More on Fluctuations

If we generalize this calculation to d dimensions of space
and hence d — 1 dimensions of the surface we find
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More on Fluctuations

Now we consider a two-dimensional interface endowed with surface tension and
in a gravitational field, with a density difference Ap between the fluids on either
side. Once again we expand the surface deformation
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The quadratic energy functional is
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where [. is once again the capillary length. Again by equipartition we find
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This shows that the capillary length provides a cutoftf on what would otherwise
be divergent fluctuation amplitudes as ¢ — 0.



More on Fluctuations

Introducing both large-scale and small-scale cutofts, the average variance of
the displacement field is
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In the thermodynamic limit (L — oo), which is now possible at finite g,

It is clear, with kT ~ 107'* erg and o ~ 50 erg/cm? that even if I/l ~ 107
the fluctuations are still on the molecular scale.



On to Brownian Motion

Brownian motion can be investigated in modern laser trapping systems, first
invented in the 1970’s at Bell Labs The focus beam naturally converges on a
small diffraction limited region:
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Iso-Intensity Lines A

Radiation Pressure

Assuming that the trapping potential is quadratic in lateral displacements
x, the overdamped equation of motion of a microsphere in the trap is

(= —kx +n(t)

where 7)(t) is a random force. For pm sized spheres and moderate lasers, k ~ 10
fN/nm. For example, attaching spheres onto motor proteins allows the strength
of interaction to be determined.



Analyzing the Langevin Equation

The stall force of motor proteins is a few pN. The relaxation time scale 7 in
the well comes from the spring constant and drag coefficient:7 = (/k ~ 4 ms.

There are two levels at which we can “solve” the Langevin equation. For any
particular realization of the random noise &(t) we can write down x(t) directly.
But we are also interested in awverages over realizations of the noise, suitable
to compare with experimental observations. In the first case, it we rescale the
noise term the equation is
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We recognize an integrating factor:
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This allows a direct solution for any particular noise
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Langevin Equation - continued

Now we find averages over realizations of the noise.

(2(t) — zoe VT = /Ot dt' e~/ =0 .

Clearly, the average of the noise must vanish for an unbiased system, so we
conclude

(z(t)) = zoe 7 .

Now we consider the square of the deviation from simple relaxation:
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The crucial assumption of the Langevin approach is that the correlation inside
the integral is a sharply-peaked function of |t — t"|, decaying much faster than
any relevant timescale of the particle. Calling this function ¢(t" —t""), we make
the change of variables (J = 1/2)

s=t"+1t" q=1t"—1"



Langevin Equation — continued

The right hand side of the previous equation will then be
(extending limits to 400)
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where the final integral is just a number (I'). The average deviation squared is
then

In the long time limit (¢/7 — o0)
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Langevin Equation - continued

Logically, we assume that there is a 0 correlation for the noise:

 2kpT
:

A further test of the result is to examine the short-time behaviour of the variance
in the displacement. If we assume x¢y = 0 and t/7 < 1, then
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which is just a random walk in 1D ({z*) = 2Dt). Thus

(€(1)€()) ot —1')

 kpT
G

and the Stokes-Einstein relation is recovered. The fun calculation is to do this
in the presence of inertia (see examples sheet).
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Brownian Diffusion

The diffusion coeflicient is just the average of the movement rate per time at
long times

where r(t) =r(0) + /u(t’)dt’

The diffusion coefficient term above holds provided that the correlation of ve-
locities ((u(t’) - u(t”)) falls off fast enough. This yields

1

D = gf() dt(u(t) - u(0)) ~ u?r

We can apply this to the run-and-tumble locomotion of bacteria. For £. coli the
average velocity is about 20 um/s, and the bacteria executes 1s of movement
before randomly changing direction. This yields a diffusion coefficient of 4 x
10~ %cm? /s, which is approximately the diffusion coefficient of a small molecule
in water.



Run-and-Tumble Locomotion of E. coli




Brownian Motion and Polymer Statistics

Consider an arbitrary free polymer with each segment
labeled as r,,. Each segment is followed by another
random segment of equal length (|(,.| = b)

Ip+1 =Tp T Cn
The end-to-end displacement of the polymer is
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by symmetry. The average of the displacement squared is
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The similarity with the Langevin formalism is apparent.




Brownian Motion and Polymers - continued

Let us try to formulate the problem more generally. defining the probability
that a polymer will have segment positions at {ry} as

p— %G({rk}) G — o BURY)

Let us suppose that the energy is a sum of near-neighbor interactions plus a
contribution from some external potential,

U({ri}) = > Uj(rj_1,r;) + W({re})

g=1

When W = 0, this is just a random flight model. Either way, this is a local
model for the total energy, as it only relies on nearest neighbor interactions.
We then introduce

T; (RJ) = eXp[—ﬁUj (Rj)] where Rj =Tr; —rj

and we can take it to be normalized ([ dR,;7(R;) = 1).



Brownian Motion and Polymers - continued

We now define the fixed end-to-end-vector partition function as an integral over
all degrees of freedom for which the end position is R (start at origin):

G(R;N) = /d{Rk}G({Rk})cS(rN ~R) = /d{Rk} HT(Rj)a (Z R, — R)

We shall see that molecular-level details will be coarse-grained away...

As an example, consider 7 for a fixed-length segment:
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Now we use an integral representation of a delta function,
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Brownian Motion and Polymers - continued

The distribution function is then

G:/%e—ik'ﬁ U deT(Rj)eXp(ik-Rj)}N

The bracketed term is a characteristic function K (k; N), and in this particular
case 1s

K(k; N) = (Smk(f@ ) )

We expect N to be on the order of R? if dominated by diffusive behavior, and
thus quite large. In the limit of large N (small k)

k202 N
K(k;N) =~ (1 e +) ~ exp(—Nk*(*/6)

Inverse Fourier transforming,
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