The Reynolds Number

Consider a fluid of density p in which there is a characteristic speed U
and a length scale L. Then it is natural to scale velocities by U and

time by L/U.
Acceleration term of Navier-Stokes equation:

p— ~ —— ~ —— Note: this is nonlinear in U

Viscous dissipation term:
inertial UL
@ v : = = Re
Toz ~ L2 viscous v
v=mn/p

Kinematic viscosity

For a bacterium in water, with U ~ 10 pum/s, L ~ 1 pm,
and v ~ 0.01 cm?/s, Re ~ 107°!!



No Coasting at Low Reynolds Number

Ignoring any detailed fluid mechanics, we might imagine the
equation of motion of a bacterium that has just switched off its
flagellar motion to be ot the form:

4 d?x dx
—TRp—— = —6mnR—
3P Yy
Hence we deduce there is a characteristic time and distance
2 R2 2 RQ’UO
T~ —— = 09T ~ —
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For a bacterium in water, with vg ~ 1073 cm/s, R ~ 10~% cm,
and v ~ 0.01 cm?/s, 7 ~ 107" s and £ ~ 10710 cm!!



Typical forces and voltages

Let us estimate the typical force encountered by a swimming
bacterium. Suppose it is in a fluid of viscosity n (0.01 for water), has a
radius a on the order of a micron and swims at a speed v on the order
of 10 um/s. Using the Stokes drag law for a sphere the force on it is

F =6mnav ~ 2 x 10" %dyne ~ 2 x 107 °N = 0.2 pN

Forces on the cellular scale are on the order of pN. A very useful
way to think about this is to convert thermal energy into pN nm

kT =4 x 10" erg  [kp = 1.38 x 10 'Yerg/K]
kT =4 x 10721 =4 x 107N x 107?m = 4 pN - nm
With a very similar approach we can also estimate the typical voltages as

kT 4 x 10~ Herg
— ~ 25mV
e 5 x 10~ 1%esu H




Advection & Diffusion

If a fluid has a typical velocity U, varying on |
a length scale L, with a molecular species of tadvection = —
diffusion constant D. Then there are two times: U
We define the Péclet number as the ratio: |_2
{0 = —
diffusion
P . tdiffusion . UI— D
€= = This is like the Reynolds
tadvection D | number comparing UL
inertia to viscous dissipation: R = —

| 4

If U=10 um/s, L=10 um,

Re ~ 104, Pe ~ 101

At the scale of an individual cell,
diffusion dominates advection.

The opposite holds for
multicellularity...




Diffusion and the Stokes-Einstein Relation

If molecules have a diffusion constant D, concentration ¢, and are
advected with speed u, then the flux is:

In the low-Re regime we expect a force balance of the form
Cu = force = —d¢/dx, where ¢ is a suitable potential energy.

At equilibrium, we must have J =0, so 0 = —D% — %c%, or

| ¢~ exp(—¢/D() |

If equilibrium statistical mechanics holds then we must conclude that

— f5T
G

If we is the Stokes drag coefficient for a molecule of radius 2 A we obtain

DC=kgT or D

4 x 10~14
20-0.01-2 x 108

~10"°cm?/s



Diffusional Time Scales
From the diffusion equation

oc
~ - — DV?
5 Ve

we see by dimensional analysis the scaling

Dt ~ ¢? or twﬁ
D

On the scale of a bacterium (¢ ~ 10~* cm), t ~ 10~ 3s, but
on the scale of a plant (¢ ~ 10 cm), t ~ 107 s, or about 3-4 months!)

Something must take over as a transport mechanism beyond
Several hundred microns for life to function.

See J.B.S. Haldane, “On Being the Right Size”






Cytoplasmic Streaming (the Movie)

Goldstein, Tuval, van de Meent, PNAS 105, 3663 (2008)
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Ganguly, Williams, Palacios , Goldstein, PNAS 109, 15109 (2012)



MKS (SI-units) & CGS

 See pages 107-109 in “Van der Waals Forces” by Adrian
Parsegian for full overview of conversion

 One example: Coulomb forces

In S| units CGS units
Force = 2 N, ¢1, g2 in Force = @% dyn, 41, 92
45 eor? r
coulombs C, r in meters, in statcoulombs, r in centimeters

g0 = 8.85 x 10712 C2 N~ m™
or
(1/4mey) = 8.992 x 10° N m?/C?;

