VIIL. On the numerical Calculation of a Class of Definite Integrals and Infinite
Series. By G. G. StoxEs, M.A., Fellow of Pembroke College, and Lucasian
Professor of Mathematics in the University of Cambridge.

[Read March 11, 1850.]

IN a paper ¢ On the Intensity of Light in the neighbourhood of a Caustic*,” Mr. Airy the
Astronomer Royal has shown that the undulatory theory leads to an expression for the illumi-

-]
nation involving the square of the definite integral f cos%(w’—mw) dw, where m is pro-
o

portional to the perpendicular distance of the point considered from the caustic, and is reckoned
positive towards the illuminated side. Mr. Airy has also given a table of the numerical values
of the above integral extending from m = — 4 to m = + 4, at intervals of 0.2, which was cal-
culated by the method of quadratures. In a Supplement to the same paper-f- the table has
been re-calculated by means of a series according to ascending powers of m, and extended to
m = %56, The series is convergent for all values of m, however great, but when m is at all
large the calculation becomes exceedingly laborious. Thus, for the latter part of the table
Mr. Airy was obliged to employ 10-figure logarithms, and even these were not sufficient for
carrying the table further. Yet this table gives only the first two roots of the equation W= o,
IV denoting the definite integral, which answer to the theoretical places of the first two dark
bands in a system of spurious rainbows, whereas Professor Miller was able to observe 30 of
these bands. To attempt the computation of 30 roots of the equation W = 0 by means of the
ascending series would be quite out of the question, on account of the enormous length to
which the numerical caleulation would run,

After many trials I at last succeeded in putting Mr. Airy’s integral under a form from
which its numerical value can be calculated with extreme facility when m is large, whether
positive or negative, or even moderately large. Moreover the form of the expression points
out, without any numerical calculation, the law of the progress of the function when m is
large. It is very easy to deduce from this expression a formula which gives the i™ root of
the equation W =0 with hardly any numerical calculation, except what arises from merely

8
passing from (?-g) , the quantity given immediately, to m itself,

The ascending series in which 7 may be developed belongs to a class of series which are
of constant occurrence in physical questions. These series, like the expansions of &%, sine,
cos @, are convergent for all values of the variable @, however great, and are easily calculated
numerically when @ is small, but are extremely inconvenient for calculation when @ is large,

* Camb. Phil, Trans.Vol. v1. p. 3790, t Vol. viir p. 595,
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give no indication of the law of progress of the function, and do not even make known what
the function becomes when # = «. These series present themselves, sometimes as develope-
ments of definite integrals to which we are led in the first instance in the solution of physical
problems, sometimes as the integrals of linear differential equations which do not admit of
intcgration in finite terms. Now the method which I have employed in the case of t!;e
integral W appears to be of very general application to series of this class. I shall attempt
here to give some sort of idea of it, but it does not well admit of being described in general
terms, and it will be best understood from examples.

Suppose then that we have got a series of this class, and let the series be denoted by y or
f (@), the variable according to ascending powers of which it proceeds being denoted by .
It will generally be easy to eliminate the transcendental function f(2) between the equation
y =f(#) and its derivatives, and so form a linear differential equation in y, the coeflicients in
which involve powers of @. This step is of course unnecessary if the differential equation is
what presented itself in the first instance, the series being only an integral of it. Now by
taking the terms of this differential equation in pairs, much as in Lagrange’s method of ex-
panding implicit functions which is given by Lacroix*, we shall easily find what terms are of
most importance when @ is large: but this step will be best understood from examples. In
this way we shall be led to assume for the integral a circular or exponential function multiplied
by a series according to descending powers of @, in which the coefficients and indices are both
arbitrary. The differential equation will determine the indices, and likewise the coefficients in
terms of the first, which remains arbitrary. We shall thus have the complete integral of the
differential equation, expressed in a form which admits of ready computation when @ is large,
but containing a certain number of arbitrary constants, according to the order of the equation,
which have yet to be determined.

For this purpose it appears to be generally requisite to put the infinite series under the
form of a definite integral, if the series be not itself the developement of such an integral which
presented itself in the first instance. We must now endeavour to determine by means of this
integral the leading term in f(2) for indefinitely large values of @, a process which will be
rendered more easy by our previous knowledge of the form of the term in question, which is
given by the integral of the differential equation. The arbitrary constants will then be deter-
mined by comparing the integral just mentioned with the leading term in f ().

There are two steps of the process in which the mode of proceeding must depend on the
particular example to which the method is applied. These are, first, the expression of the
ascending series by means of a definite integral, and secondly, the determination thereby of
the leading term in f(a) for indefinitely large values of #. Should either of these steps be
found impracticable, the method does not on that account fall to the ground. The arbitrary
constants may still be determined, though with more trouble and far less elegance, by calcu-
lating the numerical value of f (#) for one or more values of @, according to the number of
arbitrary constants to be determined, from the ascending and descending series separately, and
equating the results,

* Traité du Caleul, &e. Tom. 1, p. 104,
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In this paper I have given three examples of the method just described.

PROFESSOR STOKES, ON THE NUMERICAL CALCULATION OF A

The first relates

to the integral W, the second to an infinite series which occurs in a great many physical inves-
tigations, the third to the integral which occurs in the case of diffraction with a circular

aperture in front of a lens.

The first example is a good deal the most difficult.

Should the

reader wish to see an application of the method without involving himself in the difficulties of
the first example, he is requested to turn to the sccond and third examples.

FIRST EXAMPLE.

