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PREFACE

The present work is the result of theoretical investigations
and calculations which were performed, with some interruptions,
in the years 1940—1944. As conditions during the occupation
of our country prevented earlier publication, and as a description
of the collected results seemed to exceed the limits set to
articles in periodicals we decided to present them’in book form
after the war.

The science of colloids appcars to be entering upon a new
stage, which is less empirical, and where the experimental study
of better dcfined objects will be guided rather by more quan-
titative theories than by qualitative “rulles” or “working hypo-
theses”. The theory of the stability of lyophobic colloids, as
developed in this book, may serve as an example of this develop-
ment. This stability problem has been placed on a firmer physical
basis by the introduction of the concept of Van der Waals—
London dispersion forces together with the thcory of the
electrolytic or electro-chemical double layer. In the present
work, too, these theories form the starting points ot our con-
siderations.

For the main part this book gives an account of our own
work on the interaction of colloidal particles. It has not been
written, however, on the assumption that the whole of the
relevant literature is known to the reader. Accordingly we have
added a number of chapters which may serve as an introduction
to the main problem of the book. These chapters contain, for
instance, a brief survey of some aspects of lyophobic colloids,
a concise summary of the theory of the double layer, and a
short introduction to the subject of Van der Waals—
London forces.

At the time of writing this work (1944/°45) the literature
which has appearcd during the war in the countries fighting on
the side of the Allies was not at our disposal. To some of the
Chapters a few paragraphs were added later on (1947) in order
to bring the text in accordance with recent developments.

We desire to ackmowledge the assistance we received, in a
considerable part of the numerical calculations, from Mr K. van
Nes, chem. docts.,, now once again of the laboratory of the
Bataafsche Petroleum Maatschappij. Amsterdam. to whom we
are also indebted for valuable contributions in the final presen-
tation ot the results of the thcory of Part II.

Eindhoven, June 1947. E.J W.Verwey,
J.Th. G. Overbeek. *

* Present address of the second author: Van 't Hoff Laboratorium, Rijks-
Universiteit, Utrecht.



SUMMARY

The purpose of this book is to explain the stability of hydro-
phobic colloids and suspensions and to develop as far as
possible a quantitative theory of this stability.

The basic concepts of this theory were the mutual repulsion
consequent upon the interaction of two electro-chemical double
layers, and the attraction by the London—Van der Waals
forces. The principal facts of stability could be explained by
combining these two forces. Among other things, a quantitative
explanation of the rule of Schulze and Hardy has been
given. For this purpose it was essential to use the unapproxim-

ated Gouy—Chapman equations for the double layer. The -

approximation of Debye and Hickel, however useful in
the theory of electrolytes, appears to have only a very limited
applicability in colloid chemistry.

The introduction of several refinements was necessary to
explain various details, The quantitatieve agreement between
theory and experiment, and the deviations from the rule of
Schulze and Hardy (lyotropic effects) made it necessary to
reckon explicitly with dimensions and the specific adsorbality of
the ions. To this end, Stern’s theory has been introduced.

Repeptization phencmena cannot be understood witbout the
introduction of the Bo rn repulsion, which, however, apart from
this. is of very minor influence on the stability properties.

The London theory also needed a certain rectification in
the form of a relativistic correction, because the uncorrected

theory led to conflicts with the experiments in the case of
coalse suspensions.

‘

Part 1 deals with the single double layer, Part II with the
interaction of two flat plates, and here most of the fundamen-
tal results of the theory already come to the fore. Part III gives
a treatment of the interaction. of spherical particles, which
serves to clarify various details, especially the influence of
particle dimensions and of the kinetics of flocculation.

In an introductory chapter I, a survey is given of the kmown
facts and of the fundamentals of the theories to be applied.
The stability rules and the mechanical properties of sols and
suspensions, as far as they are related to stability, are stated
fairly extensively. Chapter II gives the mathematical treatment

of the electro-chemical double layer. In Chapter bthe t;reii
energy of the double layer 1s -deal; with at length, hecauls;ean
served as a basis for the theory of interaction, Therz avlej b
some controversies in the literature on this point, but we gtev:
we have cleared up the difficulties, aspgctally by_the.consm (;:}I;l
separation of the cbemicalﬁnd thc“ei electrical contributions to the
. Cf. also the Appendix on pp. . .
Fr?i %nheargger IV and V the charge, the potential, and the 1nt-el(:i-
action energy of two parallel flat double layers are repr;sentg )
The interaction is proved to be fundamentally a repulsion for
i s between the plates.

allccllll;;igie\il gives a short treatment of London—Van der
Waals forces and its application to flat plgtes. In this ch_a%ter
the relativistic correction mentioned gbove is also dealt w1t.d.

In Chapter VII, as a further extension of the general consi E—
rations of J. H. De Boer and more especially Hamg]i:er, the
stability of colloids is discussed on account of potentia CUISJQS,
which are formed by a combination of the Lon d on—Vander
Waals attraction and the double layer repufsion. A cr1tgr11’lon
is given for distinguishing potential curves as b.elongmg to either
stable or flocculated systems, and we investigate the way 1n
which the transition from the stable to .the flocculated state 1s
influenced by the potential of the part1§:las, the concenltra}?on
and valency of the ioms, and the attraction constant. All these
quantities are shown to influence the stablhty. In order to get
a good accord with experiments the attraction constant m{jst
be talen at about 1or 2-101‘12,11n sood agreement with other -

ical and experimental values. .
th?[g)hrstli;ﬂuence oIf}ethe valency and the concentration of the
electrolytes agrees with experimental data as expre_ssed‘ by ftbie
rule of Schulze and Hardy. As a first approximation 1o -
lowing from the theory we find that the flocculation va ugs
for monovalent, bivalent and trivalent electrolytes are In the
proportion
1 1 1

¢ GG = 530 36

The deviating stability conditions of emulsions are_dlea.lt
with in a separate section. The basis qf this treatment is laid
in a number of sections in the precedlng chapters, where the
double layer at the interface of two liquids is considered. |

The ground plan of Part IIT (Chapters VIII—XIL, sphedrlcg
particles) resembles that of Part II. All concepts used In
Part 11 return in Part III. The treatment of the stability
conditions (Chapter XII) deviates in so far as the Brownian
motion of the particles is here explicitly .mcqrporated in the
theory. For a good understanding of stability it was necessary
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to give a thorough trcatment of the kinctics of coagulati
cspecially of slow coagulation. h Thuintion.
The results of Pare 111 agree inomost respects with those f
Part 11. Qu_nntitntive agreement  with  experimental cvin‘h‘n?
is also Sil([.\i[;l(!()l‘y. Ditferent effects known from cx;wl'inlcl?(L
as thvrAc' arc: instability of very small particles. the increase
()f stability during the flocculation process, zmd”thc influ“'l‘lujk‘
of the concentration ot clectrolytes on the rate of coa ‘uhttiokl(
can be explained without the introduction of new ll‘i’or!(\ 1
‘Fm:ll]y._ the _Appcndix gives a critical survey  of ):{ > CSL?.
of other investigators in this fiold. ook
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PART I
Theory of a single double layer

I. INTRODUCTION

§ 1. Lyophobic and Iyophilic colloids.

Colloid science is generally understood to be the study of
systems containing kinetic units which are large in comparison
with atomic dimensions. Such systems may be systems in which
the particles are free to move in all directions, or they may be
derived systems (as a coagulum, a gel, etc.) in which the par-
ticles have lost their mobility either partially or entirely, but
have maintained their individuality.

It is customary to distinguish two classes of colloids whose
general behaviour is entirely diffcrent. These classes are gener-
ally called Iyophobic and lyophilic colloids, rzspectively; hence
it is assumed that in the colloids of the second kind there is
a strong affinity between the particles and the molecules of
the dispersion medium which, in the colloids of the first
kind, is either weak or absent, This assumption is expressed,
for instance, by the concept of Kruyt, according to which’
the stability of lyophobic colloids is governed by only one
factor (the electric charge of the particles) and that of Iyophilic
colloids by two factors (charge and solvation). Examples of
Iyophobic colloids are: a gold sol, a silver iodide sol, a quartz
suspension (in water or in an organic liquid), and strictly
speaking also the emulsions (although the stability conditions
of this group are apparently different). An example of a lyo-
philic colloid is the gelatin sol. Typical for lyophilic colloids are,
for instance, the swelling phenomena illustrating the great affin-
ity between the gelatin and the water molecules (hydration).

The kinetic units mentioned above in lyophobic colloids are
rigid particles (either amorphous or crystalline) or small liquid
dvoplets. The crystalline nature of the particles of a gold sol,
. for example, may easily be proved by investigating a coagulum
with the aid of X-rays: it is seen that the particles are very
small crystals of the same crystal structure as the metal itself.

A clear notion of the nature of the kinetic units in lyophilic
colloids has been lacking for a long time. Modern investigations,
however, especially in the fields of cellulose and protein che-
mistry, have revealed that the “particles” consist either of a
single large molecule or of a cluster of such molecules dissolved

1



2 INTRODUCTION I

in the dispersion medium. This "macromolecule” may be ecither
an extremely long threcadmolecule, or a molecule of 2 more
complicated form, with long side-chains, etc., and the melecules
may either be more or less stretchzd, or rolled up to a com-
plicated clew, or folded together. But a common property of the
“particles” will be that they are entirely open to the dispersion
medium in that cach "link™ or atom group of the chain system
is in coutact wich the solvent molecules. Moreover, each link
of the molecular threads or chains.is subject to thermal notion,
so that the spatial configuration of the dissolved macro-mole-
cule or molecular cluster varies continually. The ,hydration”
of a hydrophilic colloid is therefore partially a direct adsorption
of waterinolecules at the polar groups throughout the entire
macro-molecule (accompanied by a gain in energy) and partially
an imbibition or enclosure of water due to the themnal expansion
of the macro-molecule (accompanied by a gain in entropy).

This peculiar difference between the structure of the kinetic
units in lyophobic and Iyophilic colloids yields a second criterion
used to distinguish between the two classes of colloids, namely
the coutrast: prreversible and reversible colloids. A protein
“crystal” or dry gelatin, when brought into contact with water,
is converted spontancously into an apparently homogeneous gel,
or, if the amount of water is sufficient and the temperature is
not too low, into a stable sol. A gold crystal brought into con-
tact with water, however, is a system with a much lower free
energy than a gold sol, and the former will never generate the
latter spontancously. A lyophobic colloid is therefore never
stable in the sense of thermodynamics; the subdivision of the
gold crystal into small particles can be performed only by sup-
plying a considerable amount of work. The total free energy of
the gold/water interfacc is a positive guantity. The small gain
in entropy accompanying the formation of more kinetic units is
negligible {even a colloidal particle still contains a large num-
ber of gold atcms).