« Second example: Poisson equation

V- (EE) = )Ofree/g(h V- (SE)Z 471'19&&0-

« Other conversion please see text book by A. Parsegian



Microscopics
The ideal gas law,

P

V nR kB kBT

P

is only an approximation. At low densities we have the ”virial expansion”,

P
waT " + By(T)p* + Bs(T)p* + - --
2-body  3-body interactions
A Interaction Potential
B2 (T) “repulsive” A
U(r)
|\ Repulsion
> ' r oy
T B T “
\ | ' Overall
“Boyle point” Potential
uasi-ideal ,
battractive” (@ ) v Attraction



Van der Waals Interactions
@) @000
I > > T2 >

H = Ho + H1 = Spring Energy + Coulombic Energy

The Hamiltonian for the system is:

i 2 o | D3 1 2.2
7‘[0 = % —+ §mw0$1 —+ % —+ §mw0332
1 1 1 1 2e%x1 1y
7‘[=€2 — + — — ~ =05 L1}, |T <R
! R R—u1+zy R—u R—I—:EJ g Tl
To simplify the situation, a coordinate change is made:
r1 £ o Cry Ty — X

L1 —

A V2

2 2 2 2
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H%+§(Trawoﬁ):c++—+§ ?’n,quLﬁ T—
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The two terms in parenthesis are essentially adjusted frequencies:
2 ) 2 2 o 2¢°
Wi = wy — w- = wy +

mR3 B mR3



Van der Waals Interactions - continued

5 2¢° H2 e? 1 el 4
we = [ w ~ W _Z .
+ 0t R 0 mwoR3  2m2wi RS

The energy is then:

1 1 1
U(r) = Ehw_|_ + Qhw_ —2- §hw0
N —2564 - —lhwo (e? /mwd)?
2m2wi R 2 RS

We see that e?/mwj is a characteristic volume. To see the meaning of this,
consider an induced electric dipole:

d = oE

The units on d are @ - L, the units on E are Q/L?, so the units of o are L? (a
volume).



Van der Waals Interactions - continued

Now consider the Hamiltonian in the presence of an external electric field:

H = H() + BE()CL’l -+ 6E03§‘2

2
1 2el E
——mwg(:c%ﬁ_ eogfli(e ()2))+(1<—>2)

2 MW mwg

1
2 2
= —mwyz] + -

2
GEQ
212 =T12 + 5
mwg

This is nothing but a shifted pair of harmonic oscillators, and from the shift we
deduce the polarizability The dipole moment is then:

62

O =
2
mwyg

which is the same as seen previously. The energy of attraction in either case is
then:

1 hwoar®
U(T) = —5 7“6




How Does This Fit into the Thermodynamics?

Key idea [van der Waals, Weeks-Chandler-Anderson (WCA)]:
partition the intermolecular potential into purely repulsive + purely attractive,
use “known” results for former, perturbation theory for latter.

Using a mean-field (averaging) argument,
— avoid double-counting

o 1 : :
contribution to the U,err = —Np/d?’?“uattr(ff) taking the density

internal energy 2 to be uniform
1 3 alN?
Define a = 5 d°ruate (r)  then Uy = —alNp = — %
8[].a r
and  pattr = — (:ﬂ;t — _ap2

So, a better equation of state is p = pkgT — ap?

To incorporate excluded volume, subtract Nb from the available volume,
where b = 8 x particle volume,

(p +ap®)(V — Nb) = NkgT



Putting it All Together

Finally, we have

kT a
p:pB —ap* so P ~p+(b— P>+
1 —bp

and we conclude that

B2 (T) “repulsive”
In this model, the Boyle point is

> Ty = —

Tpg T bk B

™~

“Boyle point”
(quasi-ideal)

“attractive”



Applications of Dispersion Forces

@R@ / 7
~-Z j&i “L”%
C ~ hwa? A

Suppose the interaction between two molecules is

Vii(r) = ¢

76

Then, the attraction between a neutral atom and a sheet is calculated:

Vis(h) _/OO dz/% d@foo frdran(\/m)

— / dz/%dcb/ rdrp z2+r2)

= Zg?vp (atom-slab)




Applications of Dispersion Forces - continued

Between two slabs of area A such that Apdz atoms are in thickness dz:

Vss AH 1

o) = A 1 T
Vgs(r) /h pVis(z)dz = Y o 72

This defines the Hamaker constant Ay

Ap = 72 p1p2Cial~ T hw(ap)?

Typically, the Hamaker constant is ~5x102° J~ 5x10-13 erg,
About an order of magnitude larger than thermal energy

Ap ~ mhwy(ap)® ~10-eV - (0.1)* ~ 0.1eV
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