1. Let it be required to calculate the integral

@ m™
ano. cosé—(wa-mw)dw TR (1)

for different values of m, especially for large values, whether positive or negative, and in par-
ticular to calculate the roots of the equation W =0,

2. Consider the integral

-]

“"f ¢~ (c0s30+V=15in30)(#%-n2) g

0

. ©®

where 0 is supposed to lie between -—% and +%, in order that the integral may be con-

vergent.
Putting

@ =(cos @ —/ - 15in ) %,

we get dz = (cosf -/ — 1 sin @) dz, and the limits of & are 0 and « ; whence, writing for

shortness -
P.:-(coseﬂ-f-\/—lsinﬁﬂ)n, - R |
we get
-]
w=(cos0—\/=1sin@) [ -pdda¥. . . . . (4)
0
3. Let now 0, which hitherto has been supposed less than %, become equal to % The

integral obtained from (2) by putting 6 = 1—;— under the integral sign may readily be proved to

* The legitimacy of this transformation rests on the theo- | In the present case the limits of 2 are 0 and real infinity, and

rem that if f(x) be a continuous function of x, which does not
become infinite for any real or imaginary, but finite, value of z,
we shall obtain the same result for the integral of f(z)dz be-
tween two given real or imaginary limits through whatever
series of real or imaginary values we make z pass from the
inferior to the superior limit. 1t is unnecessary here to enun-
ciate the theorem which applies to the case in which f () be-
comes infinite for one or more real or imaginary values of .

accordingly we may first integrate with respect to # from 0 to a
large real quantity &, , 8° (which is supposed to be written for &
in the expression for 2) being constant, then leave = equal to 2,,
make 0’ vary, and integrate from 0 to 0, and lastly make 2, infi-
nite. But it may be proved without difficulty, (and the proof
may be put in a formal shape as in Art. 8,) that the second inte.
gral vanishes when 2z, becomes infinite, and consequently we
have only to integrate with respect to # from 0 to real infinity.
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be convergent. But this is not sufficient in order that we may be at liberty to assert the
equality of the results obtained from (2), (4) by putting 6 =EG before integration. It is more-
over necessary that the convergency of the integral (2) should not become infinitely slow when 6
approaches indefinitely to %, in other words, that if X" be the superior limit to which we must

integrate in order to render the remainder, or rather its modulus, less than a given quantity
which may be as small as we please, X should not become infinite when 6 becomes equal to

g-*. This may be readily proved in the present case, since the integral (2) is even more con-

vergent than the integral
o«
f —VTsin30(-na) g,
0
which may be readily proved to be convergent.
o

Putting then 6 = G

in (2) and (4), we get

-]

u=f cos(.'f:“—mz-)dm—\/Tifmsin(ms-nw)dw,. - (8)
0 0

u=(cos%-\/—lsin%-) fme‘(‘a‘”)dz, o @ oa (D)

1]
where

p=(oos%+«/-_lsin%)n. o w o owy e ICT)
Let

‘E.&l:U-—‘\/ '_‘I.U'g

and in the expression for U got from (5) put

w=(g)§w, n=(z)§m; T

then we get

W=(’§’)_*U.. N )|

4. By the transformation of % from the form (5) to the form (6), we are enabled to differ-
entiate it as often as we please with respect to 2 by merely differentiating under the intcgr{.tl
sign. By expanding the exponential ¢P* in (6) we should obtain u, and therefore U, in a
series according to ascending powers of n. This series is already given in Mr. Airy’s Supple-
ment. It is always convergent, but is not convenient for numerical calculation when n is

large.

* See Section 111. 0f & paper, “On the Critical Values of the sums of Periodic Series.” Camb. Phil. Trans. Vol. viIL p. 561.
Vor. IX, Part I 22
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We get from (6)
du  pu T o e 2 —(8‘-'1”)( ;_3) 1 T .
= (cosﬁ-q/—-lsmt—,j):/o‘ € = Sdm’ 3((:.0:56--‘\/---lsmg),

which becomes by (7)

fu n
—+—u=dyv -1 . . . . ..
R | 1 (10)
Equating to zero the real part of the first member of this equation, we get
U n
W+§U=O‘ o e e RERGE(ET)

5. We might integrate this equation by series according to ascending powers of #, and we
should thus get, after determining the arbitrary constants, the series which have been already
mentioned. What is required at present is, to obtain for U an expression which shall be con-
venient when 7 is'large.

The form of the differential equation (11) already indicates the general form of U for large
values of n. TFor, suppose n large and positive, and let it receive a small increment dn. Then

- % . " . - F
the proportionate increment of the coeflicient = will be very small; and if we regard this coeffi-

cient as constant, and dn as variable, we shall get for the integral of (11)

U= NLOS{/\/() on} +Nsm{\/() ént, . . (®)

where N, N’ are regarded as constants, dn being small, which does not prevent them from
being in the true integral of (11) slowly varying functions of n. The approximate integral
(12) points out the existence of circular functions such as cosf (1), sinf(n) in the true

. . n y n’
integral ; and since *\/(-5) . dn must be the small increment of f (n), we get f (n) = -ﬁ-'\/; )
omitting the constant, which it is unnecessary to add. When # is negative, and equal to = n,
the same reasoning would point to the existence of exponentials with =% /\/ — in the index.

Of course the exponential with a positive index will not appear in the partlcular integral of
(11) with which we are concerned, but both exponentials would occur in the complete integral.
Whether 7 be positive or negative, we may, if we please, employ exponentials, which will be
real or imaginary as the case may be.

6. Assume then to satisfy (11)

2‘\/F
U= §An® + Bnf + Cn¥ +...}% . . . (19

® The idea of multiplying the circular functions by a series according to descending powers of n was suggested to me by
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where 4, B, C... a, 3, <y... are constants which have to be determined. Differentiating, and
substituting in (11), we get

ala=1)An*=24+ B(B - 1) Bnf-2+ ...
\/_
24/3

As we want a series according to descending powers of n, we must put

f(da+1)dn“~t+ 4B +1)Bnf-14 ..} =0,

4a+1=0, B=a-3 y=p-3..

B=2+/- a(“- )A C=2+4 -3 B(B_I)B......

dey + 1
whence
3\/"“ af =1 1.5.7.11 =1 \*
Ui dnse> {I_T 64/Gn) | 1.2 (16\/(31@‘))
1.5.7.11.13.17 ( \/_ln)3+...}. . a8
1.2.3 16 4/ (37°)

By changing the sign of v/ =1 both in the index of e and in the series, writing B for 4, and
adding together the results, we shall obtain the complete integral of (11) with its two arbitrary
constants. 'The integral will have different forms according as n is positive or negative.