There is a third and important difference between the two
classes of colloids. Lyophobic colloids may be flocculated or
coagulated by comparatively small amounts of electrolyte added
to the system, and the ceffective amounts depend characteristic-
ally on the valency type and the nature of the electrolyte.
What we observe when a lyophobic sol is ccagulated is that the
at first apparently homogeneous liquid becomes turbid and dis-
tinctly non-homogeneous. On examination with the microscope
or ultrainicroscope it appears that before the flocculation each
individual particle is subject to thermal motion (Brownian
movement), but that afterwards the particles cluster together
and form larger agglomerates. In the coagulum the particles
have maintained their individuality in that they hold together

§1 LYOPHOBIC AND LYOPHILIC COLLOIDE 3

at a few points only (at any rate immed_iately after coaggliaiﬁ)
by comparatively weak forces. Sometines, by Temoving g
electrolyte from the system, the lcoagulum may gasdy be pe%tlzii
again, i.e., the regular distribution of th'e_partlcles thr?ug t e_'.
dispersion medium, as prﬁsentd in the original stable sol or sus

nsion, may be re-established. ' ) -
peBecOause o}f’ this sensitivity of the stability of lyophoblc_ coll_mds
towards electrolytes (stability with respect to ;oagulanog)
Freundlich used the term of electrocratic colloids for this
class of colloids.

Actually, lyophilic colloids do not, as a rule, show the phen-
omenon of flocculation under the influence of small amounts
of electrolytes in a way analogous to the behawom of lyophaobic
colloids. In special cases, however, very similar phenomena may
be observed, for instance in an agueous gelatin sol to which a
sufficient amount of alcohol has been added;'and the worlg of
Kruyt and Bungenberg de ]on_g1 has given a great many
examples of lyophilic colloids in whlch the physical properties
(though not always the stability with respect to floc:c‘:ulatu')n)1
are influenced by electrolytes in much the same way as1s 11:yp1ca
for lyophobic colloids. One of the old.c_st examples is the._c ectrci-
viscous effect shown by many lyophilic c;olllmds: a conmderabe.
decrease in viscosity, effected by the addition of small amounlts
of electrolyte. This effect suggests that the electrolyte grea?y
influences the spatial configuration of the dissolved macre-mo e-
cules. It may even be said that the influence of zlectrelytes
upon lyophilic colloids is more or less ana}logous to th(:lt upon
lyophobic colloids. For, as will be argueé_l in the folliowing sec-
tions, an electrolyte added to a lyophobic golloxd destroys the
potential barriet existing between the part{cles, thus enabling
their mutual approach and final agglo.meratton. In _th’e C&Sfef of
the lyophilic colloid the electrolyte obviously has a similar -el ect
with respect to different parts of the same macr«_o—molccu e or
molecules of the same cluster, again allowing their mutual ap-
proach, and, therefore, a folding together or curling up of the
molecule to a less stretched form. _

In the present treatise we will confine ourselves to the study
of the stability of lyophobic colloids_and a number of kindred
problems relating to this type of colloids; oply occasmna]_ly shall
we refer to analogous peints in the behaviour of lyophilic col-
Joids. The above considerations may suffice, however, to show
that a treatment of the fundameptal aspects of the stability of
lyophobic colloids must also be important for a better under-

I H.R. Kruyt and H. G. Bungenberg de Jong. Kolloidchen. Bcf[heﬂé’.
28 (1928) 1 and other papers by Kruyt and coworkers in the same journal
under the title ,Zur Kerninis der lyophilen Kolloide™.



4 INTRODUCTION . 1

standing of the rather complex set of phenomena in the field of
lyophilic and bio-colloids.

§ 2. The clectric double layer surrounding the particles

From several phenomena observed in colloidal systems it has
been inferred that the dispersed particles carry an electric
charge. Since the system as a whole is electrically neutral, the
digspersion medium must contain an equivalent charge of the
opposite sign. These charges are carried by ions, i.e., by an excess
of ions of one sign at the particle surface and an excess of ions

~ of the opposite sign in the solution. We will consider, as a fairly
simple example, the Agl sol! in which the nature and magnitude
of these charges have becn extensively investigated. In a dialysed
Agl sol the particles carry a negative charge. It is possible to
determine this charge analytically. The particles are small Agl
crystals of about 50 m u« (or 5-107% c¢m), containing about
106 Agl “molecules”, and carry a charge of the order of 10?
elementary charges per particle. This particle charge is caused
by an excess of I~ ions in the crystal faces of the particles; each
particle, therefore, contains, per 1000 Agl “molecules”, about
one I ion in excess. In a well dialysed Agl sol the negative
ions in the intermicellar liquid are almost entirely removed,
and, especially if the sol is not too diluted, the aqueous solution
phase contains practically none but positive HTions; these

ions (or, more exactly, the excess of H*ions over the negative |,

ions still present in the liquid) are therefore responsible for
the positive charge neutralizing the negative charge of the
particles.

The positive charge carried by the Htions in the dialysed
Aglsol is not distributed uniformly through the intermicellar
solution, as the H¥ ions are strongly attracted by the negatively
charged Aglparticles. Conversely, however, the H" ions will not
be adsorbed all on the surface of the Agl particles, as the
electrical attraction is counteracted by the thermal motion of
these ions. The result is that these ions, or at least part of them,
are still “free” ions, being dissolved in the solution and subject,
individually, to progressive thermal motion; but on the other
hand they are forced by the electric attraction to remain
in the neighbourhood of the particles, so that each particle
charge is screened off by an equivalent swarm of HTions
surrounding the particle. )

Hence, if we consider one particle separately, immersed in
the liquid, it is surrounded by an electric double laver.

1 E. J. W. Verwey and H. R. Kruyt, Z. physik. Chem., A 167 (193
137, 149, 312. Y e 1933

E. ]J. W. Verwey, Chem. Rev., 16 (1935) 363.

§ 3 STABILITY OF LYOPHOBIC COLLOIDS 5

One layer of this double layer is f:orqu by t.h‘e C}')algct;([)lnt};?f
surface of the particles. (Strictlly Sp'ca‘;‘lpigdt?fbtha;b;lggdes o
a surface charge is only more or less jus ifie e D ainge

wstalline or amorphous; 11 the case gf liqut toplets !
;Z:ftb}e different). Though in reality it 1s @ chargfg ci)r;slstrtgfirﬁf
point charges, it is customary to consider it, as a Ilrs thppsm:face
ation, as a homogencous surface charge spread o‘f_er t_en Face
of the particles. This may be rather a rough apprq,\lir;aé ti,g‘I s 1t
seems possible that t}}f §xcess‘olf T 1%{1sbgre§§§;ceﬁra;ed gl sur

e of negative Agl particle wi
iiﬁ?aii a?tivegspots, edges, and corners of the c_ryste}ill ‘factta_s(;ne'i;:Jé
Tn many problems, however, we are interested in ’c_e1 ac lrfac-e‘-
the surface charge at some dxs_tancc from the partlcts Is.u oft-el;
where its detailed structure 1s much 'Iess influen 1511, fLen
moreover, only its time average 1S material. We must a >so bea
in mind that an excess of one _elementzqy .charfg-e is g‘“%zsibli
cartied by a group of surface ions, as it 1s often 1mp( ssible
to point to the ion which may be called the excess—xor; le lanpe :
in the case of an I"ion adsorbed upon a complete crystal p :

le case). For all these reasons, and in default

rather an improbab . L ' i
of preciser data, we chall, in the following considerations,

me the surface charge to be homoganeous.
gel%el:fguge:g;% layer of the electric douI?I-e layer (Ehe' outer
layer) is formed by the excess of oppositely v:%)larg}e1 ;-?Esio:;
the solution; hence, in the case pf the Agl sol, IyA:l: e . n—|
(more general: by the counter-ions of the - colloid). In co

.+ thermal motion the electric charge carried by

sequence of thet : carried by
1 art of it) extends over a certain :
this layer (or at least p ) crain distance

article surface, and dies out grad_ually wit! asin
firi(s?gntglee (Iiﬁffuse layer). Though again carried by d1scrc<lat<?3 1oxInec_
charges, this charge may very often be approximate glems
garding it as a continuous space cha‘rg-e‘ since, 1N %rlany‘tlfl{okneSS,;
we are again interested only in its time average. hﬁ: ic ess’
of this diffuse layer appears to be of colloidal dm}llensm(xils, 2 :
very diluted electrolytic solutions it may be of the or: (i_lr 3
10—5to 10—* ¢m; in more concentrated squt{ons _(espeagz 1y
the counter ions are polyvalent) the extension 18 mﬁc t}e;ss.
In a dialysed Aglsol the particles are thereforg smaller t ]aln
the thickness of the double layer; in suspensions. especially
when' some electrolyte is present, the d_ouble layer efft-clansmn
is generally small in comparison with the size of the particles.

§ 3. The stability of lyophobic colloids

After this introduction into the prop‘erties of the veleitnc
double layer surrounding colloid partlcles' we may now re urn
to the problem of the stability of lyophobic colloids.



6 INTRODUCTION I

In scction 1 it has bceen menrioned that one of the typical
aspects of lyophobic colleids is the sensitivity of their stability
towards clectrolytes added to the sol medium. As a matter of
fact, in the development of rhe chemistry of lyophobic colloids,
the stability has heen the central problemn during the lase ball
century.

According to scction 2 stable lyophobic colloid systems (in-
cluding suspensions) may be considered as systems containing
a great numbcr of particles cach surrounded by an clectric
double layer. Iu scction 2 we only considered one separate
particle with the double layer surrounding it. Im actual sols
or suspensions, however, we arc facing with an additional
problem, namncly that of the intecraction of two or more double
layers. This problem arises in the first place in concentrated
systems, in which the average distance of the particles is of
the same order of magnitude as the “thickness” of the double
layer, or cven smaller. But alse in more diluted systems (sol
or suspension) particles meet continually., and the stability
of the colloid depends entirely on the physical result of such
an encounter. This interaction problem will therefore be one
of the basic problems in a theoryv of colloid stability.

