# **The Reynolds Number**

Consider a fluid of density  $\rho$  in which there is a characteristic speed U and a length scale L. Then it is natural to scale velocities by U and time by L/U.

### Acceleration term of Navier-Stokes equation:

$$\rho \frac{\partial u}{\partial t} \sim \frac{\rho U}{L/U} \sim \frac{\rho U^2}{L}$$

Note: this is nonlinear in U

Viscous dissipation term:

$$\nu = \eta / \rho$$

Kinematic viscosity

For a bacterium in water, with  $U \sim 10 \ \mu m/s$ ,  $L \sim 1 \ \mu m$ , and  $\nu \sim 0.01 \ cm^2/s$ ,  $Re \sim 10^{-5}!!$ 

# **No Coasting at Low Reynolds Number**

Ignoring any detailed fluid mechanics, we might imagine the equation of motion of a bacterium that has just switched off its flagellar motion to be of the form:

$$\frac{4}{3}\pi R^3 \rho \frac{d^2 x}{dt^2} = -6\pi\eta R \frac{dx}{dt}$$

Hence we deduce there is a characteristic time and distance

$$\tau \sim \frac{2}{9} \frac{R^2}{\eta/\rho} \qquad \qquad \ell = v_0 \tau \sim \frac{2}{9} \frac{R^2 v_0}{\nu}$$

For a bacterium in water, with  $v_0 \sim 10^{-3}$  cm/s,  $R \sim 10^{-4}$  cm, and  $\nu \sim 0.01$  cm<sup>2</sup>/s,  $\tau \sim 10^{-7}$  s and  $\ell \sim 10^{-10}$  cm!!

# **Typical forces and voltages**

Let us estimate the typical force encountered by a swimming bacterium. Suppose it is in a fluid of viscosity  $\eta$  (0.01 for water), has a radius *a* on the order of a micron and swims at a speed *v* on the order of 10 µm/s. Using the Stokes drag law for a sphere the force on it is

$$F = 6\pi\eta av \simeq 2 \times 10^{-8} \text{dyne} \simeq 2 \times 10^{-13} \text{N} = 0.2 \text{ pN}$$

Forces on the cellular scale are on the order of pN. A very useful way to think about this is to convert thermal energy into pN nm

$$k_B T = 4 \times 10^{-14} \text{erg}$$
  $[k_B = 1.38 \times 10^{-16} \text{erg/K}]$   
 $k_B T = 4 \times 10^{-21} \text{J} = 4 \times 10^{-12} \text{N} \times 10^{-9} \text{m} = 4 \text{ pN} \cdot \text{nm}$ 

With a very similar approach we can also estimate the typical voltages as

$$\frac{k_B T}{e} = \frac{4 \times 10^{-14} \text{erg}}{5 \times 10^{-10} \text{esu}} \simeq 25 \text{mV}$$

## **Advection & Diffusion**

If a fluid has a typical velocity **U**, varying on a length scale L, with a molecular species of diffusion constant **D**. Then there are two times:

We define the Péclet number as the ratio:

$$Pe = \frac{t_{diffusion}}{t_{advection}} = \frac{UL}{D}$$

This is like the Reynolds number comparing inertia to viscous dissipation:



If *U*=10 μm/s, *L*=10 μm, Re ~ 10<sup>-4</sup>, Pe ~ 10<sup>-1</sup> At the scale of an individual cell, diffusion dominates advection.

The opposite holds for multicellularity...





UL

## Diffusion and the Stokes-Einstein Relation

If molecules have a diffusion constant D, concentration c, and are advected with speed u, then the flux is:

$$J = -D\frac{dc}{dx} + uc$$

In the low-Re regime we expect a force balance of the form  $\zeta u = \text{force} = -d\phi/dx$ , where  $\phi$  is a suitable potential energy.