First, suppose n positive. Putting the function of n of which 4 is the coefficient at the

second side of (14) under the form P + v =1Q, and observing that an expression of the
form

AP/ =1Q)+ B(P=~/=10),

where 4 and B are imaginary arbitrary constants, and which is supposed to be real, is equiva-
lent to AP + BQ, where 4 and B are real arbitrary constants, we get

2 2 2
U=Adn—1t (Rcos;\/{;--{-Ssin%l\/s) +Bn’*(Rsm—¢\/—- —Scos— »\/ ) . (15)

where
1 o5 fiedd 1.5.7.11,1%8.17.19:28
R=1- = + —— e o
1.2.16%3n8 1.2.8.4.16.3°n (Iﬁ)
1.5 15671151817 S
ol = F oeeeaen
1.16 (37%)} ~ 1.2.8.163(37%)}
seeing in Moigno's Repertoire d'optique moderne, p. 189, the | where
following formule which M. Cauchy has given for the calcula- 1 1.8 1:8.6.7 o] 1.3.5
tion of Fresnel’s integrals for large, or moderately large, values M- il e g ek N= po e R e S
of b sup-zrlor dimits 1 The demonstration of these formula will be found in the
f cos = s?dx == — N cos = m® 4 M sin = 2 ; 15th Volume of the Comptes Rendus, pp. 554 and 573. They
0 2 2 2 2 2 ¢ . " X .
. 1 may be readily obtained by putting o 2=2x, and integrating
f sin ;; 5’d3=§-MCﬂSq—; me Nsmq—; mes by patts between the limits } xm? and e of 2.

222
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Secondly, suppose 7 negative, and equal to — n'. 'Then, writing — 2’ for n in (14),
and changing the arbitrary constant, and the sign of the radical, we get '

2, /n"?
By e . HuT
U=Cn'~te V5 {1 s Sl } (17)

1.6t T1.2.16.8m0 "

It is needless to write down the part of the complete integral of (11) which involves an
exponential with a positive index, because, as has been already remarked, it does not appear in
the particular integral with which we are concerned.

7. When n or 2 is at all large, the series (16) or (17) are at. first rapidly convergent,
but they are ultimately in all cases hypergeometrically divergent. Notwithstanding this
divergence, we may employ the series in numerical calculation, provided we do not take in
the divergent terms. The employment of the series may be justified by the following con-
siderations.

Suppose that we stop after taking a finite number of terms of the series (16) or (17), the
terms about where we stop being so small that we may regard them as insensible ; and let U,
be the result so obtained. From the mode in which the constants 4, B, C,... a, 3, «y... in
(18) were determined, it is evident that if we form the expression

&U, n ¢U,.n

+=U,, or — - — 1
dn® 8 U du® 8

according as =, is positive or negative, the terms will destroy each other, except one or two at
the end, which remain undestroyed. These terms will be of the same order of magnitude as
the terms at the part of the series (16) or (17) where we stopped, and therefore will be
insensible for the value of n or »' for which we are calculating the series numerically, and,
much more, for all superior values. Suppose the arbitrary constants 4, B in (16) determined
by means of the ultimate form of U for #n =« , and Cin (17) by means of the ultimate forn
of U for n'=w . Then U, satisfies exactly a differential equation which differs from (11) by
having the zero at the second side replaced by a quantity which is insensible for the value of
n or n' with which we are at work, and which is still smaller for values comprised between that
and the particular value, (namely « ,) by means of which the arbitrary constants were deter-
mined so as to make U, and U agree. Hence U, will be a near approximation to U, But if
we went too far in the series (16) or (17), so as, after having gone through the insensible
terms, to take in some terms which were not insensible, the differential equation which U,
would satisfy exactly would differ sensibly from (11), and the value of U, obtained would be
faulty.

8. It remains to determine the arbitrary constants 4, B, C. For this purpose consider
the integral

Qu o euadtagy, UL L )

o

where ¢ is any imaginary quantity whose amplitude does not lie beyond the limits —% and
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+ %. Since the quantity under the integral sign is finite and continuous for all finite values

of @, we may, without affecting the result, make @ pass from its initial value 0 to its final value
» through a series of imaginary values. Let then # = ¢ +y, and we get

Q = eaqa‘/_.: e—ya—mw’dy,

where the values through which y passes in the integration are not restricted to be such as to
render @ real. Putting y = (3qr)'5 t, where that value of the radical is supposed to be taken
which has the smallest amplitude, we get

Q=(3q)—&eﬂq”fe-(sq)"P-“’dt.. coe . (19)

The limits of ¢ are — 33¢} and an imaginary quantity with an infinite modulus and an ampli-
tude equal to %a, where a denotes the amplitude of ¢g. But we may if we please integrate up
to a real quantity p, and then, putting tr-pee"?’, and leaving p constant, integrate with
respect to 6 from 0 to La, and lastly put p=co. The first part of the integral will be
evidently convergent at the limit o« , since the amplitude of the coefficient of # in the index

does not lie beyond the limits —-g and +g; and calling the two parts of the integral with
respect to £in (19) T, 7', we get
T = SRR o 6 = ko e owmox w omom o » (20
-/_.::fqie ( )
i
ois e —(30)-10% 30 V=1 = 2 20 M=1 4 0/
T‘=11m1t(p:w)lo\/— lf; e (39)tp P L de. . (21)
We shall evidently obtain a superior limit to either the real or the imaginary part of 77 by
reducing the expression under the integral sign to its modulus. The modulus is ¢ ® where
0 = (3¢) o cos (36 — Za) + p* cos 26,
¢ being the modulus of g. The first term in this expression is never negative, being only

: : A : T :
reduced to zero in the particular case in which 8 =0 and a = % < The second term is never

™ . e
less than p? cos 30 %p% and is in general greater. Hence both the real and the imaginary

parts of the expression of which 77 is the limit are numerically less that J—éape'h’, which
vanishes when p = » , and therefore 7", = 0. Hence we have rigorously

Q=@ptefT . . . . . . (22
Let us now seck the limit to which 7' tends when ¢ becomes infinite. For this purpose
divide the integral 7" into three parts 7', T., 7% where 7' is the integral taken from — 33¢# to

a real negative quantity — @, 7', from — a to a real positive quantity + &, and 7% from b to « ;

and suppose ¢ first to become infinite, @ and b remaining constant, and lastly make @ and b
infinite.
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Changing the sign of # in 7', and the order of the limits, we get
atet
T = agyte’-2qy
o