As will be cvident from the brief survey of the main experi-
mental facts relating to the stability of Iyophobic colloids, to
be given in the present section. this opinion is in complets ac-
cordance with colloid chemical evidence.

In discussing colloid stability. 1t is necessary to distinguish
between two different factors influencing this stability 1.

1. A sol or suspension primarily acquires stability by the
formation of a double layer of sufficient strength to prevent
agglomeration. This process is called péptization and depends
on the presence of small amounts of specific ions in the system.

2. Secondarily, the stability of the sol or suspension once
formed can be affected and eventually completely destroyed
(coagulation or flocculation) by the addition of all kinds of
electrolytes to the system. .

Some colloids peptize spontaneously when a finely divided
substance and a liquid are brought together under suitable
conditions. A stable suspension of quartz, for instance, in water,
ethanol, acetone (in general: in liquids of a sufficiently electro-
Iytic dissociating power) may be prepared by simply shaking
the pure powder with one of these liquids. Some precipitates,
such as V,0O.. or a number of insoluble metal sulphides, may
be brought to peptization by washing them thoroughly with
pure water. In other cases, however, we know that small quan-

! E ] W. Verwey, Chem. Rev., 16 (1935) 391.

§ 3 STABILITY OF LYOPHOBIC COLLOIDS 7

rities of specific clectrolytes are necessary flor \De‘[;\“%atl?nf”li
the case of the Agl sol. a small cxcess of eélthur 'Igl cczcjss 3
necessary to obtain stable sols; sulphides need z; s1na t...n :; O
S - or SH to build up the double layer, which _5911}6 1.| L) as
o be added deliberately o !’]IU sysl-cn: for ;‘)cptllgld.tl‘m—]t:\(ﬂx_rin.]
and metals may often be peptized by H or CH f hubf 2 )n-;ﬁqrzé
role is strictly reserved for very special ions; 1f t cs“_fu). kn‘tad
not Formed by the materials themselves (in the §a5§[9 b-chn)ltin‘
ncous peptization this occurs to su_ch an extent tl\]df Llurern,:t an;,
double Jayer is alrcady suflicient ‘h:r stability). t_n,ly ~a , i
rate, closely related to the materials of_the parELc 2. e
The inverse process, too, may occur; 1o, @ SO cm: s,(z! z Agj
be coagulated by depeptization. Thus, unlike ? n;gshw - Al
sol (where the peptizing I7 can be withdrawn ror}rll tebiiity)
far a- this is possible by dialysts without affecting t ‘?LS a latiorl
a positively charged Agl sol can easily be brought to .loclclu or
by dialysing the sol. Several other sols show the samc«:d 1e} avﬂoc;
To this class of phenomena inust also.be reckonco tln‘e floc’
culation occurring when 2 diluted solution of AgNO, f].sIELi ed
to a negative Agl sol. In this case thz smnll exc&ess of ita(zed
building up the double layer is neutralized ?n fpigfcli[;o <
by the Aghions added to th-_e sol. (An excess O g ts'the
mixed sufficiently rapidly with the sol. would convcirt_ S
negative sol into the stable positive sol, w1t1_10ur Coafl‘,l ahloth-é
In the phenomena discussed in the pr.ecedmg parz.lt-,llaph :
flocculation is actually effected by reducing the partic ??E argt.
Usually. however, coagulation 1s obtained by quite dl ercizzn_
methods. in which the concentration of the peptizing [?r se{ti
bilizing jons is not — at any rate not purposely —1~ cf?ngteed
Indeed. coagulation 1in Iyophobic systems 1 mosctlc_‘l,' dc ecthe
under the influence of “indifferent slectrolytes addea to
systems. On determining the amount of eigctrolytje neces's{_zil%
to bring about a practically complete coagulation under speci i
conditions. adapted to the type of §01 under cons1deratlog. 1§
following values were found for dlffereqt sols (se?1 p.l_ '?i?)g
p. 9. The corresponding concentration 1s called the Limi
lation value.
Or'lf}l(zzc%locculation values united in Tables T and II clearly de-
monstrate the well-known rule of Sc hulzcand Har dy stan}nllg
that the flocculation value is first gf all determined hby the
valency of the ions which are oppomtely charged to the .pi}r
ticles of the sol, whereas the specific nature ot these ions is far
Jess important. The influence of the wvalency z}nd the ?atu}za
of the ions bearing the same charge as the particles is ol sub-
inate importance. .
Or%lonratfhtamigl—sol, for instance, the monqvglent cations roc_—
culate at a concentration of about 140 millimols/liter, the bi-
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TABLE 1
PLOCCULATION VALUES IN MILLIMOLS/LITER POR NEGATIVELY CHARGED SOLS

| |

Electrolyte . AsyS;-sol * ' Au-sol ** i Agl-sol T
LiCl !
LiNO, > ! — 165
NaCl ’ 24
NaNO, > | = 10
ke s - -
£ = | B | 2
RbNO; . e 26
| = 126
¢ e | i
MgCl, 0.72 —
GO, g — 253
CaCl, ' 8222 041 —
g:a(<:11\103)3 - — 238
«Cly 0.63 — '
SN0, s — 233
ally .
B 069 035 -
ZaCl, | 0.685 - 220
Wk, | s | i
e 3)2 | 0.64 2.8 ( 3.15
ﬁig\lf'o ' 0.093 — —
1 D , 0.095 - 0.067
Js Alé\SJOQ)a - 0.09 0.009 '
a 3/3 - 4 0
L ‘ _ 0.069
«(NOy); ‘ 0080 0.003 ’ ' 0.069
Th(NO | | I e
(NOy), b = — ‘ 0.013

*

H. Freundlich, Z. physi
ich, Z. physik. Chem., 44 (1903) 129 73 (1910) 385
H. Freundlich and G. Von Elissafolf, Z physik Clzem.,;9(l§12) 385
. H Morawics, Kolloidchem. Beihefte. 1 (1910) 301. '
.R.Kruyt and M. A. M. Klompé¢, Kolloidchem. Beihefte, 54 (1942) 484.

*

valent cations at about 2.3 milli i

' 3 millimols/liter and : ival
catTlons at about 0.07 millimols/liter. i the trivalent
N he d1f'fere.nces between electrolytes of the same valency type
: eli?mpdrat_tlvely small. Generally a negative sol is flocculated
y large cations at a somewhat smaller concentration than b
small cations of the same valency. Y

0 .
ﬂocc:\faatr{l;!; llc;ns often have_ an exceptional position in as much as they cause
a concentration which ts much lower than would correspond to

§3 STABILITY OF LYOPHOBIC COLLOIDS 9

TABLE 1l
FLOCCULATION VALUES IN MILLIMOLS/LITER FOR POSITIVELY CHARGED SOLS
Electrolyte ' Fe,Oy-sol * “ Al,O4-s0l ™
|
e J—
i l
NaCl 9.25 ! 43.5
KCl 9.0 ’ 46
]/2 BaC12 9.65 | -
KNO, 12 | 60
s Ba(NOj). \ 14 \ —
K,SO, I. 0.205 ‘ 0.30
MgSO, \ 022 —
K,CryOr ' 0.195 0.63
[ -
|
K3Fe(CN); - ! 0.080
I o o
K Fe(CN)g i] — ) 0.053

« H, Preundlich, Z. physik. Chem., 44 (1903) [51.
wx N Ishizaka, Z. phystk. Chem., 83 (1913) 97.

ted with the abnorma)

their valency. This exceptional behaviour is evidently connec
for completeness, but

adsorbability of these ions. We have mentioned this point
in the following we will mainly consider the normal inorganic ions.

It was originally assumed that the flocculating action of these
electrolytes should be explained by an adsorption of the op-
positely charged ions (Freundlich's adsorption theory). This
theory was a direct result of the fact that in the more primitive
‘stage of colloid chemistry one was satisfied with the picture
of the agglomeration of the particles being preventad in stable
sols or suspensions by the mutual repulsion of the particle
charges. Later on it was recognized, however, that in reality
we are not dealing with a pure Coulomb repulsion, but with
the rather different and more complicated problem of the inter-
action of double layers. Morcover, Freundlich’s adsorption
theory, and therefore the simple conception that the coagulation
by electrolytes 1s a matter of reduction of the particle chargss,
could not be affirmed by exact analytical measurements L
There were even a number of experimental indications that the
offect of an increase of the electrolyte concentration is generally

l H. Freundlich, K. Joachimsohn and G. Bttisch, Z. physik. Chem..

141 (1929) 249. 4
E. ). W. Verwey and H. R. Kruyt, Z. physik. Chent., A 167 (1934) 312.
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an ir seoinstead of g decrease of the double Tuyer charge.
About ten years ago. therclore, the above najve picture of
colloid stability was completely  abandoned by most colloid
chemists. The adsarprion theory may retain part of its valua
i1 a number of exceptional cases only (for instance that of
strougly adsorbable OTEINIC Tony).

Summarizing this SeCHion, we may state that small amounts
ot specific (peptizing) clectrolytes, creating the double layer,
are necessary tor stabiljty. Arbitrary electrolytes bring about
a flocculation of the sol: the flocculating canceutration js
roughly determined by the valency rule. The potential barrier
preventing agglomeration of the particles js directly connected
with the double layers surrounding them. Stability and coagula-
tion, however, can only be understood on the basis of 3 more
detailed study of the changes occurring in these douhle layers
when the ionic spheres of the particles Interpenetrate.