At equilibrium, we must have 
$$J = 0$$
, so  $0 = -D\frac{dc}{dx} - \frac{1}{\zeta}c\frac{d\phi}{dx}$ , or

$$c \sim \exp(-\phi/D\zeta)$$

 $c \sim \exp(-\phi/D\zeta)$  If equilibrium statistical mechanics holds then we must conclude that

$$D\zeta = k_B T$$
 or  $D = \frac{k_B T}{\zeta}$ 

If we is the Stokes drag coefficient for a molecule of radius 2 Å we obtain

$$D \sim \frac{4 \times 10^{-14}}{20 \cdot 0.01 \cdot 2 \times 10^{-8}} \sim 10^{-5} \text{cm}^2/s$$

## **Diffusional Time Scales**

From the diffusion equation

$$\frac{\partial c}{\partial t} = D\nabla^2 c$$

we see by dimensional analysis the scaling

$$Dt \sim \ell^2 \quad \text{or} \quad t \sim \frac{\ell^2}{D}$$

On the scale of a bacterium ( $\ell \sim 10^{-4}$  cm),  $t \sim 10^{-3}$ s, but on the scale of a plant ( $\ell \sim 10$  cm),  $t \sim 10^{7}$  s, or about 3-4 months!)

Something must take over as a transport mechanism beyond Several hundred microns for life to function.

See J.B.S. Haldane, "On Being the Right Size"

# The Aquatic Plant Chara corallina

# **Cytoplasmic Streaming (the Movie)**



Goldstein, Tuval, van de Meent, PNAS 105, 3663 (2008)

## Streaming in Drosophila oogenesis



Kinesin-based movement of cargo along microtubules

speed ~30 nm/s

Viscosity very high

Ganguly, Williams, Palacios, Goldstein, PNAS 109, 15109 (2012)

# MKS (SI-units) ⇔ CGS

- See pages 107-109 in "Van der Waals Forces" by Adrian Parsegian for full overview of conversion
- One example: Coulomb forces
  in SI units
  Co

Force = 
$$\frac{q_1 q_2}{4\pi \varepsilon_0 r^2}$$
 N,  $q_1$ ,  $q_2$  in coulombs C,  $r$  in meters,

$$\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$$

Force =  $\frac{q_1 q_2}{r^2}$  dyn,  $q_1, q_2$ 

in statcoulombs, r in centimeters

or

 $(1/4\pi\varepsilon_0) = 8.992 \times 10^9 \text{ N m}^2/\text{C}^2;$ 

• Second example: Poisson equation

 $\nabla \cdot (\varepsilon \mathbf{E}) = \rho_{\rm free} / \varepsilon_0, \qquad \nabla \cdot (\varepsilon \mathbf{E}) = 4\pi \rho_{\rm free}.$ 

• Other conversion please see text book by A. Parsegian

## **Microscopics**

The ideal gas law,

$$PV = nRT = Nk_BT \qquad \qquad \frac{P}{k_BT} = \rho$$

is only an approximation. At low densities we have the "virial expansion",



#### Van der Waals Interactions

To simplify the situation, a coordinate change is made:

$$x_{\pm} = \frac{x_1 \pm x_2}{\sqrt{2}}$$
  $x_1 = \frac{x_+ + x_-}{\sqrt{2}}$   $x_2 = \frac{x_+ - x_-}{\sqrt{2}}$ 

$$\mathcal{H} = \frac{p_1^2}{2m} + \frac{1}{2} \left( m\omega_0^2 - \frac{2e^2}{R^3} \right) x_+^2 + \frac{p_2^2}{2m} + \frac{1}{2} \left( m\omega_0^2 + \frac{2e^2}{R^3} \right) x_-^2$$

The two terms in parenthesis are essentially adjusted frequencies:

$$\omega_{+}^{2} = \omega_{0}^{2} - \frac{2e^{2}}{mR^{3}} \qquad \qquad \omega_{-}^{2} = \omega_{0}^{2} + \frac{2e^{2}}{mR^{3}}$$

#### Van der Waals Interactions - continued

$$\omega_{\pm} = \left(\omega_0^2 \mp \frac{2e^2}{mR^3}\right)^{1/2} \simeq \omega_0 \mp \frac{e^2}{m\omega_0 R^3} - \frac{1}{2} \frac{e^4}{m^2 \omega_0^3 R^6} + \cdots$$

The energy is then:

$$U(r) = \frac{1}{2}\hbar\omega_{+} + \frac{1}{2}\hbar\omega_{-} - 2 \cdot \frac{1}{2}\hbar\omega_{0}$$
$$\approx \frac{-\hbar e^{4}}{2m^{2}\omega_{0}^{2}R^{6}} = -\frac{1}{2}\hbar\omega_{0}\frac{(e^{2}/m\omega_{0}^{2})^{2}}{R^{6}}$$

We see that  $e^2/m\omega_0^2$  is a characteristic volume. To see the meaning of this, consider an induced electric dipole:

$$\mathbf{d} = \alpha \mathbf{E}$$

The units on **d** are  $Q \cdot L$ , the units on **E** are  $Q/L^2$ , so the units of  $\alpha$  are  $L^3$  (a volume).