Putt = pe®¥=i. Then we may integrate first from p =a to p = sict while 0 remains equal to 0,
and afterwards from 6 = 0 to 6 = §  while p remains equal to 8ick. Let the two partsof the
integral be denoted by 77, 7”. We shall evidently obtain a superior limit to 7" by making the
following changes in the integral: first, replacing the quantity under the integral sign by its
modulus ; secondly, replacing # in the index by the product of # and the greatest value (namely
8iet) which ¢ receives in the integration; thirdly, replacing a by the smallest quantity
(namely 0) to which it can be equal, and, fourthly, extending the superior limit to . Hence

the real and imaginary parts of 7" are both numerically less than f °I=:ta""g"dlt, a quantity which

vanishes in the limit, when ¢ becomes infinite.
We shall obtain a superior limit to the real or imaginary part of 7" by reducing the quan-

tity under the integral sign to its modulus, and omitting 4/ —1 in the coefficient. Hence L
will be such a limit if

da
L= Sicij e f(0)dg, where f(0) =3 cos 20— cos (36 — 3 a).
0
We may evidently suppose a to be positive, if not equal to zero, since the case in which it is
negative may be reduced to the case in which it is positive by changing the signs of a and 6.
When 0 = %, the first term in f(6) is equal to §, which, being greater than 1, determines the
sign of the whole, and therefore £(6) is positive; and f(6) is evidently positive from 6 =0 to

0= 1—; , since for such values cos20>4. Also in general f'(6) =— 6 sin 20 + 3 sin (30 — 3 a),
which is evidently positive from 6 = % to 6 = E, and the latter is the largest value we need
consider, being the extreme value of # when a has its extreme \raluelﬁr-. When 6 has its ex-

' s 3 s s s K . T
treme value §a, f(6) =2 cos 8a, which is positive when a <5 and vanishes when a = =

Hence f(6) is positive when < $a; for it has been shewn to be positive when 6 < -g » which

m

6 weag-a,

meets the case in which a < % or = 7—;, and to be constantly decreasing from 6 =
which meets the case in which 6 >§. Hence when a < %r the limit of L for ¢ = o is zero,

inasmuch as the coefficient of ¢* in the index of e is negative and finite ; and when o = -G—the

same is true, for the same reason, if it be not for a range of integration lying as near as we
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please to the superior limit. In this case put for shortness f(6) = J, regard $a — 6 as a func-
tion of 8, F'(3), and integrate from é =0 to J =3, where (3 is a constant which may be as
small as we please. By what precedes, #'(5) will be finite in the integration, and may be
made as nearly as we please equal to the constant #7(0) by diminishing 3. Hence the integral

ultimately becomes SQF(O)clLﬁe""ad& which vanishes when ¢ becomes infinite. Hence the

limit of T is zero.
We have evidently

=]
T efdt
<,
which vanishes when b becomes infinite. Hence the limit of 7" is equal to that of 7%,. Now
making ¢ first infinite and afterwards a and b, we get

b +o0
limit of 77, = limit of f a“"dt==f e Cdt = o/,

-2

and therefore we have ultimately, for very large values of ¢,

3
Q=(_"f.)s=?’. N )]
3q

In order to apply this expression to the integral « given by (6) we must put

n e T WL 2 S U
3¢ =ne3"~, whence ¢ (3) €6 ', € IB (Sq) = (3’;)*6 T ) (3) -\/ I,

whence we get ultimately
= _——— - Pl
U G € s Gn)t cos {2 ( ) } . (29
Comparing with (15) we get

ard
A=B-2—E§. R - - S (24)

9. We cannot make 7 pass from positive to negative through a series of real values, so
long as we employ the series according to descending powers, because these series become illu-
sory when # is small. When » is imaginary we cannot speak of the integrals which appear
at the right hand side of (5), because the exponential with a positive index which would appear
under the integral signs would render each of these integrals divergent. If however we take
equation (6) as the definition of %, and suppose U always derived from u by changing the sign of
v/ =1 in the coefficient of the integral and in the value of p, but not in the expression for 7,
and taking half the sum of the results, we may regard % and U as certain functions of »

whether 7 be real or imaginary. According to this definition, the series involving ascending

® This result might also have been obtained from the in- | to x=ux, +6, and from # =, + 6 to & = o ; then make » infinite
e .y @ while @ and 6 remain finite, and lastly, let @ and 6 vanish. In
tegral U in its original shape, namely, ./.: cos (£~ nz)dr, this manner the second of equations (23) will be obtained, by
by a method similar to that employed in Art. 21. If z, be the | the assistance of the known formula
positive value of & which renders 2* ~ nz a minimum, we have ® S dre 1 sinatdr=2Fat
#,=3-#nd, Let the integral U be divided into three parts, by i garersifi diatinais
integrating separately from x=0to 2 =a, - @, from r=a,—a

-0
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integral powers of #, which is convergent for all values of 7, real or imaginary, however great
be the modulus, will continue to represent % when n is imaginary. The differential equation
(11), and consequently the descending series derived from it, will also hold good when = is
imaginary ; but since this series contains radicals, while U is itself a rational function of n, we
might expect beforehand that in passing from one imaginary value of 2 to another it should
sometimes be necessary to change the sign of a radical, or make some equivalent change in the

. = s 8
coefficients 4, B. Let n =n,e”V~1, where n, is positive. Since both values of 2 (g) are

‘employed in the series, with different arbitrary constants, we may without loss of generality
suppose that value of n# which has v for its amplitude to be employed in the circular func-
tions or exponentials, as well as in the expression for §. In the multiplier we may always

take — Efor the amplitude of n~! by including in the constant coefficients the factor by

which one fourth root of n differs from another ; but then we must expect to find the arbitrary
constants discontinuous. In fact, if we observe the forms of R and S, and suppose the
circular functions in (15) expanded in ascending series, it is evident that the expression for U
will be of the form
An-IN 4+ BaiN, . . . . . . . . (2)

where N and N’ are rational functions of n. At least, this will be the case if we regard as
a rational function ‘a series involving descending integral powers of =z, and which is at first
rapidly convergent, though ultimately divergent, or rather, if we regard as such the function
to which the convergent part of the series is a very close approximation when the modulus of n
is at all large. Now, if 4 and B retained the same values throughout, the above expression
would not recur till y was increased by 87, whereas U recurs when y is increased by 2.
If we write » + 27 for v, and observe that N and N’ recur, the expression (25) will become

~V =14n7iN + /- 1BaiN';

and since U recurs it appears that 4, B become \/—-—l A, - AT B, respectively, when p is
increased by 27r. Also the imaginary part of the expression (25) changes sign with v, as it
ought ; so that, in order to know what 4 and B are generally, it would be sufficient to
know what they are from y = 0 to v = 7.