§8 4 Gelation and th txotropy

The question why an clectrical double layer of sufficient
strength prevents the agglomeration of Iyvophobic particles, and
the influence of electrolyce concentration upon this phenomenon,
Le., the stability problem of Iyophobic colloids in the proper
sense, is not the only aspect of collpid chemistry in which the
problem of the interaction of two double layers plays a pre-

considerations showing +that the double layer interaction is
equally important for a better understanding of g number of
other phenomena of considerable interest. Among them are such
pbenomena as gelation and thixotropy of Iyophobic colloid
Systems., the mechanical and rheological behaviour of sus-
pensions, and related phenomena. Some experimental facts con-
cerning these phenomena will therefore be treated shortly in
the present and the next section. :

A remarkable rheological behaviour of certain colloid systems
ts gelation. By gelation we mean solidification of the whole
colloidal system into an apparently homogeneous jelly. Gelation,
therefore, differs from tlocculation in that, in roccuIation, the
system is Mmacroscopically separated into two phases, whereas
in gelation the System remains homogeneoys, One of the most

known for lyophilic systems, but there also exist a number of
hydrophobic systems showing gelation. .
In these cases gelation may be brought aboyt by the addition

GELATION AND THIXOTROPY 11

§ 4 |
‘oncentrations ol clectro-
of clecerolyte; and by the fact l’h:ll‘ll:hulmmug r.fél:nrlily plectro:
1 ' > rule of Schulze an a
s again follow the ru it Y e may
iigl t?mt gelation 1s a specific form c])f 'Cmggt{”"}‘oaéle o
exactly, an \intcrmcc[iarc stage to ceoagulation.
N¢ v

TABLE M

1, RED TO BRING
> ILLIMOLS/LITER REQUI
! 5 OF ELECTROLYTE IN M
CONCRITRATION ABOUT GELATION

”éi»Oz-sol b

CeOy-sol * Electrolyte ) charsed
Electrolyte Positively charged Negatively It
| | NaCl ’ 100

Noch 2 s 1o NaSOy 100
NGt 3.5 ‘ " BaCl, ! 15

NaCt i o7

NaQSC); O- 16

NBQHPO; N

|

* H R Krayt ar;d Miss [. E. M. van der Made, Rec. frav. chim.,

277, B
b giz g.gf(a‘guyt and J. Postma, trd., 44 (1925) 765.

called
These hydrophobic gels often show thel_ﬁhe;u;r;lﬁeélc?;r allel
thixotropy. In this case _the system behaves Iere L sohd Tor weak
shearing stresses; if stlrped ;apl-dly, }}owey -’When s s
fluid, and flows as a liquid with low vlscosityd,l. en brought to
rest z,lgain viscosity increases more or less I.aIEI y,ta e
i he mass is again converted into a stiff paste o Jelly.
tm'}%atltethe formation of a thlxotroplc ge.l is anI in efrom ate
stage between stability and flocculation will be cOefardectmlyte
ing table, which shows the concentration ! olyte
fgé:;?gi for Ehixotropic gelation and for flocculation o

AL O,-sol L,
o TABLE IV

T BTAIN
CENTRATIONS OF ELECTROLYTE IN MILLIMOLS/LITER, NECESSARY TO O
CON

THIXOTROPIC GELATION RESP. FLOCCULATION OF AN AI203~SOL
(POSITIVELY CHARGED)

Electrolyte Optimal thixotropic gelation Flocculation

400
KCl : 33;} ] 0
Na,SO, 35 5
KyFe(CN); 15 25
K,Fe(CN), .

L M. Aschenbrenner, Z. physik. Chem., 127 (1927) 415.
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Furthermore it appears that the thixotropic state can best (or
perhaps only) be obtained with sols containing disc-shaped or
rod-shaped particles, such as bentonite (a colloidal clay), ferric
oxide, vanadium pentoxide, etc.

From these facts and from other observations it has been infer-~
red! that a gel js a loose network of colloidal particles inter-
connected only at a few points, in which the dispersion medium
1s immobilized, hecause it is enclosed in the network. The fact
that this very Ioose structure does not entirely collapse must be
attributed to repulsive forces between other parts of the par-
ticles. These repulsive forces are obviously of ths same nature
as the forces preventing the agglomeration in the stablz sol.

A completely differont picturc? of gelation jg also con-
ceivable. In this conception it is assumed that the particles
in the gel are fixed in 2 mote or less regular structure by
long range forces, thus having no material contact at all.
he Targe quantity of dispersion medium contained in the,
gel then is an immediate consequence of the Iong range of
the forces between the particles. Although this may be the right
explanation of gelation in concentrated systems of elongated
particles as e.g., in concentrated suspensions of bentonite or
tobacco mosaic virgs (vide infra), it is felt that this picture
when applied to more dilute systems would involve inter-~
action at very large distances, which is unlikely. :
It is possible, however, to apply a combination 8 of the two

pictures given above to the gelation of dilute systems in as-
suming a local orientation and fixation of the particles by
long range forces, The structures formed in thig way, however,
0 not extend throughout the whole system, but they form

forces in thixotropic gels.

In several cases phenomena ars observed, in some respects
vesembling tlocculation, but in which the particles retaip their
individual freedom, as demonstratad by their Brownian motion.

he outward appearance of the systems considered here may
be completely homogencous, but an examination under the
microscope or ultramicroscope reveals the existence of small
spindle-shaped regions of higher concentration where the par-

. ticles, which may be either small disks or thin rods, are oriented

! H R Keuyt, Chimie of Industrie, 42, October 1939; C. F, Goodeve,
Trans. Faraday Soc., 35 (1939) 342,

: E. A. Hauser, Kolloid-Z7., 48 (1929) 57.

8 W. Heller, 1. Phys. Chen., 45 (1941) 1203: W, Heller and G. Quimfe,
/- Phys. Chen, 46 (1942) 765,
]

DU Bernat and |1 Fankuchen, /. Gen. /’/IJ'SIb[Ug'y, 25 (1941) 111,
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i i e been
rallel to each other. These spindle-shaped re.gdmnsaha\éoalesce
o ad toids!. In favourable cases the tactoids may 02
S arate anisotropic phase of high concentra 1ob o
© o e kable example of this behaviour is the toba ¢
£ e remarlz Upon sedimentation this sol separates into
wo I v1ru.s ti% Loplayer is a diluted sol ghoxxgmg streaTﬁnf
tWof 1ayerrsxyce- in the bottomlayer X-ray invesngat[orn slgowls ih
s renged h; ed protein molecules (diameter 150 A, et;g
Ztlg(e)o thﬁr)eaasre I?ﬂranged in a two-dimensional hexafonairgctizti
packing of parallel rods. Thoe distance betweendht]geugon e
varies from zero up to 30'0 A and more, «ldepeern ing upon the
oo ot ﬁ)mt‘ein g;ai?éju boofttgll:ctr?fyté in the system,
ends also on the conce ; N
dﬁge?idescreases with increasing concentration O.f elefctr;?ggietude
: Distances between particles of the same order ob pagrituce
d an analogous influence of eIec'tront‘es bav-eh -ef . found
. id stems®. It seems tempting to put the oI on
g]]é }lqrglé(lalaiymicelleﬁ in soap solutions in the same class
D ena. . erved in sols of iron oxide' or
Simi‘lar'R}aengﬁﬁni;o:gfliczgseééekd—slhaped particles; o.pilcal
E)L;)Islg:f;;ti(jri show parallel orientation of the disks with a
' - 04 s -
unftfogxilﬂsgzcgga: gchtz?t 81?103.11 these phenqmeua the mt'era;;:l‘gloex}
of the double layers surrounding the particles or ptriolt:;n mole-
cules plays an important part. Obviously the par (I:~iv‘a fhich
have parallel orientation, are kept apart by the repuls

mentioned above.

§ 5. Suspensions

‘ol i ntion
In most text-books on colioid chemistry not much ?]E)t‘ievgr
is paid to the properties of suspensions. It appears, hor ,

ml H Vzroicrher, Z. anorg. allgem. Chem., 147 (1925) 91; H. Freundlich,
llarchemic 11, 55, Leipzig 1932.
K{{ptzzag/zgfl’:nii] ond 1. Fankuchen, Nature, 139 (1937) 923. 941 111
> ]. D. BC I and . Fankuchen, /. Gen. Physiology, 25 ( .
3 {ZDS Becranra K. J. Palmer and E. O. Schmitt, J. Cellular Comp. y
ok 127](112:&355@ F.O.Schmitt, /. Cell. Comp. Olglzyézoé., 17;{19131125332
H dei : 808; K.Hess, H. .
.Gundermann, Ber., 70(1937) 1808; ssig
V\; PKHiIl-Ii;Spso?xfl,d]\]/an;Lr;lfssensc/wjtm, 26 (1938) 184, 27 (1939) 593, Kolloid
88 (1939) 40. o
-Z. 1939) 224. ' ‘
5 {:{Séaz;ucf}f’efozfﬁgdlg‘]ggco(bsolzn, Kolloidchem. Beihefie, 28 (1929) 167
Kolloid-Z., 41 (1927) 220. . L. 201 (1935) 831,
5 . Her, Compt. rend.,, 1 I
' ll;{ Bzeorzl?nc:nl:.P\.NI'.L‘SH»VC»Bccrur and H. Zocher, Z. physik. Chem., A 181

(1938) 301.
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that tne interaction of the double layers of their particles
plays an important part in a number of very characteristic
phenomena shown by suspensions. ‘
Fqndamentally there is no difference between sols and sus-
pensions. The principal difference is to be found in the dimen-
sions of the particles forming the dispersed phase. A svst;m
1s called a suspension when the individual particles settle down
w1th1'n a tew hours, whereas in a collodial solution they ma
remain in suspension for days, or when the particles are smal}i(
enoqgh, practically indefinitely. Roughly the limit between sl -
pensions and colloids is given by a particle dimension of abc;ljt
gllrii So the difference is_ only one of degree and not of quality,
ar ar\:ef (;rl)lsr?é ei};_piglc;o tind the same phenomena in suspensions
In the field of stability, however, suspensions do not sho
such a marked difference between stable and flocculated s stemW
?s l.do s?ls, {or the”simple reason that even the individua}i par—S
Si’f@ii tc;mg‘ stable” suspension settle down in a commparatively
Nev.e;theless, on closer examination thera appear to be ver
cl-ealr -dlfferel}ces between stable” suspensions (in which thy
particles retain their individual independence) and ”Hocculated?’
systems (in which the particles adhere to one another)!. These
defer‘er?ces are shown, among other things, in the me(;hanical
Erggertg—giff concentrated suspensions and the sediments formed
A hlghly concentrated stable suspension such as an ague
suspension of finely ground gquartz powder shows the qhe;;uf
menon called dilatancy? A dilatant svstemn behaves ﬁk-e °
Ilgu}d and flows easily under weak stresses; for rapid changeEsL
;)1 .élts shape or large shearing stresses, however, the system
ardens and offers strong resistance to deformation. On re-
Leas%ng the stress the system recovers its original fiuid rle—
perties more ot less rapidly. The same happens in man fh-o
f:i-erré-faly stable suspensions of the proper, very higg Ocora:
I‘ ! . - !

