
Some more functions and asymptotic series. Properties of Asymp-
totic series in general

I - Gamma-function and Airy function

1 Γ(z):

As we saw in last lecture:

Γ(n+ 1) = n! =

∫ ∞
0

e−t tn dt.

This definition can be extended from n ∈ N to all z ∈ C:

Γ(z) =

∫ ∞
0

e−t tz−1 dt.

In particular, if z = 1/2

Γ(1/2) =

∫ ∞
0

e−t t−1/2 dt.

To prove Γ(1/2) =
√
π try the change of variables s2 = t. To find the answer we

need the value of one of the most famous integrals in mathematics:

I =

∫ ∞
−∞

e−x
2

dx.

Here, since x is a dummy variable

I =

∫ ∞
−∞

e−x
2

dx =

∫ ∞
−∞

e−y
2

dy.

Thus,

I2 =

∫ ∞
−∞

∫ ∞
−∞

e−(x
2+y2) dx dy.

Now try the change of variables from cartesian to polar coordinates (x, y)→ (r, θ).

2 Airy function Ai(z):

The Airy function (named after George Bidell Airy who first discovered it) is the
solution to the differential equation

d2y(z)

dz2
− zy(z) = 0.

As usual and for simplicity we first consider the real case, that is z → x. To find
the solution we first Fourier transform the equation:

F
[
d2y(x)

dx2
− zy(x)

]
= −k2ŷ(k)−

∫ ∞
−∞

xe−ikxy(x) dx = 0, (1)



where

ŷ(k) =

∫ ∞
−∞

e−ikxy(x) dx.

Notice that eqn (1) can be rewritten as

−k2ŷ(k)− (−1

i
)
dŷ(k)

dk
= 0,

which yields ŷ(k) = ik3/3 and after antitransforming we find the famous expres-
sion:

Ai(x) ≡ y(x) =
1

2π

∫ ∞
−∞

ei(kx+
k3

3
) dk.

Note that one more time we have generated an integral of the type introduced in
lecture 1, i. e., F (λ) =

∫∞
0
eλR(z)g(z)dz.

II - Some properties of asymptotic series

1 A Taylor series about x = x0 is an Asymptotic series as x→ x0:

This is an important result:

Let f(x) be a smooth function that admits a Taylor expansion about x = 0 (in
general it could be about x = x0, because a simple change of variables ξ = x− x0
renders both calculations identical), then:

f(x) =
∞∑
n=0

fnx
n where fn =

f (n)(0)

n!
,

where f (n)(x) denotes the n-th derivative of the function. To show that this is an
asymptotic series as x → 0 we need to apply our definition, that is, we need to
show that

f(x)−
N∑
n=0

anφn(z) = o(φN(x)) as x→ 0,

where in this case {φn(z)}∞n=0 = {xn}∞n=0, with n ∈ N. We proceed by first
calculating the remainder:

f(x)−
N∑
n=0

fnx
n = RN(x) =

∞∑
n=N+1

fnx
n,

and then applying the limiting process. First we are going to see that it is O(xN+1)

lim
x→0

sup

∣∣∣∣RN(x)

xN+1

∣∣∣∣→ K



where K is some constant. From the expression of the remainder it is easy to see
that the limit has the value K = f (n)(0)/n!, that is

f(x)−
N∑
n=0

fnx
n = O(xN+1) as x→ 0.

Now we note that O(xN+1) for the sequence {xn}∞n=0 is equivalent to o(xN) since

limx→0 sup

∣∣∣∣KxN+1

xN

∣∣∣∣→ 0.

Important points:

i) To show that a series is asymptotic, calculate the remainder and apply the limit.

ii) For asymptotic series where the asymptotic sequences {(x − x0)n}∞n=0 as x →
x0 or {(x − x0)

−n}∞n=0 as x → ∞ are used, O(xN+1) and o(xN) are equivalent.
In this course, unless stated explicitly otherwise we will always be using these
asymptotic sequences.(One should be careful with Big-O and little-o when using
other asymptiotic sequences as basis).

2 Lemma on uniqueness:

Given a function f(z), it is not necessarily the case that there will be an asymp-
totic series to represent is. At the same time if f(z) admits an asymptotic series
representation, there could be many different ones. In fact, for each possible choice
of asymptotic sequence that produces a representation of f(z) there will be a dif-
ferent sequence of coefficients for the series. However, for a given asymptotic
sequence the asymptotic series for a given function, if it exists, is unique.

Lemma: For a given function f(x) which admits an asymptotic series representa-
tion with a given asymptotic sequence {φn(z)}∞n=0 as x → x0 on a given domain,
the asymptotic series for f(z) is unique.

To show this, we assume that there are more than one representations of f(z) with
the same asymptotic sequence:

f(z) ∼
∞∑
n=0

anφn(z) and f(z) ∼
∞∑
n=0

bnφn(z)

substracting both expressions we find

∞∑
n=0

(an − bn)φn(z) = 0.