If we put n,e™" ~! for 7 in the second member of equation (15), and write 3 for 2.3-in,},
and R, §; for what R, S become when n, is put for » in the second members of equations
(16) and all the terms are taken positively, we shall get as our result

1 {(d = /=1 B) (R, + 8)) & + (4 + /=1 B) (B, — S) B},
Now the part of this expression which contains (R, + S))e? ought to disappear, as appéars
from (17). If we omit the first part of the expression, and in the second part put for 4 and
B their values given by (24), we shall obtain an expression which will be identical w1th the
second member of (17) provided

. ., . . SN e
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"This mode of determining the constant C'is anything but satisfactory. I have endeavoured in
vain to deduce the leading term in U for n negative from the integral itself, whether in the
original form in which it appears in (5), or in the altered form in which it is obtained from
(6). The correctness of the above value of C' will however be verified further on,

10. Expressing n, U in terms of m, W by means of (8) and (9), putting for shortness

e=2(5)-=(3" - - @

where the numerical values of m and n are supposed to be taken when these quantities are
negative, observing that 16 1/ (87°) = 72¢, and reducing, we get when m is positive

W-24(3m)-§{Rcos (¢—E)+Ssin(¢--§)}, S )]

where

_y_L:5.7.11 1.5.7.11.18.17.19.23 l
1.2(712¢9) 1.2.8.4(12¢)" .
1.5 1.5,7:11.18,17
= 1.72¢ 1.2.3(12¢)° J

(29)

When m is negative, so that W is the integral expressed by writing — m for m in (1), we get

1.5 5.7.10
W:-g-‘é(Sm)-*e“P{l - o) }

1.72¢+1.2(72¢)2_" . . (80)

11. Reducing the coefficients of ¢~', ¢*... in the series (29) for numerical calculation,
we have, not regarding the signs,
order i i iii iv v vi
logarithm 2. 841688 ; 2.569766; 2.579704; 2.760793; 1.064820; 71 .464775
coefficient . 0694444 ; . 03713835; .0379930; .0576490; .116099; .291592.
Thus, for m = 3, in which case ¢ = 7, we get for the successive terms after the first, which
1511,
. 022105, . 0038762, .001225, .000592, .000379, . 000303.
We thus get for the value of the series in (30), by taking half the last term but one and a
quarter of its first difference, . 9808163 whence for m = 3, W = 6% x , 980816 ¢~™ = . 0173038,
of which the last figure cannot be trusted. Now the number given by Mr. Airy to 5 decimal
places, and calculated from the ascending series and by quadratures separately, is . 01730, so
that the correctness of the value of C given by (26) is verified.
For m = + 3 we have from (28)

W=-33(R~-S8)=— 34(.9965 —.0213) = — .5632,

which agrees with Mr. Airy’s result —.56322 or — .56323. As m increases, the convergency of
the series (29) or (80) increases rapidly.
Vor. IX. Parr L. 23
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12, The expression (28) will be rendered more easy of numerical calculation by assuming
R = M cos s, § = M sin s, and expanding M and tany in series to a few terms. These
series will evidently proceed, the first according to even, and the second according to odd
inverse powers of ¢. Putting the several terms, taken positively, under the form 1, a¢p~',
ab~*, abegp™, abedp~* &c., and proceeding to three terms in each series, we get

M=1—-a(b—g)qb"+a{bc(d—a)+a—;(b—E)}qg—a, < .« (8

tan y =ap~' —ab(c-a)p™ +abjed(e—a)-ab(c-a)}p~® . . (32
The roots of the equation W =0 are required for the physical problem to which the
integral W relates. Now equations (28), (29) shew that when m is at all large the roots of

this equation are given very nearly by the formula ¢ = (i — 1) w, where i is an integer.
From the definition of v it follows that the root satisfies exactly the equation

¢=(i-—%)1r+\p. s oo e (58]

By means of this equation we may expand ¢ in a series according to descending powers of
®, where ® = (i — 1) w. For this purpose it will be convenient first to expand v in a series
according to descending powers of ¢p, by means of the expansion of tan~'x and the equation
(32), and having substituted the result in (83) to expand by Lagrange’s theorem. The result
of the expansion carried as far as to ®=° is

p=0+ad '~ {ab(c-a) +La’+a’} D
+{abled(e—a) —ab(c-a)] +a’b(c—a) + L@’ +4alab(c—a) + L a’] +2a2°} B° ... (34)

13. To facilitate the numerieal caleulation of the coefficients let

= = C =

5 b= ’
1.D 2.D
2 4,
1.20°° 1.2.8.4D%
and similarly with respect to (32), (34). Then to calculate W for a given value of m, we have

and let the coefficients of ¢~%, ¢~* in (31) be put under the forms —

W-_-Qi(sm)"*Mcos(tp—-g—q;), C . (3D
where
.. A, -
M=t-Top et © - R

A C| -1 Cs = C.S -B
ta"‘!'_l.qu _1.2.31)3¢ e e (1)

and for calculating the roots of the equation W =0, we have

W = E,
¢_¢+1.Dd’ -

B
-3 5 _(_b "
1.2.3.0’(lJ +1.2.3.4.5D"b "k (38)
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The coefficients in these formula are given by the equations
dy=a' (¥ -d); A,=d {¥'cd-4d)+ 34202 -a)};
Ci=d'; Cy=a't/ (¢ -38d); Co=dat' {dd (¢~ 5d)-10Cy};
E =d; Ej=C;+2d” (3D +d);
E,= C, +20d (4D + a') C; + 24a” + 80a” D (3D + 24).