@ mgdl]oazlll,offu;ltlc‘as a suspension of starch in water, of Al,O,
On the other hand, “tlocculated” systems, which may be i
the flocculated state either by the additiorql of ‘eIectr()}i te -
by the use o_f a dispersion medium unsuited to create stibe'lior
. {e.s., quartz in benzene), show a very marked plasticity. Ag 1i T:3t[
weilk stresses they offer a relatively strong resistaﬁcegaarrllsd

L See, for example, E . W. Vv ]
. , nple, E. | - Verwey, Rec. frav. chim., 60
H ]Frsvun{i]hch and' H. L. Réder, Trans. Faraday Soc.,(_’laz‘i(ll)Qgé)B 308
-] W Verwey and | H. de Boer, Rec. trav. chim., 57 (1938) 383,
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behave more or less like a solid, whereas under greater stress
they can be made to flow.

Obviously in the case of dilatancy the electric double layer
creates a strong repulsion between the particles upon their
close approach, so that the particles arc prevented from being
pressed against one another, and easily slip past each other
owing to the presence of the thin layer of liguid between them.
Hence the system flows easily, provided the stresses are suf-
ficiently weak to allow the liquid to flow through the capillary
spaces between the particles. But when it is tried to deform
the dilatant system too quickly, the liguid, flowing in the
narrow capillary canals between the particles, cannot follow
these movements, sa that further displacements are inhibited,
and the system behades more or less like a solid.

This explanation 1'\3 corroborated by the fact that the elec-
tric double layer may be substituted by a thin lubricating
film!. Thus, for instance, a mixture of iron powder and a
non-polar liquid, forming a dry, stiff, plastic paste, is liquefied
by a trace of oleic acid, forming a strongly dilatant {luid.

In a plastic sediment the particles adhere to each other, form-
iug a solid framework which resists weak stresses. But when
greater stregses are applied to the system, the bonds between the
particles are broken and the system flows as a liquid.

There is a direct connection between the properties of dila-
tancy and plasticity, and the density of the sediment of the
suspension. The higher the stability, the smaller the volume of
the sediment formed when the particles are allowed to settle. In
an unstable suspension the particles stick together and form an
irregular and loose building in which the formation of a close
packing is prevented by the adhesion of the particles. In a stable
suspension, however, the particles settle individually and form
a dense sediment, because the short distance repulsion permits
the easy sliding of the particles against each other. The same
effect can be obtained by a lubricating film; the sedimentation
volume of, e.g., finely divided iron in non-polar liquid is greatly
reduced by the addition of a very small amount of cleic acid.
In accordance with these volume relationships we find that the
sediment from a stable suspension adheres firmly to the bottom
of the vessel; that from an unstable suspension, however, can
be easily redispersed by shaking.

These phenomena play an important part in many technical
applications of colloidal systems, especially of suspensions, in
the properties of the soil, etc.

As an example we mention, for instance, the various methods

1 E. ].W. Verwey and ]. H. de Boer, Rec. frav. chim., 57 {1938) 383.
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used in the ceramic industry to give the objects to be baked
the desired shape.

According to classical ceramic methods the finely powdered
material is mixed with the proper amount of liquid to form a
plastic paste of appreciable mechanical strength but easily de-
formed; it is given the desired shape by pressing, moulding,
etc. Very often the ceramic mass consists for a considerable
part of day, or, if other materials are required, contains a
small amount of clay as a binder. Highly plastic clays appear to
consist of extremely fine, blade-shaped, particles. Under suitable
conditions such a particle form is known to favour a rigid
network, as mentioned in the preceding section when we dis-
cussed the gel formation. It is found that the plasticity of these
masscs 1s decrcased by the addition of such ions (for instance
OH~™) as increase the stability of the negatively charged clay
particles, showing that a certain degree of flocculation and
aggregation is actually responsible for the lasting deformability -
and the coherence of the plastic paste.

Another ceramic pProcess starts from a suspension containing
considerably larger amounts of liquid. A rather concentrated,
mostly aqueous, suspension of the powdered material is poured
Into porous forms of absorbent material such as plaster; the
porous wall rapidly absorbs the water, so that after a short
time a stiff layer of the dispersed particles is formed on the
inside of the form; this layer remains in the form when the Test
of the suspension is quickly poured out of it. The layer is then
removed from the porous form without losing its shape, and
after drying it can be baked. By this method all sorts of objects
(crucibles, ctc.) can be made from all sorts of materials, such
as clay or porcelain, but also from simple oxydic materials as
aluminium oxide, zirconium oxide, etc. The suspensions used

must satisfy special — in cach case different — conditions with
Tespect to particle concentration, py of the medium, electrolyte
content, etc., in order to ensure all phases of the process to
be saccessful. These Tequire a sufficient degree of fluidity,
which, for the clay suspensions, meang a certain degree of
stabilization, On the other hand the compilation of the particles

tluid into the pores of the plaster form; the oxidic materials
must accordingly be applied in concentrated, rather unstable
suspensions. Similar conditions are required for a sufficient
shrinkage, which facilitates detaching the object from the mould.

An industrial application of suspensions which is of a more
recent date is the formation of a deposit on a conducting
substratum by electrophoresis. This process’is used, for in-
stance, in the preparation of thin emitter layers or thin ceramic

S SUSPENSIONS 17
§5
. . . .
insulating layers as applied in various t[ypes of tehl:ct;*lfczi:;fggi e
i xamples are ‘
tubes, radio valves, etc. Other ex :  cectrodeno”
1tI synthetic resins; sometimes :
sitton of rubber latex or syn o n the
{ { ic form afterwards. Especially
aim of removing the metallic ' ds. Tspecialy when
it I ; ting adheres firmly to
it 1s necessary that the coa ‘ y fo the suv
i Id be present in order to p
stratum, a depolarizer shou ' 0 prevent
i i This condition can o >
sas formation at the e]ectrpde._ | . o1 7
§s’atisﬁed by using an organic liquid of stlfﬁcxent Tt‘)eIe<L:ltrf00IL)]7;L:i:
dissociating power, as a dispersion medium ™. It l‘égs ee found
that the degree of colloid chemical st'al?xhty of the ngp sions
plays an important part in determining the con fmocl])e e
quired for a satisfactory coating. For 1Elhe formell)tg)or; So ;1\x lthgugh
it i ] 8 se stable suspe .
it is necessary, as a rule, to use s le suspensior _
in a coagulating suspension the pé[zrtlclf:s dw111 'ttli—llc?coevihé?e
> : > t deposited on 1it. ) ¢
wards one electrode, they are no : 1 )
is a close resemblance between th{f form?tlor} ojt:ialdsegglvcixgtlslfg
ravitati f a deposit by an electric ficld.
gravitation and that o ] ric ted, Dbviously
it i i les should move individually
it is essential that the partic 1 Ly towarcs
;i ence of the repulsive
the surface to be coated: in consequ ‘ the st
acting between the particles, concerlltran(én \gll_l fg1r§t rlt;z :?lfiree;sg;i
ertain limit, the electrode being su '
there up to a certain limit, . g surrounded by
nsion from which the p:
a layer of a concentrated suspe b the parficles
i i elly on to the adherent lay
are finally deposited systematice erent layer on
>nee h a concentrated layer is p
the surface. The presence of suc ¢
by the fact that a vertical, downward flow of pirgdcsspcitrﬁi(;cg
i ifi i this more concentrated su
the higher specific gravity of K spension
i i j the electrode. Since P
is sometimes observed just below . lo Since ne par
i ossible from agglomerating,
ticles are thus prevented as long as p . » ]
a rather compact deposit is formed showing much greater mg;ﬁg_
nical strength than that from an unstablg suspensuén,Jc an ad”
hering to the electrode when the latter is removed from th
S 2
suspension 2.

I?l the coating of the glass surface of fluorgsce'nt larr;ﬁs aand_
cathode-ray tubes with fluorescent powder this is Cils% B{d Ee
plied from a suspension. In this case, too, due regard shou

ald to stability conditions.‘ ' ‘ ‘

P In agriculture, the density Ielat1ops dlscussed in the aborv?
play an important part in the determination of the dram;ge{p 2
perties of the soil. In order to promote the growth.o P ar}rf,
the soil needs an open structure, so that water and air Iia‘r(lj ci ;
culate freely. A loose structure is maintained if the collot 'Sﬁ)
the soil are in a flocculated state. Normally the salts, especially

1 . H. de Boer, H. C. Hamaker, and E. ]| W. Verwey, Rec. trav.

c/zém.i_lssc(mé?mési.“ and E. ]. W. Verwey, 7rans. Faraday Soc., 36

(1940) 180. )
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él;f:atbégalént C?H, fon, present in the soil, keep the system floc-
- ne of the grear dangers of tnundation by sea-warer is

centration of sodium chloride present in sea-water is maintal

éhe flocculated state s preserved and no permanantalgffrliged‘
c}?l?;?idguits afte]r E-Iedamung of thf: tlooded country the sodiurlrf
chloride is Wélsgseqsélgdl;y ticll:; ra_xﬁ ?nd thedcolloids in the soil
sattable for plant-growth and v‘; horlg o remanoai e Un-
the soil is ruined for many years tyo o tgfregenerat& w0 that
known for ages, but they are now Eiome. g, ks .havel peen
and a method has been develo edu\r:fhgrlitOOd b'y collotd horton,
the period of restoration. It fonsistslin ZOUSIdGIHbIY $11_0It8115
| . . p [ ‘

Cfd'; lons (in the .form of gypsum) to thes-etlséliiyoidcti;]téog Qf
ol the prior analytical determination of the Cl" content =

§ 6. Emulsions

gs;rlsegia paruvclles are in the crystalline or the amorphous srate

an ersvcelz exc uded _from our considerations the case where thé

bersed inaterial is a liquid, as in emulsions. The Teason is
_ _ 3 e primary stability condj-

;1;1;5 ciJf elmﬁllsmns apd of “suspensoids”. We have sgenothcgt

m tge nsolu el_or_ shgh_tly soluble substances can be peptized

oo proper liquids, either spontaneously or with the aid of

ho\;e amounts of special electrolytes. Under such conditions

how \tf[eor 1tf1s ﬁlnposmble to obtain a stable emulsion {with th-é

Verypspergiaci the mercury sol, but here we are dealing with a

case owing to the metallic i '

: ’ _ properties of the disper-~
gd_ phase). The preparation Qf an emulsion necessitates thfi(-adr—
i _ : janic electrolytes containj

};Ei}lgc?é{;ogigble 1cins (}ﬁl_ts of the higher fatty ac)irds the rflaiglllntg

) » or lyophilic colleids), or all g i fvi-
| r . orts of fin -

de%ls_ohgsl (g{aplnte, Fegoq, etc.), may funcrion as sucily i
. :15 ehaviour of emulsions and the effect ,
JIng agents has been explained In terms of

}p_ropertles of the electrie double layer
lquids. We return to this point later

th%cl)ry of the double layer.

e stabilicy of an emuyls;

e ulsion, once formed, towards el -

sﬁlsso?dgfd to .thc system shows close reseinblance to ihzcttrgf

oo sbensions of solid particles, In thig respect emnulsions
a; compared with normal lyophobic colloids. Accordingly

of these amulsi-
the very special
at the interface of two
on when discussing the

babi i
abie that these sols are peptized by a capiltary-active impurity ion

g7 VAN DER WAALS—LONDON FORCES 19

in many cases considerations given for the latter may be applied
equally to the case of emulsions.