### Van der Waals Interactions - continued

Now consider the Hamiltonian in the presence of an external electric field:

$$\mathcal{H} = \mathcal{H}_0 + eE_0 x_1 + eE_0 x_2$$
  
=  $\frac{1}{2} m \omega_0^2 \left( x_1^2 + \frac{2eE_0 x_1}{m \omega_0^2} \pm \left( \frac{eE_0}{m \omega_0^2} \right)^2 \right) + (1 \leftrightarrow 2)$   
=  $\frac{1}{2} m \omega_0^2 z_1^2 + \cdots$   
 $z_{1,2} = x_{1,2} + \frac{eE_0}{m \omega_0^2}$ 

This is nothing but a shifted pair of harmonic oscillators, and from the shift we deduce the polarizability The dipole moment is then:

$$\alpha = \frac{e^2}{m\omega_0^2}$$

which is the same as seen previously. The energy of attraction in either case is then:

$$U(r) = -\frac{1}{2} \frac{\hbar \omega_0 \alpha^2}{r^6}$$

## How Does This Fit into the Thermodynamics?

Key idea [van der Waals, Weeks-Chandler-Anderson (WCA)]: partition the intermolecular potential into purely repulsive + purely attractive, use "known" results for former, perturbation theory for latter.

Using a mean-field (averaging) argument, avoid double-counting

internal energy

contribution to the 
$$U_{\text{attr}} = \frac{1}{2} N \rho \int d^3 r u_{\text{attr}}(r)$$
 taking the density to be uniform

Define 
$$a = -\frac{1}{2} \int d^3 r u_{\text{attr}}(r)$$
 then  $U_{\text{attr}} = -aN\rho = -\frac{aN^2}{V}$ 

and 
$$p_{\text{attr}} = -\frac{\partial U_{\text{attr}}}{\partial V} = -a\rho^2$$

So, a better equation of state is  $p = \rho k_B T - a \rho^2$ 

To incorporate excluded volume, subtract Nb from the available volume, where  $b = 8 \times \text{particle volume}$ ,

$$(p+a\rho^2)(V-Nb) = Nk_BT$$

## **Putting it All Together**

Finally, we have

$$p = \frac{\rho k_B T}{1 - b\rho} - a\rho^2$$
 so  $\frac{p}{k_B T} \simeq \rho + \left(b - \frac{a}{k_B T}\right)\rho^2 + \cdots$ 

and we conclude that



### **Applications of Dispersion Forces**



Suppose the interaction between two molecules is

$$V_{11}(r) = -\frac{C}{r^6}$$

Then, the attraction between a neutral atom and a sheet is calculated:

$$V_{1S}(h) = \int_{h}^{\infty} dz \int_{0}^{2\pi} d\phi \int_{0}^{\infty} r dr \rho V_{11}(\sqrt{z^{2} + r^{2}}) = -\int_{h}^{\infty} dz \int_{0}^{2\pi} d\phi \int_{0}^{\infty} r dr \rho \frac{C}{(z^{2} + r^{2})^{3}} = -\frac{\pi C \rho}{6h^{3}} \quad \text{(atom-slab)}$$

## **Applications of Dispersion Forces - continued**

Between two slabs of area A such that  $A\rho dz$  atoms are in thickness dz:

$$V_{SS}(r) = A \int_{h}^{\infty} \rho V_{1S}(z) dz \Rightarrow \frac{V_{ss}}{A} = -\frac{A_H}{12\pi} \frac{1}{h^2}$$

This defines the Hamaker constant  $A_H$ 

$$A_H = \pi^2 \rho_1 \rho_2 C_{12} \sim \pi^2 \hbar \omega (\alpha \rho)^2$$

Typically, the Hamaker constant is  $\sim 5 \times 10^{-20}$  J $\sim 5 \times 10^{-13}$  erg, About an order of magnitude larger than thermal energy

$$A_H \sim \pi^2 \hbar \omega_0 (\alpha \rho)^2 \sim 10 \cdot \text{eV} \cdot (0.1)^2 \sim 0.1 \text{eV}$$