(39)

14. Pautting in these formulae
ad=1.5; bV=7.11; ¢=18.17; d'=19.23; € =25.29; De=72;

we get
A,y =5.72; A, =8.5.72*.457; Ci=5;3; (3=2.5.7.11.108;

Cy=4%.57".11,288061; E,=5; Ey3=72.1255; E, =4,5 72°.10883;

whence we obtain, on substituting in (36), (37), (38),

5 2985
M=1-—"—o¢*4+ i
144 41472¢ X
ol 5, 89655 . 821526075  _,
79 1119744 2002376448 T
&= 5 ., 1255 &g 272075 b
72 31104 2230488

Reducing to decimals, having previously divided the last equation by m, and .put for & its

value (i = 1) m, we get

M=1-.034722¢~% +.055097 ¢4, . . . . . (40)

tan = .069444 qf‘ — 085414 ™ +.110781 9%, . . (41)
=5y .028145  .0206510 .120402 i
el 4i =1 (45—1)”(45-1)“' (32)

15. Supposing i=1 in (42), we get

2 = .75 + .0094 — .0010 + 0005 = .7589 ;
T

whence m = 38 ($)§= 2.496. The descending series obtained in this paper fail for small values
of m; butit appears from Mr. Airy’s table that for such values the function W is positive,
the first change of sign occurring between m = 2.4 and m =2.6. Hence the integer i in (42)
is that which marks the order of the root. A more exact value of the first root, obtained
by interpolation from Mr. Airy’s table, is 2.4955. For i =1 the series (42) is not convergent
enough to give the root to more than three places of decimals, but the succeeding roots are
given by this series with great accuracy. Thus, even in the case of the second root the value
of the last term in (42) is only .000007698. It appears then that this term might have been
left out altogether.
232
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. : . i : aw -
16. To determine when W is a maximum or minimum we must put T We might
m
W o - e ; .
get o by direct differentiation, but the law of the series will be more easily obtained from the
m

differential equation. Resuming equation (11), and putting V for ZU
n

, we get by dividing by

n and then differentiating
&V 1dV n
dn “mdn 5" =°
This equation may be integrated by descending series just as before, and the arbitrary
constants will be determined at once by comparing the result with the derivative of the second
member of (15), in which 4, B are given by (24). As the process cannot fail to be understood

from what precedes, it will be sufficient to give the result, which is

V=3'§qr§ni{R'cos(¢+E)+S’3in (¢+§)}, N D)
where
Ry L:7:5.18 -1.7.518.11.19.17.95
1.2 (72¢)* 1.2.8.4(72¢) 7 15)
-1.7 =1.7.5.18.11.19
T1.72¢ 0 1.2.8(729)

17. The expression within brackets in (43) may be reduced to the form A cos (q)-{-%—\]/)

just as before, and the formula of Art. 18 will apply to this case if we put
d=-1.7: ¥=5.18; ¢'=11.19; &ec., D="12.

dw z :
The roots of the equation S-—=0are evidently the same as those of V'=0. They are given

approximately by the formula ¢ = (i — §) =, and satisfy exactly the equation ¢ = (i—3)x+ -
The root corresponding to any integer i may be expanded in a series according to the inverse
odd powers of 4i— 3 by the formule of Art. 13. Putting (i — )= for ®, and taking the
series to three terms only, we get

E =-7; E;,=-84168;

whence
7, 160
Pt o ?
or, reducing as before,
’ .02
P iy N 005 (45)
™ 4i—-8  (4i-3)°

This series will give only a rough approximation to the first root, but will answer very well
for the others. :

For i =1 the series gives 7~'¢p = .25 — .030 + .025, which becomes on taking half the
second term and a quarter of its first difference .25 — .019 — .004 = .227, whence m = 1.12.
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The value of the first root got by interpolation from Mr. Airy’s table is 1.0845. For the 2nd
and 3rd roots we get from (45)

for i =2, w~'¢p = 1.25 - .00788 + .00020 = 1.24232 ;
for i = 3, #7'¢p = 2.25 ~ .00438 + .00003 = 2.24565.

For highcr values of i the last term in (45) may be left out altogether.

18. The following table contains the first 50 roots of the equation W = 0, and the first 10
roots of the derived equation. The first root in each case was obtained by interpolation from
Mr. Airy’s table; the series (42) and (45) were sufficiently convergent for the other roots. In
calculating the 2nd root of the derived equation, a rough value of the first term left out in (45)
was calculated, and its half taken since the next term would be of opposite sign. The result
was only — .000025, so that the series (45) may be used even when i is as small as o. By far

i m diff. i m diff.
1| 2.4955 1.8676 26 | 26.1602 6730
2| 4.3631 eig) 27 | 26.8332 6647
B 58082 1.3514 28 | 27.4979 ‘6567
4| 7.2436 1'2352 29 | 28,1546 '6491
5| 8.4788 30 |28.8037
& 'wieson 1.1512 o - 6419
) 1.0861 29 6349
7 | 10.7161 32 | 30.0805
1.0335 .6284
8| 11.7496 e 33 | 30.7089 6219
9|12.7395 '9529 34 | 31.3308 '6159
- ar .
| 1agse 908 |56 ST 600
12 15.5059 89271 gn 3%.1610 £i04s
e 867610 .598
13 16.3735 8;2 38 | 38.7599 5333
14 | 17.2187 '8250 39 | 84.8535 '5885
15 | 18.0437 '8065 40 | 84.9420 .5836
16 | 18.8502 '7897 41 | 85.5256 ',788
17 | 19.6399 -7?40 42 | 36,1044 ';7 5
18 | 20.4139 '7597 43| 36.6786 '5698
19 | 21.1736 .7463 44 | 87.2484 '5655
20 | 21.9199 ‘7337 45 | 37.8189 '5612
21 | 22.6536 o201 46 | 38.8751 5572
22 | 23.3757 o5 47 | 88.9323 Y
23 | 24.0868 '7008 48 | 80.4855 '5 404
24 | 24.7876 -690 49 | 40.0849 .5456
25 | 25.4785 .6313 50 | 40.5805
1| 1.0 0!
845 o f 0.0599 L1175
2| 8.4669 > 7110.1774
1.6777 1.0590
3| 5.1446 8 | 11.2364
1.4336 1.0111
4| 6.5782 15008 9| 12.2475 o710
5| 7.8685 10)13.2185 '
1.1914
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the greater part of the calculation consisted in passing from the values of 7='¢ to the corre-
sponding values of m. In this part of the calculation 7-figure logarithms were used in obtain-
ing the value of m, and the result was then multiplied by 3.

