. In contrast, the number density of
counterions is ten times higher than in bulk solution.

Far from the surface, the potential decays exponentially with a
characteristic length λ for all values of σ. For large enough σ, how-
ever, the potential far from the surface no longer increases with
increasing σ. Instead, its value becomes independent of the mag-
nitude of σ and takes on the form φ(x) = ±(4kBT/e) exp(−x/λ).
Correspondingly, for large enough σ the distribution of counter-
and coions far from the surface also becomes independent of the
magnitude of σ. In this case all of the additional screening charge
is located close to the charged surface, as evidenced by the con-
tinued increase of φ(x) with increasing s in this region. The size
of this region is of the order of the GouyChapman length, λGC .
More precisely, at a planar surface and under conditions of low
bulk electrolyte concentration (λGC � λ), half of the counterions
reside within λGC from the surface. In water at room temperat-
ure, λGC is only 0.24 nm for a high surface charge density of s =
0.16 Cm−2 (corresponding to 1 e nm−2). Although its value scales
inversely with σ, λGC remains a molecular scale length for many
charged systems. Qualitatively, the charge screening a highly-
charged surface can thus be thought of as consisting of two com-
ponents: a diffuse layer, which extends a few Debye lengths into
the solution, and a more compact layer very close to the surface.
The diffuse layer is composed of more-or-less symmetric distribu-
tions of excess counterions and missing coions, whereas the more
compact layer is composed predominantly of counterions. The
latter results from the non-linearity inherent in eqn (1): while the
coion concentration cannot be suppressed below zero, the degree
of counterion enrichment can be arbitrarily high. Even for a sur-
face with σ = 0.025 Cm−2 (corresponding to eφ/kBT ≈ 2) the ion
distributions show an excess of counterions n+ whereas coions n−
are completely depleted in the screening layer.

In describing the ionic screening of charged, stiff biopolymers
such as DNA, a common approximation is to treat the molecule
as a charged, solid cylinder. Analogous to the discussion of the
infinite plane above, we focus here on a charged cylinder with
radius a and surface charge density σ positioned in the center of
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a larger, uncharged cylindrical cavity with radius R. For such a
problem with cylindrical symmetry, the PB equation takes the
form

1

r

(
r
dφ(x)

dr

)
=

2en0

εw
sinh

(
eφ(r)

kBT

)
≈ φ(r)

λ2

where the last step corresponds to the DebyeHückel approxima-
tion. In this last case and for R � λ, the correspondingsolution
for the potential is

φ(x) =
σλ

εw

K0(r/λ)

K1(R/λ)

where K0 and K1 are the 0th and first order modified Bessel func-
tions of the second kind, respectively. Analogous to the planar
geometry, the potential decays exponentially away from the charged
cylinder.

For a highly-charged surface, the linearization is no longer valid
and the full PB equation must be solved. We only note that
the resulting solution exhibits the same qualitative features as for
the case of a plane, and once again the screening charge can be
broken into a diffuse layer, whose size is given by the Debye length,
and a compact layer, characterized by the GouyChapman length.
The amount of charge in the diffuse layer also saturates at a con-
stant value with increasing s, while the remaining screening charge
resides in the compact layer and consists primarily of counterions.

This separation into two components can be made more pre-
cisely in the special case of a line charge (a cylinder with R-0)
with linear charge density r and in the absence of supporting salt
(n0 = 0). In this case ions accumulate (or condense) on the line
charge, partly compensating its charge until its value decreases
to a magnitude e/λB (where λB = e2/4πkBTεw is the Bjerrum
length). The linear charge density of the condensed ions is thus
(|ρ| − e/λB), while the linear density of charge in the diffuse layer
is the remaining e/λB. This result, known as Manning condensa-
tion, often serves as a first approximation for the composition of
the double layer in more realistic cases. Double-stranded DNA,
for example, has a charge density of 2e per base pair, correspond-
ing to ρ = 4.2e/λB. This is well over the critical threshold for
counterion condensation to occur, and as a first estimate a frac-
tion 1−1/4.2 = 0.76 of the charge can be expected to be screened
by condensed counterions.
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Force balance for DNA in the center of a nanopore with radius
R. (a) Left: the balance of forces is qualitatively identical to the
case of planar surfaces. Briefly, the electric field pulls the negat-
ively charged DNA towards the bottom with a force σ