Because the φn(z) are a complete set of independent functions the only possible
way to satisfy the identity is for all coefficients to be zero, i.e., an = bn, which
contradicts our hypothesis, then the series must be unique.

3 Sums and products of asymptotic series:

Let f(z) and g(z) be two functions with asymptotic series with respect to the same
asymptotic sequences. Then, the sum h(z) = f(z) + g(z) is also an asymptotic
series.

f(z) ∼
∞∑
n=0

anφn(z) and g(z) ∼
∞∑
n=0

bnφn(z).



Then,

h(z) = f(z) + g(z) ∼
∞∑
n=0

anφn(z) +
∞∑
n=0

bnφn(z) (2)

That is, we want to show that:

h(z)−
N∑
n=0

cnφn(z) = o(φN(z)), (3)

where

h(z)−
N∑
n=0

cnφn(z) = f(z)−
N∑
n=0

anφn(z) + g(z)−
N∑
n=0

bnφn(z). (4)

We know that f(z)−
∑N

n=0 anφn(z) and g(z)−
∑N

n=0 bnφn(z) are both o(φN(z)).
Aplying the limiting procedure it is easy to verify that the

lim
x→x0

sup

∣∣∣∣f(z)−
∑N

n=0 anφn(z) + g(z)−
∑N

n=0 bnφn(z)

φN(z)

∣∣∣∣ as x→ 0. (5)

then h(z)−
∑N

n=0 cnφn(z) = o(φN(z)) and is also an asymptotic series (verify the
result. Always: TRUST, BUT VERIFY!)

4 Small at all orders:

Because we are going to use only the few asymptotic sequences listed above, there
are certain functions that will not have an asymptotic representation with respect
to those sequences. In particular we are interested on the exponential function.

Suppose that we wish to represent the exponential as x→∞ with a series of the
form

e−x ∼
N∑
n=0

anx
−n as x→∞. (6)

We have been told many times that as x→∞ the exponential decays faster than
any power law, this should make it clear that there is no possible sequence of
constant coefficients that could reflect this fact for the series above. To show this
we can make a change of variable x = 1/u s.t. x→∞ corresponds to u→ 0, then

e−1/u ∼
N∑
n=0

anu
n as u→ 0. (7)

This change of variables makes it possible to use all the results we found for the
Taylor expansion. This is a part of a question in your sample sheets, and when
you answer that question you should find that all the coefficients are zero. Both
cases, e−x as x→∞, and e−1/x as x→ 0 are equivalent. We say that e−x is “small
at all orders” with respect to the sequence {x−n}∞n=0 as x→∞.

This has some interesting consequences, if a given function f(x) has an asymptotic
series representation

f(z) ∼
N∑
n=0

anx
−n as x→∞, (8)



the asymptotic series representation of the functions Ae−x+f(z) , for any constant
A, is the same.

Ae−x + f(z) ∼
N∑
n=0

anx
−n as x→∞. (9)

That means that while given a function the asymtotic series is unique, given an
asymptotic series the functions that are represented are not unique.

II - Stieltjes Integral

1 The integral itself:

One of the integrals that we will be studying is the Stieltjes Integral, given by

S(x) =

∫ ∞
0

ρ(t)

1 + xt
dt

for x → 0. The objective is to find a suitable asymoptotic approximation to this
integral (you should look up Mr Steiltjes’ biography, it is very interesting)

2 Asymptotic series for the Stieltjes Integral

Now that we know that a Taylor series is an asymptotic series as x→ 0 we can try
to find an asymptotic series for our integral by inserting into it the Taylor series
of the term multiplying ρ(t)

1

1 + xt
=
∞∑
n=0

(−1)nxntn

and then checking that the remainder is indeed o(xN) or equivalently O(xN+1).
Thus,

S(x) =

∫ ∞
0

ρ(t)

1 + xt
dt ∼

∞∑
n=0

(−1)nxn
∫ ∞
0

ρ(t)tn dt.

To find the remainder we note that
∑N

n=0(−1)nxntn +
∑∞

n=N+1(−1)nxntn can be
written as

N∑
n=0

(−1)nxntn + (−1)N+1xN+1tN+1

∞∑
n=0

(−1)nxntn,

that is
∑∞

n=0(−1)nxntn =
∑N

n=0(−1)nxntn +R(x), with

R(x) =
(−1)N+1xN+1tN+1

1 + xt
.

Now we can write:

S(x)−
N∑
n=0

(−1)nxn
∫ ∞
0

ρ(t)tn dt = (−1)N+1xN+1

∫ ∞
0

ρ(t)tN+1

1 + xt
dt

and from this we can see that because the reminder is indeed O(xN+1), then the
desired limit is o(xN), and the series we found is asymptotic as x→ 0.


