Announcement for Maths Students

Could all Part Ill lecturers during their lecture, remind Part Il
students that if they have not registered on the computer they
need to do so immediately in the Part Il room (BL.16).

Go to the following web address:

http://www.maths.cam.ac.uk/postgrad/casm/reqgistration/pt3.pl

username pt3reg
no password!

This includes all students who have been at Cambridge for
the past 3 years but excludes Astrophysics students. Having
their University card programmed at reception is not
registering as a Part Ill student. Any Part Il student not
registered will not be on the Part Ill emall distribution list or
exam list.


http://www.maths.cam.ac.uk/postgrad/casm/registration/pt3.pl

DLVO Theory

Interaction Potential Two charges in vacuum separated by a distance r
have an electrostatic energy

Ul(r) .
Electrostatics 2
E=ep(r)=—
o(r) =<
If we measure r in the molecule scale of A
the ratio of electrostatic to thermal energy is
van der Waal E (4.8 x 10_10):2 580
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However, the dielectric constant ¢ ~ 80, so even apart from screening the
energy is reduced to e?/er. Turning this around, we define the Bjerrum length
Ap as the point of balance:
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Screened Interactions

There are two basic ingredients in the calculation of screened
electrostatic interactions (in the so-called Poisson-Boltzmann theory).
1. The Poisson equation relating the electrostatic potential ¢

to the charge density p:
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2. The Boltzmann distribution, relating the ionic concentrations
cs of the species s of valence z, to the electrostatic potential

C, = Coe—zseqﬁ/kBT

Combining these into a single self-consistent equation (with = 1/kgT),
we obtain the Poisson-Boltzmann equation:
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Screened Interactions - continued

If we consider the specific case of a z : z electrolyte (1:1, NaCl, 2:2, CuSOy4
etc.), we can write this in a more compact form:

8mzecy

V¢ = sinh(Bzed)

In the weak field limit, when Se¢ < 1, we can linearize the PB equation (using
sinh(z) ~x+---):
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This suggests a characteristic length scale, the Debye-Huckel length Apgs:

ekpT ] 1/2 10 nm
Co [mM]

This finally shows that the Debye-Huckel limit is governed by the modified
Helmholtz equation
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Screened Interactions - continued

The most elementary situation to consider is the one-dimensional
problem of a surface held at fixed potential ¢y, bounded by a semi-infinite
electrolyte. The relevant solution of
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There is an induced charge density o on the surface which can be
computed in the usual way (Gaussian pillbox):

. 4o €
—n- vqﬁ‘surf — ? =100

%

B 47T)\DH

Once we have the potential everywhere and the charge on the surface we should
be able to find the (free) energy of the system. Observe that V¢ — )\Bi,qﬁ =0
is the Euler-Lagrange equation for the functional:
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Screened Interactions - continued

This was obtained with the general Euler-Lagrange formula
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where (---) is the integrand of the functional.

Now, here’s the crucial point. If we take the original free energy and integrate
by parts the term involving (V¢)?, we obtain a surface term and a new bulk
contributiion,
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where o is the surface charge. The bulk term vanishes by the DH equation (!).

For situations with fixed surface potential rather than fixed charge, the surface
free energy must be Legendre transformed:
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Interaction of Two Surfaces — Fixed Potentials

For fixed potential ¢y on each surface,
the solution of the DH equation is

bo bo b= g cosh(z/\)
/ Ocosh(d/Q)\)
I / The induced charge density is
- L e o
And finally the free energy per unit area is i
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And the interesting quantity is the difference between this and the energy at
infinite separation:
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Interaction of Two Surfaces — Fixed Charge

For fixed charges oy on each surface,
the solution of the DH equation is
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And the interaction energy per unit area is

A The potential at the surface is
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Screened Interactions - continued
A typical lipid has a cross sectional area of about 50 — 100 A2. If each head
group holds a single charge, and the Debye-Hiickel length Ap is about 1 nm,
then the typical energy is:
F 5028 Surface Tension of Wat (80[erg/cm”])
— ~ 50—= ~ Surf: nsion of Water rg/cm
A7 em? 5

So, these effects are comparable surface tension etc., and thus quite relevant.

An Aside on Quadratic Energy Functionals

Per unit length in the direction perpendicular to the plane the energy is
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where v is the surface tension.




Screened Interactions - continued

We are interested in the limiting case of small slopes to the surface, so we expand
the square root for |h(x)| < 1, and obtain the energy difference from the flat
state:
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Note that we use the shorthand notation h, = 0h(x)/0z.

Again we will find a characteristic length scale by balancing the two terms.
Here it is the capillary length [,

1 By N i
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which, for water/air, is about 3 mm (1/100/1,/1000).




Geometrical Aspects

Debye-screening length is in the range of nm, which means that we can exploit

the separation of length scales
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For highly charged molecules like DNA this is not the case as there bends can
happen on the scale of a few nm, which sets a limit to this analysis.



Geometrical Aspects

We will start by considering a curved, charged membrane. At each point
on the surface there are two principal radii of curvature, Ry and Rs. Using
these we construct two quadratic quantities, the mean curvature, defined as
H = (1/2)(1/Ry + 1/R5) and the Gaussian curvature K = 1/(R1R2). The
general energy functional for a membrane takes the form
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which was introduced by Helfrich and others for a non-stretching but bending
membrane. There are two elastic constants that describe the stiffness of the
membrane, and Hg is known as the spontancous curvature.

Each of these elastic constants has units of energy, and are typically some
multiple of k1. Hg arises from asymmetries between the two sides of the
membrane.



Various Approaches

1. Compare the energy of different simple geometries where the various cur-
vatures arc constant. For a plane we have Ry = Ro = oo. For a cylinder
we have one vanishing curvature, and for the sphere B; = Ry. Compar-
ing the results with the terms in the Helfrich energy in an expansion in
powers of Apy /R we can find the elastic constants and the spontaneous
curvature.

2. Construct a perturbation theory around a flat surface. This provides a
good context to understand “boundary perturbation theory”.

3. Multiple scattering method (very hard, not covered in this course)



Geometric Expansion

To simplify notation we use k = 1/\. Consider cylindrical geometry.
We wish to solve the modified Helmholtz equation

(V2= k%o =0

with
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Rearranging, we obtain
(7“28W + 70, — (1437“)2) ¢ =0

The solutions to this are Ky(xr) (outer problem), and Iy(kr)
inner problem, where these are modified Bessel functions.



Geometric Expansion - continued

Thus, the inner problem has a solution of the form (fixed charge)

_ Armo Iy(kr)
o) = ek I1(KR)

and the free energy will involve a ratio of the form
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Here, we use the asymptotic expansion of Bessel functions:
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where p = 402,
Thus, Io(kR)/I;(kR) has an expansion in inverse powers of xkR.
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