bare, whereas
the counterions experience a force in the opposite direction. This
leads to drag forces F σdrag, acting on the DNA, and 0

drag, acting on
the nanopore wall. The latter force is ultimately transferred to
the rest of the experimental setup to which the pore is rigidly at-
tached. The DNA is stalled by a tether force F σmech applied to the
DNA, while an equal but opposite force 0

mech acts on the uncharged
nanopore. Right: when the nanopore radius R is increased, the
drag force on the DNA also increases. Correspondingly, the drag
force on the nanopore F 0

drag and the tether force F σmech decrease.
(b) The flow velocity v(r), calculated by numerically solving the
full PB euqation and combining the result with the Stokes equa-
tion. The maximum flow velocity depends on the nanopore radius
R.

Because the distribution of screening charge in the vicinity of a
charged cylinder is qualitatively very similar to that near a surface,
our discussion of electroosmotic flows and tether forces in Section
2 applies directly to the case of a cylinder. In particular, as illus-
trated above, here also the tether force is due to a combination
of bare electrostatic force and a drag force from the counterions,
with the drag force being of comparable magnitude to the bare
force. The cylindrical geometry only influences our analysis and
conclusions at a quantitative level. For example, the figure above
shows the fluid velocity v(r) as a function of radial position r.
Far from the charged cylinder, v(r) exhibits a non-linear decay
with increasingr, unlike our result for planar surfaces, leading to
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subtle differences in how the drag force is distributed between the
two surfaces. However, this does not fundamentally change the
interpretation of the tether force.
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7.1 Some Literature

• Magnetic tweezers, technique: Gosse and Croquette ”Mag-
netic Tweezers: Micromanipulation and Force Measurements
at the Molecular Level”, Biophys. J. (2002)

• technical recipes: Muller and Engel, ”Atomic force micro-
scopy and spectroscopy of native membrane proteins” Nature
Methods (2007)

• AFM background on trapping on surfaces: Bustamante and
Rivetti, ”Visualizing protein-nucleic acid interactions on a
large scale with the scanning force microscope” Ann. Rev.
Biophy. (1996)

• comprehensive overview over most state of the art tech-
niques: Neuman, Block, ”Optical Trapping”, Review of Sci-
entific Instruments (2004)

• good review about single molecule studies: Bustamante et
al. ”Ten Years of Tension: Single Molecule DNA mechanics”
Nature (2003)

7.2 Atomic Force Microscopy

One of the most prominent tools for the detection and unrevaeling
of single macromolecules is the atomic force microscope (AFM).
The idea is very simply to ’feel’ the atoms of a surface by a
sharp needle, often manufactured from silicon. The measurement
concept is shown below
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The three essential components are the tip attached to a can-
tilever, with spring constant kc a piezoelectric stage with sub-
nanometer positional accuracy and a PID-controller to keep the
force constant. The input of the PID controller is the voltage
measured due to a reflected laser spot incident on a quadrant-
photo detector (QPD). For small extension, as later for optical
tweezers, we can assume that the cantilever behaves as a harmonic
spring and thus the force on the surface is given by F = −kcx
where x is the distance of the cantilever from its equilibrium po-
sition. The position measurement with a QPD is straightforward
and worth to know as it is used in many single-molecule exper-
iments. By comparing the total intensity on the QPD with the
intensities on the four quadrants A, B, C, D one can calculate the
x and y position of the laser spot on the QPD. Thus it is also easily
possible to measure not only forces perpendicular to the sample
but also the torsional motion of the cantilever. The spatial res-
olution of the QPD and thus of the AFM can reach easily below
1 nm.

As the thermal energy equates to 4 pNnm any technique for
looking at polymers should be able to reach these forces. The
force resolution obviously depends on kc. With kc = 0.05 N/m
and a QPD resolution of 1 nm we get a force resolution of 50 pN,
which is higher than the required resolution of O(10−12 N. The
minimum force resolution Fmin can be calculated as

Fmin =

√
4kBT

2π

Bkc
f0Q

where B is the measurement bandwidth of the QPD, Q = 2πW0
∆W is

the quality factor of the cantilever and f0 its resonance frequency.
f0 is given by

f0 =
1

2π

√
kc
mc

with mc the mass of the cantilever. Reducing mc increases f0 and
thus the force sensitivity.