§ 7. Van der Waals-London attraction forces

From the various phenomena discussed in the preceding section
we may conclude that the forces acting betwean the particles
owing to the interaction of their double layers are not the only
forces to be considered in order to understand thz physical as-
pects of colloids ‘and suspensions. Several phenomena suggest
the presence of long-range attractive forces, and the agglomera-
tion of the particles in a rapidly coagulating sol indicates that
under some conditions there are attracting forces prevailing
for all particle-distances.

In 1932 London! gave a quantum-mechanical explanation
of the non-polar Van der Waals forces, the weak attracting
forces acting between all molecules and responsible for at least
part of the deviations from the ideal gas laws. These universal
attracting forces are explained, according to a first approxim-
ation of this theory, as second order forces berween neutral
atoms, the attraction being due to the polarizaticn of one atom
by the fluctuations of the charge distribution in a second atom,
and wice versa. The theory shows that these forces may be as-
sumed, as a further approximation, to be purely additive, i.e.,
cach atom attracts all other atoms, and is attracted by all. Hence
it 1s assumed that these forces act independently of the presence
of other atoms, and are therefore not influenced by the medium
through which they are transmitted . Because of this additive
character of these forces tlie attraction between two colloidal
particles containing millions of atoms will be appreciable,
although the attracting force between two atoms is rather weak.
According to the theory the force between two atoms decreases
with the seventh power of their mutual distance, and therzfore
has rather a short range. In consequence of the collaboration
of all atoms of one particle, however, the acttracting force
between two particles decreases much more slowly with the
particle distance. Long-range attractive forces, which under

U F London, Z J. Physik, 63 (1930) 245.

2 It has been urged by L. Langmuir, J. cliew. phys., 6 {1938} 893, in a paper
with which we will be dealing extensively later on, that this assumption is very
improbable. [t may be stated, however, that it cannot be far from the truth. If the
two atoms or molecules considered are far away from each other, and many other
molecules between them, the mutual polarization can be considered to act through
a contineum with a definite dielectric constant. As the fuctuating dipoles are due
to rapid electronic motion we need only to consider the electronic polarization of
the medium. Hence in a condensed phase, with a relractive index of about .4,
the attracting forces are maximally reduced by a factor 2 in consequence of the
presence of other molecules or atoms. As the theory so far gives only the order
of magnitude of these forces, it is hardly necessary to dwell upon this correction.
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by several authors using very different ways of trcatment. We
only mention here the work of Bergmann, Low -Beer and
Zocher®, of Derjaguin.? of Levine and Dube® and
of Corkill and Rosenhcad, ! all of whom studied, as
Hamaker had done, the problem of two particles screened
off by their double layers. In the paper by Langmuir?® men-
tioped earlier, this problem of two particles is only considered
as a limiting case, and the theoretical discussion centres more
upon the whole of the charges (particle charges and iomic
charges in the intermediate liquid) forming together the col-
loidal system.

The results of these authors are conflicting on some essen-
tial points, even on the important question, of whether the
double layer interaction produces attraction or rcpulsion. A
discussion has been started in the communications to the
Symposium on the Electrical Double Layer, which the Faraday
Society had intended to hold at Cambridge in September 1939,
But this discussion has not removed the contradictions.

We have investigated the same problem zxtensively and be-
lieve that these difficulties are removed to a large extent by
the considerations given in the following chapters. The dis-
cussion of the papers of the authors mentioned above has
been concentrated in an Appendix, in which it is shown in
greater detail how the difficulties may be solved and the
divergent treatments and results made to conform with one
another.

The publication of our work was prevented by war conditions,
except for a few. preliminary papers, partly in the Dutch

language 7.

1 P. Bergmann, P. L6w-Beer and H. Zocher, Z. physik. Chem., A 181

(1938) 301.
2 B. Derjaguin and M. Kussakow, Acfa physicochim. U.S.S.R., 10

(1939) 25, 153.

B. Derjaguin, (bid., 10 (1939) 333.

B. Derjaguin, 7rans. Faraday Soc., 36 (1940) 203.

3 S. Levine, Proc. Roy. Soc., A 170 (1939) 145, 165; J. Chem. Phys., 7
(1939) 831.

S. Levine and G. P. Dube, Compt. rend., 208 (1939) 18(2: Trans.
Faraday Soc., 35 (1939) 1125, 1141; 36 (1940) 215; Philos. Mag., (7) 29
(1940) 105: /. Phys. Chem., 46 (1942) 239.

4 A.J]. Corkill and L. Rosenhead, Proc. Roy. Soc., A 172 (1939) 410.

5 I. Langmuir, /. Chem. Phys., 6 (1938) 893.

6 E.].W.Verwey, Trans. Faraday Soc., 36 (1940) 192; Chem. Weekblad,
39 (1942) 563; Contribution fo a symposium held at Utrecht by the Neder-
landsche Chemische Vereeniging on July 3rd and 4th 1944. See also Philips
Research Reports, 1 (1945) 33.

7 (Note added in proof) Meanwhile part of the work has been reviewed in:
E.]. W. Verwey, /. Phys. and Colloid Chem., 51 (1947) 631: E. J. W.
Verwey and J. Th. G. Overbeek, Trans. Faraday Soc., 43 (1947) (in press).



II. DISTRIBUTION OF THE ELECTRIC CHARGE AND
POTENTIAL IN THE ELECTRO-CHEMICAL
DOUBLE LAYER

§ 1. Fundamenials

The theory of the electric or clectro-chemical double layer,
generally present at a phase boundary if one of the phases is a
solution containing free ions, was devcloped already many years
ago.

As considered 1n more detail in § 5 of this chapter, the double
layer is a result of an unequal distribution of positive and
ncgative ions between both phases. Nevertheless. as stated in
Chapter 1, § 2, the lonic nature of both charge layers is gener-
ally neglected to some extent by basing the theory on the sim-
plifying assumption of continuous charges in both layers. In most
colleid systems we have to do with solid particles. In that case
it is customary to assume that one charge layer is a homogeneous
surface charge; an approximation which will be better in the
case of metallic partcles than in that of polar crystals. The case
of an emulsion. where both charge layers are present in a liquid
phase, needs separate consideration. Furthermore, the solid par-
ticle is generally assumed to have either a plane surface or a
spherical surface. The charge in the solution surrounding the
particle extends, as we have seen, some distance into the liquid
phase, as it is carried by dissolved ions. It is equally thought of
as distributed homogeneously in a direction tangential to the
particle surface. Hence it is assumed to be only a function of
the normal coordinate, as a continuous space charge gradually
decreasing in the direction of the normal on the surface.

A first approximative theory for the electro-chemical double
layer was given by Gouy?, Chapman? and Debye and
Huickel? In this theory the average charge distribution and
the corresponding clectric potential function have bkeen com-
puted on the basis of a number of further simplifying assump-
tions, one ot which is that theionsare point charges of negligible
dimensions. Hence. if we suppose the surface charge to be in the
plane x = 0 (or for spherical particles with radius a in the
sphere r = a), the space charge extends between x = 0 (or
r = a) and infinity.

G. Gouy, [. physigue, (4) 9 (1910) 457; Ann’d. phys., (9) 7 {1917) 129.
D. L. Chapman, Philos. Mag., (6) 25 (1913) 475.
3 P'Debye and E. Hickel, Physik. Z. 24 (1923) 185; 25 (1924) 97.
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We now apply Poisson’'s cquation, stating that El ivir)(,;
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, dl 62 0'2
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i . Chem. Phys., 2 (1934) 767. '
; %—IGB K(?:rlézgiomdff,[ Contripution fo a sympoesiuit held at Utrecht by the

Nederlandsche Chemische Vereeniging on july 3d and 41 1944.
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will ¢ ] > isfi {
approximately be satisfied; in some cases, however, it should

bCT}f)C;U;ZIi:; g‘fm‘j (thﬂt °q. (2) has only a limited validity.
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to simplify the}; e Ioca excess of ions of one sign. In order
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P = ve (ny — n_) = —2n ve sinh ('Uel,b/kT) (2a)
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The la ’ 2ne’o*y[kT (2b)
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we now have an ex ession fO he Cha g ens

which may be inserted ;
] ‘ nto eq. : i
mental differential equation: % (1 when we obtain the funda-

4 8rnve
AY = . sinh (ve/kT) (3)
For small values of ¢ this equation simplifies to
__ 87ne?u?
AY = T = x2
with: 2 8&5{2 X
kT
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approximation. For the double layer in colloid systems therefore
we should preferably apply the complete differential equation
3).

‘It may seem rather surprising that eq. (4) has, nevertheless,
often becn used as a starting point in colloid chemical problems.
We may observe, however, that one was more or less forced to
use the simple equation for the double layer surrounding a
spberical particle, because of the mathematical difficulties in-
volved in the application of (3) to this case. And these diffi-
culties grow 1into nearly unsuomountable obstacles when we
proceed to the interaction of two such double Iayers. Fortunately,
the application of cq. (4) proves to give the smallest deviations
in the case where the spherical double layer theory has its best
side, i.e. that of a small particle imbedded in an extensive,
strongly ditfuse, double layer. We shall return to this point later
on. Inversely, it means that the use of eq. (4) meets with the
strongest objections for a plane double layer. A serious drawback
of this equadon is that it contains both positive and negative
ions in a symmetrical way, and cannot therefore explain the
outstanding colloid chemical fact of the predominating influence
of oppositely charged ions upon the double layer.

