Stationary Phase

I - Asymptotics

Let f(t) and ¢(t) be smooth functions, such that ¢’(c) = 0 at some point ¢ € (a,b), and
that ¢/(t) # 0 everywhere else in the closed interval. Moreover, assume that ¢”(c) # 0
and f(c) # 0. Thus, consider the behavior of the integral
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for |w| >> 1 when ¢"(c) > 0 (the case ¢"(c) < 0 is analogous). We can rewrite

I(w) = 90 / F(H)e160=6) gp

Note that the term e[~ ig highly oscillatory for t # ¢ and w >> 1. The fast
oscillations give rise to cancellations which in turn causes the integral to decay rapidly
except in a small neighborhood of ¢. Thus, approximating ¢(t) ~ ¢(c) + 3¢"(c)(t — c)?
about the stationary point c, yields
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With the change of variables s = [£¢"(c )} (t —¢) we find
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IT - Example
For a fixed integer n, the Bessel function of the first kind has the integral representation
1
Jn(2) = / cos [nmt — xsin(wt)] dt
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In this case we can set f(t) = ™™ and then, the phase is ¢(t) = — sin(nt). In the interval
[0, 1] the phase is stationary only at the interior point ¢ = 1/2, for which ¢(c) = —1,

and ¢"(c) = 7?. Thus,
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