Stationary Phase

I - Asymptotics

Let $f(t)$ and $\phi(t)$ be smooth functions, such that $\phi^{\prime}(c)=0$ at some point $c \in(a, b)$, and that $\phi^{\prime}(t) \neq 0$ everywhere else in the closed interval. Moreover, assume that $\phi^{\prime \prime}(c) \neq 0$ and $f(c) \neq 0$. Thus, consider the behavior of the integral

$$
I(\omega)=\int_{a}^{b} f(t) e^{i \omega \phi(t)} d t
$$

for $|\omega| \gg 1$ when $\phi^{\prime \prime}(c)>0$ (the case $\phi^{\prime \prime}(c)<0$ is analogous). We can rewrite

$$
I(\omega)=e^{i \omega \phi(c)} \int_{a}^{b} f(t) e^{i \omega[\phi(t)-\phi(c)]} d t .
$$

Note that the term $e^{i \omega[\phi(t)-\phi(c)]}$ is highly oscillatory for $t \neq c$ and $\omega \gg 1$. The fast oscillations give rise to cancellations which in turn causes the integral to decay rapidly except in a small neighborhood of c. Thus, approximating $\phi(t) \simeq \phi(c)+\frac{1}{2} \phi^{\prime \prime}(c)(t-c)^{2}$ about the stationary point c, yields

$$
\begin{aligned}
I(\omega) & \sim e^{i \omega \phi(c)} \int_{c-\epsilon}^{c+\epsilon} f(t) e^{i \omega[\phi(t)-\phi(c)]} d t \\
& \sim e^{i \omega \phi(c)} f(c) \int_{c-\epsilon}^{c+\epsilon} e^{i \frac{\omega}{2} \phi^{\prime \prime}(c)(t-c)^{2}} d t \\
& \sim e^{i \omega \phi(c)} f(c) \int_{-\infty}^{+\infty} e^{i \frac{\omega}{2} \phi^{\prime \prime}(c)(t-c)^{2}} d t .
\end{aligned}
$$

With the change of variables $s=\left[\frac{\omega}{2} \phi^{\prime \prime}(c)\right]^{1 / 2}(t-c)$ we find

$$
\begin{aligned}
I(\omega) & \sim e^{i \omega \phi(c)} f(c)\left(\frac{2}{\omega \phi^{\prime \prime}(c)}\right)^{1 / 2} \int_{-\infty}^{+\infty} e^{i s^{2}} d s \\
& \sim e^{i \omega \phi(c)} f(c)\left(\frac{2 \pi}{\omega \phi^{\prime \prime}(c)}\right)^{1 / 2} e^{i \pi / 4} \text { as }|\omega| \rightarrow \infty
\end{aligned}
$$

II - Example

For a fixed integer n, the Bessel function of the first kind has the integral representation

$$
\begin{aligned}
J_{n}(x) & =\int_{0}^{1} \cos [n \pi t-x \sin (\pi t)] d t \\
& =R e\left[\int_{0}^{1} e^{i n \pi t} e^{-i x \sin (\pi t)} d t\right] .
\end{aligned}
$$

In this case we can set $f(t)=e^{i n \pi t}$ and then, the phase is $\phi(t)=-\sin (\pi t)$. In the interval $[0,1]$ the phase is stationary only at the interior point $c=1 / 2$, for which $\phi(c)=-1$, and $\phi^{\prime \prime}(c)=\pi^{2}$. Thus,

$$
\begin{aligned}
J_{n}(x) & \sim \operatorname{Re}\left[e^{i n \pi / 2} e^{-i x}\left(\frac{2}{x \pi}\right)^{1 / 2} e^{i \pi / 4}\right] \\
& \sim\left(\frac{2}{x \pi}\right)^{1 / 2} \operatorname{Re}\left[e^{-i(x-n \pi / 2-\pi / 4)}\right] \\
& \sim\left(\frac{2}{x \pi}\right)^{1 / 2} \cos \left(x-\frac{n \pi}{2}-\frac{\pi}{4}\right) \text { as } x \rightarrow \infty
\end{aligned}
$$

