
Stokes phenomenon. Application to Airy function.

I - Stokes phenomenon

Suppose that g(z) is the asymptotic representation of f(z) as z → z0

f(z) ∼ g(z) as z → z0.

From this expression it is unclear which path in the complex plane we are specifying
as z → z0. When the function g(z) is entire this is not an issue because any path
would produce the same asymptotic behaviour. However, in many cases the asymptotic
approximations are not entire functions, even when the true function is, and this pro-
duces an ambiguity that needs to be addressed. A good example of such a case are the
solutions to the Airy equation.

For example, the asymptotic expressions for the solutions of the Airy equation are:
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which are multivalued functions with branch points. However, we know that Ai(z) is
an enitre function and its Taylor series converges for all finite values of |z|, and (*)
only holds in some region of the plane. In the case of the Bi(z), the fact that it grows
exponentially along the real axis indicates that a possible approach is to restrict z such
that

| arg(z2/3)| < π
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Thus the sector of validity for Bi(z) to have the behaviour in (*) is | arg(z)| < π/3.

In general if f(z) ∼ g(z) as z → z0, then f(z) − g(z) = o(g(z)) as z → z0, and thus
f(z) = g(z) + (f(z) − g(z)). When this condition is satisfied, it is said that when z
lies in a certain sector where g(z) is dominant and f(z) − g(z) is small, subdominant
or recessive. As the values of z approach the boundaries of the sector, f(z) − g(z) is
not small any more. In fact, outside the sector f − g becomes larger than g. This effect
is called the Stokes Phenomenon after Stokes(1857) who first observed it. The edges
of the sector, that is the place where the change of behaviour occur, are called Stokes
Lines.

As an application we now consider some of the second order ODEs we studied earlier,
where we found solutions of the form

y ∼ eS1(z) and y ∼ eS2(z) as z → z0.

To find the Stokes lines it is necessary to locate the curve where the two solutions
have comparable size. For our exponential solutions, these lines are determined by the
relationship:

Re(S1(z)− S2(z)) = 0.



The curves/lines where the solutions differ the most are called anti-Stokes lines,and are
determined (in most cases) by the relationship

Im(S1(z)− S2(z)) = 0.

EXAMPLE: consider the Airy functions. The Stokes lines are given by

Re(z2/3) = 0

Which corresponds to

arg(z) = ±π
3
, π as |z| → ∞.

The function Bi(z) has the behaviour (**) valid only in the sector | arg(z)| < π/3.
However for Ai(z) it can be shown from the integral representation that the behaviour
(*) as z →∞ holds for the much larger sector | arg(z)| < π.

II - Airy functions: Linear relations. Regions of validity of their
asymptotics.

Symmetry of the Airy equation: The change of variables t = ωz, where ω = e−2iπ3

is a cubic root of unity transforms the original Airy equation into:

d2y

dt2
− ty = 0

hence, y = Ai(ωz) is also a solution of Airy’s equation. Similarly Ai(z), Ai(ωz), Ai(ω2z),
and Bi(z) are all solutions of Airy’s equation. The Airy equation is only second order,
hence some of these solutions can be written as linear cominations of each other:

Ai(z) = CAi(ωz) +BAi(ω2z)

Using the Taylor series for Ai(z), and comparing the coefficents of the terms z0 and z1

it is possble to find B and C:

C +B =1, and Cω +Bω2 = 1.

C =− ω and B = −ω2.

Then, the expression for Ai(z) becomes

Ai(z) = −ωAi(ωz)− ω2Ai(ω2z),

and similarly
Bi(z) = iωAi(ωz)− iω2Ai(ω2z).

These relationships, together with
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can now be used to obtain asymptotic expansions for Ai(z), Bi(z) valid in other sectors
of the complex plane.

To be able to replace the asymptotic behaviour into the linear combination for Ai(z) it
is necessary to make them compatible by requiring that:

−π < arg(ωz) < π and − π < arg(ω2z) < π

Thus, for π/3 < arg(z) < 5π/3
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After replacing the value for ω we obtain, for the sector π/3 < arg(z) < 5π/3,
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Using the reflection symmetry of the solutions: Ai(z) = [Ai(z†)]† we find the other
possible asymptotic solution for the sector −5π/3 < arg(z) < −π/3:
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which is the solution that corresponds to the other cubic root of unity, that is ω = e2iπ3.