§ 2. Theory of the flat double layer

For a flat double layer, ¢ 1s only a function of x (the normal
co-ordinate), and A¢ may be replaced by d*¢/dx By intro-
ducing the substitutions:

__ 87ne’v?

y = vey/kT = veY,/kT x*= kT and & = «x

the fundamental differential equation (3) is brought into the
simple form '

d? . ,
ﬁé = sinh g, ] (39
from which, considering the boundary conditions (y = 0 and
%? = 0 for & = o0), we obtain, after integrating once:
&
dy S : y
— = —12coshy —2 = —2sinh ) (5)

! We here follow a paper by E. ]. W. Verwey and K. F. Niessen,
Philos. Mag., (7) 28 (1939) 435. A similar derivation has been given by A. J.
Rutgers and Ed. Verlende, Proc. Acad. Sci. Amsterdam, 42 (1939) 71,
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I1
and after integrating '
G a second ; iti
oy, fetrating a time (boundary condition =4,
i z/y z —&
IRICTNN N o ift_(efz—l)e ;

ez/2+ 1 — (ezfg _ 1) e-—f (6)

In order to i i
obtain these solutions we fiest write the differential equation 39

in the form:
d?y
ZTj:ey~e“y “dldgy - d
a7 or Zd‘f.a?_:(ey—ey)d%-
o S
L ] dy 42
whence : : (FE‘) = ¢” + 7 + C

The constant C 5 obvij i
therefore 2 C o Zl}ofzfly,: f%l) ‘one single double layer (for £ = oo and
i ~ - .

and we find {with the minus
values of » the derivative dy/dé
positive from the surface into the

sign before the square root,
1s negative (cf. Fig, 1)
bulk of the sclution) ;

since for positive
if & and & are counted

iy —
af = —Ver y ey T _ (&7 — ey
or: d)’

or substituting « = ¢*/2

‘ng___iia da '
s — Iﬁa——lgm:dln(a—-l) —d lnfa+1)

Hence the integration yields :

eyf? —1 .
, In Y ==&+ 6
et 4]
Th iti
e boundary condition y = z for S = 0, detérmines the value of C,
zfy
C‘2 == In e?/ _—'_l
e

Inserting this value of Cy we abtain eq. (0)

Eguati 3 (vi i
. fulnctj‘é);ll (?).}}gwu‘lg the c}cctnc potential in the solution as
Firey et r0I the chst;!uce from the plane surface, though 1t
st fil}il a;}‘er complicated, has Toughly a simple uexp-on-enti;l
Craling from y = z, or Y= ¢y at the surface to ¥ = 0 for

may be seen more clearly by con-

x'd= o0, The character of (6)
sidering a few approximations; it may be simplified for g num-

ber of special cases.

§ 2 FLAT DOUBLE LAYER o7,

(a) z <€ 1 (at room temperature, in agueous solqtion, iden-
tical with vy, <€ 25 millivolts); in this case we simply have
(also obtainable directly fram eq. (4)):

g = 7 or N 7)

For such small values of z, the quantity 1/, therefore, ob-
viously has the significance that for this distance (xx = 1) the
electric potential, falling off purely exponentially in this case,
has reached the 1/e fraction of its value at the wall. The centre
of gravity of the space charge also coincides in this simple case
with the plane xx == 1 or x = 1/x, and the characteristic length
of Debye (= 1/%) may then be called the “thickness” of the
diffuse layer. ‘

(b) z > 1. In this case the initial slope of the potential curve
may be read from the approximation valid for small values of §:

g:z—ez/‘z.f (8)

from which we see that this slope increases rapidly with increa-
sing values of z.

A very useful approximative eguation is obtained for large
values of x (3 1):in that case (6) can be simplified to:

y = 4.e% or Y == T e X 9
ve

Hence the outer part of the electrial potential curve again
has a purely exponential form (just as, in case (a), where z <€ 1,
for every value of x), and it is noteworthy that this exponential
“tail” appears to be, for these large values of z, independent of
z, If extrapolated towards x = 0, this exponential part of the
curve appears to start at z == 4; hence for monovalent ions in
the solution the curve seems to come from the point &, = 100
millivolts; for bivalent ions, from i, = 50 millivolts, etc.; for
equal values of xx the electric potential in the tail is therefore,
at all points in the second case, half the value for the first
case, etc.

(¢) z arbitrary; €3> 1. A somewhat better approximation,
demonstrating simultanecusly the transition between case (a)
and case (L), may be derived for arbitrary valucs of z and
great distances. Eq. (6) may zlso be written:

by ed He
y = 2ln 17"{_ wirh:’,V:e !

[~ " ez/"'-{-l'
and may therefore be simplified for £ 3> 1 to

o

gy o 2ln (1427 .¢75 o 4pe 5, (10)
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?:r exr;lrissioln which, for small values of Z, again gives eq. (7)
fo 15 Lc.z)“(\;iadugls] (?i_z,lcq. (g[) This equation is especially usefui
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N9 (7),24

Fig. . Electric potential function, y

electrochemical double layer according to the theory of Gouy-
Chapman. Curves are given for z =8, z =4, =9 anyd

z2=1 (z=ve YJbT: y = pe PIRT & = %), Doteed lines :
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S 21 (eq. (10)).
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As expressed in eq. (10), the tail of the electric potential curve
approaches asymptotically, with increasing values of z, the
simple curve corresponding to eq. (9).

The influence of the valency of the ions upon the electric
potential curve should be considered in some detail. Fig. 1
holds for

25.6

.z millivolts

A —_—
Yo —

(corresponding to T = 298° K.); hence the curve z = 8 holds,
for monovalent ions, for ¢, = 205 millivolts; for bivalent ions,
for 4, = 102.5 millivolts, etc. Furthermore, the quantity x Is
proportional to the valency v. Hence for bivalent ions the ex-
ponential tail decreases twice as rapidly with the distance as for
monovalent ions. From this we sce that substitution of mono-
valent ions by the same molar amount of bivalent ions in the
solution lowers the electric potential at a given distance from
the surface, tfor two reasons. If, for instance, the surface poten-
tial is 205 millivolts, the transition to v = 2 implies that we
must now use the curve z = 16 instead of z = 8, which lowers
the electric potential for equal, large values of xx by a factor 2.
For equal values of x the increase of » gives another decrease
of the electric potential (in the outer part of the curve by a

factor e**). It should be noted that this is true only for large
values of z; the equation for z<€1 gives, in the same case, only
a decrease of the potential due to the increase of % in the
exponent. In fact, as stated before, the approximation for small
values, it used outside of its validity region, accounts insuffi-
ciently for the effect of valency.

The influence of the electrolyte concentration is expressed
entirely by the corresponding variation of x; this quanccy is
proportional to 1”7 In consequence of an increase in ionic
concentration by a factor 10, the ¢ (x) curve is concentrated
more closely to the wall by a factor 110 (the same value of
the potential is now reached at a distance 1710 times smaller).
The extension of the electric double layer for various ionic
concentrations is shown in table V (¢ expressed in moles/liter):

TABLE V

EXTENSION OF THE DOUBLE LAYER FOR DIFFERENT CONCENTRATIONS
AND VALENCIES

i mono-valer;t -i.onsr bivalent ions
c 1/x [/
- E— ) S
1075 ‘ 1075 ¢m. 0.5 X 107° cm.
103 1075 cin. 0.5 X 1078 ¢em.
0.5 X 1077 ¢m.

10-1 I 1077 ¢cm.
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For moderate and large values of z, it is true, the centre of
gravity of the diffuse charge is nearer to the surface than the
plane x == 1/%: but, as may be secen from Fig. 1, the guantity.
1/x is still a rough measure of the "thickness” of the double
layer.

It may be stated conclusively that an increase in the valency
of the ions and an increase in their concentration have a similar
effect upon the “diffuse” layer, viz., a more rapid decay of the
electric potential, and, therefore, a contraction of the diffuse
laver, so that the two charge layers come more closely together
and the charge in the selution becomes less diffuse.

We are here faced with the question of the distribution of
the charges, which will now be considered in more detail. Quan-
titatively, the electric potential ¥ and the charge density ¢ are
directly connected according to eq. (2), and more especially eq.
{2a). Since the sinus hyperbolicus increases, for moderate and
large values of p, almost exponentially with increasing v, we see
that thie charge density in the diffuse layer falls off still more
rapidly with increasing distance from the surface than the
electric potential. This is illustrated in fig. 2, on a modest
scale, for the still rather low value z = 3. We also give the
local ionic concentrations n_ and ny as a function of x,
showing that, already for this rather low value of z, the space
charge (proportional to n_ — n,} is almost entirely a result of
the accumulation of the negative ions in the neighbourhood of
the wall. This means that there is already a considerable dif-
ference from the state of affairs which would be obtained by
using the approximative equations for small values of z For
in that case there would be a linear relation between < and g,
and the increase of n.. would equal the decrease of n. This
throws a fresh light upon the origin of the inadequacy of the
approximative equations for small potential as soon as z exceeds
the value 1; these equations do not account for the great dis-
congruity existing, even for moderate values of the potential
between the parts played by the positive and the negative ions,
respectively.