As an example we can estimate for a typical trap stiffness of
0.05 N/m, f0 = 10 kHz and Q = 2 in water at room temperature
and B = 20 kHz, Fmin ≈ 10−12 N. Thus the AFM should be
useful to study molecular forces as protein unfolding and molecular
motors.

The amazing resolution of the AFM on membranes is best illus-
trated by imaging of single protein complexes in aqueous solutions
on mica surfaces as shown for the example of bacteriorhodopsin at
forces around 100 pN. The supported membranes allow for high
resolution images even at these high force levels.
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7.3 Optical Tweezers

The ability to mechanically manipulate dielectric particles without
any physical contact makes optical tweezers a unique tool in bio-
logy, physics and material sciences. Optical tweezers can exert
piconewton forces on micrometer-sized objects while measuring
the resulting displacements with subnanometer accuracy. Follow-
ing the pioneering work of Ashkin in the 70s, optical trapping is
now routinely used to study the mechanical properties of poly-
mers, the physics of colloids and proteins on a single molecule
level.

An optical tweezers is established by tightly focusing a laser
beam with a high numerical aperture (NA) objective to a diffraction-
limited spot, hence providing a steep intensity gradient. For
particles with a radius comparable in size to the wavelength of
the used trapping laser, quite elaborate electromagnetic theories
are needed for an adequate description of the acting optical forces.
Still, a complete theory for arbitrarily shaped objects covering all
wavelengths does not exist [15]. Unfortunately, in practice most
objects considered for trapping belong to this category (0.1λ -
10λ), and so do the colloids used during the experiments described
in this master’s thesis. However, for the understanding of the ba-
sic physical principles the exact mathematical calculations are not
needed, and it is more useful to regard the following two limit-
ing cases, which correspond to relatively clear descriptions of the
problem.

7.3.1 Mie Regime for trapping

In the Mie scattering domain, which corresponds to a spherical
trapped object that is very large compared to the wavelength (r �
λ), we can restrict ourselves to simple ray optics, which provides
an easy insight in terms of geometrical considerations
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Essentially, as each photon carries a momentum that is pro-
portional to the index of refraction of the medium it travels in,
each refraction/reflection event of a light ray at the surface of the
dielectric particle causes a momentum change, i.e. a force, always
assuming that absorption effects are not relevant. Summing over
all light rays and momenta, we end up with a net force exerted on
the particle, as long as it is not situated in its equilibrium posi-
tion (corresponding to a minimum in the potential energy). With
the refractive index of the object being larger than the one of the
surrounding medium, e.g. in the case of a polystyrene (PS) bead
(n = 1.59) in water (n = 1.33), this force always points towards
the trap center.

7.3.2 Rayleigh regime for trapping

If the conditions for Rayleigh scattering are satisfied, i.e. the
trapped particle is much smaller than the wavelength (r � λ), it
can in first approximation be treated as a Hertzian point dipole
in an inhomogeneous electromagnetic field. The resulting over-
all optical force has to obey the corresponding equations and is
conveniently decomposed into two components: 1. the scattering
force due to radiation pressure, which is proportional to the in-
tensity of the laser beam and points in its propagation direction,
and 2. the gradient force, which is proportional to the intensity
gradient and points to the peak of highest intensity, again assum-
ing the herein before mentioned mismatch of refractive indices.
For stable trapping the gradient force has to (over-)compensate
the scattering force.
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7.3.3 Calibration of optical tweezers

In order to detect piconewton forces, the position of a trapped
particle must be determined with a high temporal and spatial res-
olution. Traditionally this is done using a quadrant photodiode
(QPD) detector. QPD detectors can readily achieve nanometer
spatial and microsecond temporal resolution, therefore they are
a common choice for force measurements. Alternatively, the po-
sition of a particle can be tracked with video-based position de-
tection. CCD cameras are capable of position determination with
subpixel accuracy but lack temporal resolution, which is typically
in the range of 25120 Hz. Compared to CCDs, complementary
metal oxide semiconductor (CMOS) imaging sensors have all the
conversion electronics required built into each pixel. Each pixel
provides a complete binary value within microseconds, resulting
in frame rates of up to 100 kHz.