A table of differences is added, for the sake of exhibiting the decrease indicated by theory
in the interval between the consecutive dark bands seen in artificial rainbows. This decrease
will be readily perceived in the tables which contain the results of Professor Miller’s observa-
tions®*, The table of the roots of the derived equation, which gives the maxima of W?2, is cal-
culated for the sake of meeting any observations which may be made on the supernumerary
bows accompanying a natural rainbow, since in that case the maximum of the red appears to be

what best admits of observation,

SECOND EXAMPLE.

19. Let us take the integral
r o

-t

2" 9iyf

wﬁ
-——— e T

2? 426? (4'6)

9 aa
= — 2 dlé =1
U= _/; cos (z cosf) do

which occurs in a great many physical investigations. If we perform the operation . twice
a@

in succession on the series we get the original series multiplied by — %, whence

du 1 du i
dm”-l.ifi;-l-u: o . (4‘7)

20. The form of this equation shews that when  is very large, and receives an increment
d@, which, though not necessarily a very small fraction itself, is very small compared with @,
u is expressed by Acosd@ + B sindw, where under the restrictions specified 4 and B are
Assume then, according to the plan of Art. 5,

u=e“'m{

sensibly constant}.
da®+ BaoP + Ca¥ 4 ...}, . . . . (48)
On substituting in (47) we get
VA {@a+1) a1+ (2B +1) Bal-! 4 ...}
+atda®-%24 BBab-2+ ., =0,
Since we want a descending series, we must put
2a+1=0; B=a—-1; y=8-1...;
@B +1)B=+/=1a*4; 2y+1)C=+/-18'B ...;

whence

awi=fiNPa 4§ v 9

® Cambridge Philosophical Transactions, Vol. vi1. p. 277. |

+ This integral has been tabulated by Mr. Airy from 2=0
to # =10, at intervals of 0.2. The table will be found in the
18th Volume of the Philosophical Magazine, page 1.

$ That the lst and 3rd terms in (47) are ultimately the im-
portant terms, may readily be seen by trying the terms two and
two in the way mentioned in the introduction. Thus, if we

suppose the first two to be the important terms, we get ulti-
mately U=.4 or U= Blogx, either of which would render
the last term more important than the lst or 2nd, and if we
suppose the 2nd and 3rd to be the important terms, we get

=
ultimately u=A¢" ¥, which would render the 1st term more
important than either of the others.
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2 — 'e’si = 2 g2 52
! \/ -14; C-+—3——(\/—1)’A‘; D=-—~1——5—-(\/ -1)*4 ....

B & =1 1.2.8 1.2.3.8

Substituting in (48), reducing the result to the form A (P + -\/_—_i Q), adding another
solution of the form B (P -/ — 1 Q), and changing the arbitrary constants, we get
u=Ao-¥(Recosa + Ssina) + Ba—i (Rsinz - Scosa), . (49)
where
i vy
T1.2(6a) 1.2.8.4(8a) "
I 18.8%5" %%k 150)

= - + e
1.8 1.2.3(8a)°

R=1

21, It remains to determine the arbitrary constants 4, B. In equation (46) let cos =1 —p,
whence
dp du du

0= 0" Gu- P~ G

+ Mdpy,

where
M=(2p-n) =@

a quantity which does not become infinite between the limits of u. Substituting in (46) we get

e ‘\,/_‘“’flcos §(1 = u) @} pidn + ?.f]cos {0 -w)a} Mdu. . (51)
T vy ™%

By considering the series whose 2™ term is the part of the latter integral for which the
limits of u are nwra~! and (n + 1)7a™" respectively, it would be very easy to prove that the
integral has a superior limit of the form Ha~', where /I is a finite constant, and therefore this
integral does not furnish any part of the leading terms in %. Putting uax =y in the first
integral in (51), so that

pwidu = a~dy-idy,
observing that the limits of v are 0 and @, of which the latter ultimately becomes oo , and that
Lwcos voridp = Q_L‘wcos AdA = \/'g =2 _/:Dsin AN = jo‘wsin v.vidy,
we get ultimately for very large values of @
% = (wa)~} (cos @ + sin @).
Comparing with (49) we get
A=B=x" '-lf,

u= (f;)éﬂ cos (m—%) + (;%)aSsin (m—%‘) o s (B9

* This expression for u, or rather an expression differing
from it in nothing but notation and arrangement, has been
already obtained in a different manner by Sir William R. Ha-

whence

milton, in a memoir On Flucluating Functions. See Trans-
actions of the Royal Irish Academy, Vol, x1x, p, 313,
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For example, when # = 10 we have, retaining 5 decimal places in the series,

R =1 — .00070 + .00001 = .99931 ; .S = ,01250 — ,00010 = .01240
w ' ]
Angle 2 - 7 527°.95780 = 8 x 180° — 12°2'32”; whence u = — .24504,

which agrees with the number (- .2460) obtained by Mr. Airy by a far more laborious process,
namely, by calculating from the original series.

22, The second member of equation (52) may be reduced to the same form as that of (28),
and a series obtained for calculating the roots of the equation % = 0 just as before. The for-
mula of Art. 18 may be used for this purpose on putting

a=1%; b' =3 ¢’ =5; &ec.; D=3,
and writing @, X for ¢, &, where X =(i - J)w. We obtain
Ay=8; A, =3.8.58; Ci=1; (;=2.8411; C;=3%4%5.1139;
E =1; E;=8.31; E, =4%3779;
whence we get for calculating « for a given value of »
58 _,

1
M=1-—p-? —_—
16 tEe”

1 33 3417
tani o —p Y= —pm3 . ——— @b
)i 8 512 16384 '

2 \} "
=-—) M e B v
em (e -9
For calculating the roots of the equation % = 0 we have

1 31 8779
o= X+-X1-—— X34 __" X5
8 384 T 15360

Reducing to decimals as before, we get

Me=1-,006252"%+.10851620%, . . . . . (54)
tan \» = .12527" — .06445307° + ,20855727%, . . (55)
L "050661 053041 . '262051 (56)

- 4i—1  (4i=-1)*  (4i-1)°"

As before, the series (56) is not sufficiently convergent when ¢ =1 to give a very accurate
result. In this case we get

'@ = .75 + .017 — .002 + .001 = *766,

whence @ =2.41. Mr, Airy’s table gives u = + ‘0025 for # = 2'4, and % = — '0968 for @ = 2'6,
whence the value of the root is 2.4050 nearly.

The value of the last term in (56) is .0000156 for i = 2, and .00000163 for i = 3, so that all
the roots after the first may be calculated very accurately from this series.
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THIRD EXAMPLE.

23. Consider the integral
m{
2.4 90406

which occurs in investigating the diffraction of an object-glass with a circular aperture.

F T r w!
v-%j; L*cos(mcos@)mdwd@-'{ umdw=—2-— o ® (87)

d d
By performing on the series-the operation denoted by 7= x™! <5 Ve get the original

series with the sign changed, whence
d® 1 dv frreaS 58
i@ e =% 0 o (D)

We may obtain the integral of this equation in a form similar to (49). As the process is
exactly the same as before, it will be sufficient to write down the result, which is

v=Aa (R cosa+ 8 sina) + Bad (R sina - 8 cosx), . (59)

where
-1.8.1.5 =1 801 58 .5,
R=1- Tt 9- ’
1.2(8a) 1.2.3.4(8a)" -
S - 148 -—1.3.1.5.3.7+ ( )
P 1.8 1.2.3(8a)° e

the last two factors in the numerator of any term being formed by adding 2 to the last two
factors respectively in the numerator of the term of the preceding order.
The arbitrary constants may be easily determined by means of the equation

dv

&—a:nuw.........(ﬁl)

‘Writing down the leading terms only in this equation, we have

@} (~ A’ sina@ + B cos @) = w1z} (cos @ + sin @),
‘whence
-— A! = B' = ﬂ‘_é,

v-=(Q;m)a{ﬂcos(m—i;)-I-Sain(w—s—;:)}. « = (62)

24, Putting in the formule of Art. 13,
d=-18; b=15; ¢=87; d=59; €=711; D =8;

d,=—-8.8; A;=-3.8.11; C=-8; (C;=-2.8.5; Cj=-5.4%5127;
E‘=—3; Esn—S‘.S; E3=—33.4.82.13];

* The series 1‘51:4 5 .:: - m_z?g b een tabiliaad in his work on diffraction. The argument in the latter table is
by Mr. Airy from =0 to =12 at intervals of 0.2. See Camb. |
Trans. Vol v, p. 201, The same function has also been 1 tervals of 15% that is, from 2 =0 to 2 =19.63 at intervals of 0.262

culated in a different manner and tabulated by M, Schwerd ' nearly.
Vor. IX. Part L 24

the angle @ 2, and the table extends from (° to 1125° at in-
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whence we get for the formule answering to those of Art. 22,

3 99
Malt+—at-"np
+16w 512

3 75 5715
tan \y = —Em"+—.r"— is

a3
512 16384

3 3 11
b e A PR (D
8 128 5120

X being in this case equal to (i +}) .

Reducing to decimals as before, we get for the calculation of v for a given value of ,

M=1+.187527% + .19838592~%, . . . (63)

tan s = — 37527 4 .1464842* — 34881727, . . (64)
2a\ 4 S

u=(;) Meos (2 ==C =\); .« + . (65)

and for calculating the roots of the equation v =0,

151982 015509 _ 245835
4i+1  (48+1)° (4i+1)°

. (66)

LT
—=1+.25 —
™

25. The following table contains the first 12 roots of each of the equations % = 0, and
2 %v=0. The first root of the former was got by interpolation from Mr. Airy’s table, the
others were calculated from the series (56). The roots of the latter equation were all cal-
culated from the series (66), which is convergent enough even in the case of the first root.
The columns which contain the roots are followed by columns which contain the differences
between consecutive roots, which are added for the purpose of shewing how nearly equal these
differences are to 1, which is what they ultimately become when the order of the root: is
indefinitely increased.

i [Zforu=0| aif. |Zforv=0| aiff
o .
; 1,:.?.?'15 9916 ;'z;gg 1.0183
3| 2.7546 ‘99;: 3.2383 ;'gggg
4| 8.7534 'gg s 4,2411 1‘0017
5| 47527 9 5.24928 ;.
.9995 1.0011
6| 5.7522 6.2439
= 9997 1.0009
7| 6.7519 7.2448
9997 1.0006
8| 7.7516 8.2454
9998 1.0005
9| 8.7514 0.2450
10| 9.7518 9999 10.2463 i
.9999 1.0003
11| 10.7512 9999 11,2460 1 3
12 | 11,7511 ' 12,2469 s
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26. The preceding examples will be sufficient to illustrate the general method. I will
remark in conclusion that the process of integration applied to the equations (11), (47), and
(58) leads very readily to the complete integral in finite terms of the equation

d*y . t(+1)

I‘L&. {q + 'T y=0 . . . . . (67)
where i is an integer, which without loss of generality may be supposed positive. The form
under which the integral immediately comes out is

_z'(£+1) (i-—l)i(i-;-l)(i-l-ﬂ‘)_

ot 1.2q@ 1.2(2qa) ohs
e iG+1) (=1 iG+1)(E+2)
#Be il 1.2qa 1.2 (2q2)° s

where each series will evidently contain ¢ + 1 terms. It is well known that (67) is a general
integrable form which includes as a particular case the equation which occurs in the theory of
the figure of the earth, for ¢ in (67) is any quantity real or imaginary, and therefore the equa-
tion formed from (67) by writing + ¢*y for —¢*y may be supposed included in the form (67).

It may be remarked that the differential equations discussed in this paper can all be reduced
to particular cases of the equation obtained by replacing i (i +1) in (67) by a general constant.
By taking gnf, where g is any constant, for the independent variable in place of 7 in the dif-
ferential equations which U, V in the first example satisfy, these equations are reduced to the
form

* 2

and (47), (58) are in this form already. Putting now y =a~°2z, we shall reduce the last
equation to the form required.

G. G. STOKES.

PestsrokE COLLEGE,
Feb. 4, 1850.