Stokes calibration

So before force measurements can be done, the optical trap needs
to be calibrated. There are two straightforward methods for cal-
ibration. The drag force method and calibration via analyzing the
power spectrum of the Brownian motion of a bead in the trap. The
drag force method is based on Stokes law, F = 6πηrv where F is
the viscous force, η is the viscosity of the medium, r the radius of
the bead, and v its velocity relative to the surrounding solution.
When the stage is moved a trapped colloid will experience a Stokes
force and be displaced from its equilibrium position. This leads to
a counteracting linear force (according to Hookes law) arising from
the harmonic potential at the center of the trap, F = −ktrapx,
where ktrap is the force constant or trapping stiffness and x the
amplitude of the displacement. In practice, calibration should be
done far from any surface as otherwise the Stokes friction coeffi-
cient has to be modified. A typical measurement is shown below
where a colloid in an optical trap is moved through the solution
and the amplitude of the movement is measured
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Powerspectrum calibration

Observing the dynamics of single molecules means dealing with
time-domain data, e.g. varying voltage signals from a photo de-
tector, corresponding to singular events. Still, as we want to inter-
pret continuous phenomena, like the thermal random noise of our
system, we have to go over to the frequency domain. Departing
from a set of N discrete data points xN (positions in one dimen-
sion e.g. x) separated by time intervals ∆t, one has to perform a
discrete Fourier transform (FT). This leads to a set of N complex
Fourier components of the form

X(fm) := FTxn =
∑
n=1

Nxnexp(−2πimn/n)

with fm = mδf the m-th frequency with −N/2 ≤ m ≤ n/2
and δ = 1/Nδtf the minimum detectable frequency. φmn =
−2πmn/N being the phases of the complex summands. Com-
puting the power spectrum or power spectral density PSD, S(fm)
just means calculating the squared absolute value of the Fourier
transform, such that up to normalizing prefactors we have:

S(fm) ∝ |X(fm)|2

This way the phase information is lost, but one obtains again an
analyzable set of real numbers. You can interpret this step as
passing your time-dependent signal trough a set of band filters
and plotting the intensities vs. the center frequencies of these
filters. Averaging over many data sets yields the exact spectral
characteristics of the process under consideration.

When speaking about a Fourier transform, one should keep in
mind that in practice, especially for large data sets, the calcula-
tion is usually done by means of a fast Fourier transform (FFT)
algorithm. Such an algorithm needs only O(N logN) operations
to calculate the result, whereas evaluating the above sum directly
takes O(N2) steps.

Two concepts have to be remembered when interpreting a power
spectrum:

• Windowing: for a FT one assumes a periodic wrapping of
the data points (xN+1 ≡ x1 implicitly), which may lead
to discontinuities and phase shifts when the transform is
applied to a finite time interval T . This can cause peak
broadenings and other artifacts in the power spectrum. The
problem can be overcome by multiplying the data set with
a so-called window function, which forces the amplitudes to
be zero at both ends of the chosen interval.

• Aliasing (aka ’backfolding’) occurs when contributions in
the power spectrum of frequencies higher than the so-called
Nyquist frequency fNyq = 1/2δt are folded back and added
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to lower frequency regions. The threshold is defined by the
highest frequency unambiguously measurable in the data set
and is equal to half the sampling frequency. This effect can
be avoided by applying a low-pass filter to the signal BE-
FORE digital sampling occurs.

An example of the time dependent position signal of a colloidal
particle in an optical trap, measured with 20, 4 and 0.6 kilosamples
per second, respectively. (b) The corresponding power spectra
reveal that aliasing effects (described in the text) become more
pronounced for smaller sampling (or Nyquist) frequencies. There-
fore, the sampling rate should always be chosen sufficiently large
for the corresponding experiment. The drop at ∼5 kHz is due to
the limited bandwidth (BW) of the electronics.

7.4 Magnetic Tweezers
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