The total charge of the double layer (i.e., the surface charge
per ¢m?, ¢, or minus the charge of 1 cm? diffuse layer) may
.be obtained direct from the potential tunction. To this end
we make use of the general equation

oo

P - T
T _v/ pdx = ‘171‘.[ dx? de = 4 (5)1:0 (1

V] ]

from which we see that ¢ is proportional to the initial slope
of the electric potential in the diffuse layer. The latter quan-
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Fig. 2. Electric potential function, Y (£), and local concentrations of posi-
tive and negative ions, #, (x} and ni_ (x), in the neighbourhood
of a positively charged surface, for a double layer potential

76.8

by = —:- millivolts (2 == )
" v

tity may be read from eq. (3) by rewriting this relation:

db _ wed o )
dx I (5a)
. VS&T V2coshy —2 = lf 37”kT . sinh (%)
and therefore
(d—“b) P ‘/8ffﬂ 12 coshz —2 =
dx (5b)



32 DISTRIBUTION OF CHARGE AND POTENTIAL I

and accordingly we find, by inserting this into eq. (11),

- S—_—
_ |/ nkT S \/2nekT
7= l 5z V2coshz —2 = I/»{z;«-v—-» . sinh (—22:) (12)
This last equation simplifies, for small values of z — vedo/kT, to
o &z . . 1/ né‘m
7 = E-% = "/Z_ﬁ've% (13

beEor small double lgyer potentials, therefore, the double layer
aves as an.elec'tnc condenser (“plate distance” 1/x) with a
constlant capacity (i.e., independent of the potential). For larger
z values, however, we find (in accordance with what was said
above about the distribution of positive and negative ions in
the nelghbourhood of the surface) that the relation betwezen «
apd (N 1s no longer a linear one, but that ¢ increases more ra-
pidly with the double layer potential Y. The capacity of th
goubéle Iay_er therefo;e, according to eci. 12), increasgs consf
llnecrraea S);n;m;h mcrlea;mg double _Iayer potential, because of an
ereasi; theci;fl:;f ation of the diffuse charge in the neighbour-
. S.umlar changgs in the charge distribution occur if we Increase
lonic concentration or the jonic charge. From (12) we read that
for a given value of the double layer potential, the charge ié
proportional to 11, An increase of the lonic L:harge on th
sﬁgfgehadnc_l, gglfves a coniiderable increase of the -dou};le layef
P gomg from =1 to p=2 t is increas
a factor 2 for small values of 4, an=dhiycgari§ic}1$ II:rCI-easfe e
for larger values of Ly ser factor
| do?}i(leeh?agee rul:gs(t}lﬁ;t{-}egd EhuiheXtE}nSinyC IElha properties of the
» g to the ouy- apman e i
Eﬁza?zfs t}&? tlﬁeory w;ll be our starting poiné) in the f%LIIﬁJt\lx(f)ilrllz
appll?ox_in:lati e lcave paid spec1al'atte.ntionl to the fallacies of the
pproxima (;)fr:c oa small po?entials‘m this case, for the reason
The 1 ha f‘eB een uset_i In treating colloid chemical problems.
e : o e€ljaguin, mentioned ecarlier, on the inter-
ction of two flat double layers, for instance, is based on th
&mple equations. From what has been said about this .
p'roxxmatlve'theory of the double layer it tollows that it ot
give any satisfactory results. ‘ o canmot
prfp eizztgfg:fat{;]m pf thg theqry, al]gwiqg for the individual
peoperties of inlg g‘)ns, including their finite dimensions, will

In the equations derived i i
_ In sections | and 2 we h implifi i
that the electrolyte is a symmetrical one (V+ =y :EWe) S?Iﬁgfﬁisbﬁxs?isfsi:?lgg
. . Y

th i
e remark that the valency of the ion carrying the same charge as the surface

i
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has only a minor influence upon the distribution of the charge and the potential
in the double layer. This can be proved in the following way: —

In the general case that Vi F V... eq. (22) reads:

g =@ (V+ n, —v_n_j.

It is now convenient to introduce the equivalent concentration ¢, the number

of ion equivalents per cm3:
vyn, = Nc_}, and v_ n_ = Nc__

in which NV is the Avogadro number, as for & = oo ¢, and ¢_ are identical
(= ¢), which is no longer true in this case for the ionic concentrations. Applying
again Boltzmann's theorem (but now to the equivalent concentrations) we

obtain : (22)
2a

p=Nec (exp (—v e PkT) — exp (v_ e L/kT))

If </ is negative, and g therefore positive, we see that as soon as the absolute
value of Vﬂe\b’/z'/f is larger than 2 the influence of the second term containing
the valency of the negative ions becomes considerably smaller than that of

the first term.
This may be illustrated by the relation between the charge of the double

layer, 7, and the surface potential, Ly which now becomes

‘ NezkT
G' = ' 2‘—, .
i (12’)

. ‘/*l— (exp (—v, € Lo/kT) ~ 1) — i (exp (v_ e Lo/kT)—1)
Vi v_

To this end we consider, for instance, a double layer for which $jy = —51.2
millivolts, and calculate, with the last equation for different values of v and
y_, the equivalent concentrations leading to the same value of ¢ (or the same

value of the double fayer capacity). Choosing arbitrarily the concentration for
1—1 valent electrolytes to be 50 millieg. per I, we readily find the values for

other types of electrolytes from

1 2 1 —2v vy + v
ci, e + T - — ‘j;*—v—— ) — constant.
+ — IR
These values are summarized in the following table.
TABLE VI

CONCENTRATIONS OF ELECTROLYTES OF DIFFERENT VALENCIES LEADING TO
THE SAME CAPACITY OF THE DOUBLE LAYER
(ty 1S SUPPOSED TO BE ~-51.2 mV).

\

| | | |
v__ % v, =1 i v+:2 } vy =3 'i v, =4
e —y !
1 i 50 ‘. 10.7 | 2.06 ! 0.38
2 17 | 105 | 2.06 | 0.38
3 16 10.4 2.06 ; 0.38
4 46 10.4 2.06 0.38

Hence we see that the capacity of the double layer is actually almost com-
pletely determined by the valency of the positive ions, with a charge opposite
‘3
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to that or the surface. The influence of the negative ions is especially small if
the valency of the positive ion is large. For larger values of the surface potential
the influence of the negative ions becomes entirely negligible, even in the casc

v+=l.

§ 3, The double layer at the interface of two liquwd phases

The theory described above may casily be extended to the case
of a double layer present at the interface of two liquid phases. !
Such a system has often served as a model for the electric
conditions at interfaces supposed to be present in the living
tissue of biologic objects. Furthermore, the problem has a
bearing on the propertics of emulsions.

Tt will be scen that this case differs from the foregoing one
in that we are now dealing with a double layer consisting of
two diffuse charge layers; in cach of these layers the electrical
potential function is given by equations completely analogous

POTENTIAL
fwater) (o)
-y
- ilxk
0
i)
kel
A
iy X
e tx

Fig. 3. Distribution of the potential at the interface of two liquid phascs
for small values of the total double layer potential D.

Ey o 9&‘; H,o = 81 Ly
Consequently  x, 3x, and  ,(0) == —27 ¢, O

to those valid for the liquid layer of the double Jayer at the
phase boundary solid/liquid considered above. Accordingly the
double layer potential (whichh will now be called D) will be
divided between Dboth liquid phases and the corresponding
potential drop will now occur partially in phase 1, and partially
in phase 2. Tbis is illustrated by Fig. 3, showing the electric
potential tunction calculated for a special case. (Only the

1 E. J. W. Verwey and K. F. Niessen, Philos. Mag., (7) 28 (1939) 435,
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potential due  to free chacges has been given; a pqssﬂolc
Loundary potential drop duc to orientated dipoles cte. in the
interlace has been put arbitrarily equal to Cro). Thcﬂ COTrres-
ponding distribudion of the space charges is shown n Fig. 4. In

¢

—y | 4y

Fig. 4. Distribution of the space charges, corresponding to Fig. 3.

order to obtain more symmetrical equations, the _electrlc
potentials ¢; and ¥, in both phases are measuted fro_ln different
levels. In the state of equilibrium the electrolyte w111' generally
be divided unequally betwcen both phases; the case 111ust_rate.d
by Fig. 3 is one where, for g == £, also m > s, whlc’h’ is
actually the most reasonable assumption, since the solubility
of electrolytes in the liguid with lowest dielectric constant
will geuerally be considerably smaller (so that even 7, > n.).
The double layer as a whole is electrically neutral. Hence

/- g () dx -+ [ 5 (k) dx = 0

— @ 0

. (d¢,) _ (d¢>)
o Uaede = 2 Ny

showing that the discontinuity in the derivative of the pptenthl
at the interface is entirely dztermined by the different dielectric
constants. )

These cquations also give us the division of the double layer
potential between both lavers, as we can make .use‘of (11) gnd
(12), derived for the diffuse layer. By substitution we find
directly

from which we find

Vi sioh (3] + Vi son (3) =0 (4
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in which
veD
kT’

showing that this partition is a function of the quantity

& = l/ n c'
Ny ¢

and of the total potential drop. As
4 |/me
% &

in wlncAh some compensation may occur as a consequeace of
a certain parallelism between n and ¢ we find that a very
unequal distribution of the potential drop does not necessarily
imply that the "thicknesses” of the diffuse layers or the densities
of the c}}a‘rg_e on both sides of the interface differ very much.
The division of the total potential drop, due to the double
layer, between both phases is illustrated by Fig. 5, giving the

_Z)_I"ZZ:A:

mV
250|'
s}

200 —————~—— T F—

ISOL yi,‘(o)
100 ———~——=—~—— - : - i

S0

D= iroasmv

L L !

S T T e R Y PA12
!

Fig. 5. Diftribution of a total potential drop D resp. D’ of 102.5 resp.
205 /mV over two phases as a function of log (M264/m61) = Yog 2*-

fractions 4,(0) and 4(0) for different values of D as a function
of = Especially when the total potental drop is not very larse
and th_e valency of the ions has a low value, we find that th:
- potential drop occurs almost completely in the phase with the
;owhest dielectric constant (and, therefors, generally, the lowest
1onic concentration) as soon as the value of « differs appreciably
from 1. Hence, in the system oil/water, where especially the
lonic concentrations may differ in order of magnitude, the
potential drop will mainly occur in the oil phase. For large
values of 4, however, this unequal distribution is counteracted
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by the presence of the sinh terms in (14), which may then
begin to predominate, so that for equal values of « the division
of the potential becomes lcss unequal, though the greater part
of D is still found in the phase where the product ns¢ has the
lowest value.

§ 4. The double layer around a spherical particle

Still neglecting the finite dimensions of the ions, we will now
study the theory of a spherical double layer.

Working with spherical coordinates, the electric potential is
in this case only a function or 7, the distance from the centre
of the particle. The fundamental differential equation can then
be solved explicitely only for the approximation (4). and we
shall therefore consider this approximative Debye-Hickel
theory first.

Accounting for the proper boundary conditions, the solution
of (4), giving the elcctric potential at a point ocutside the
particle surface (radius a) as a function of 7, is

¢ = %.%.e”‘”—”, (15)

and the corresponding relation for the particle charge Qis:
Q = a.s(1 4+ xa). Y, (16)

These cquations are easily derived in the following way. For a ficld of
spherical symmetry we bave

d
A,b:A-l— d(f"’- Y—):zz‘ﬁb,

re Cdr o\ dr

and the solution satisfying the condition that %, = 0 and a: =0 for r = o0,
¥

reads :

ey
A.e

’ =r

as may easily be verified by introducing this value of «, into the differential
equation. The constant A is found by using the boundary condition 3, = L,
for ¥ == a:

A c———xa

Gy = — or A — xa.e
xa

%1

Ve,

and we immediately find eq. (15):

¢ = sba.;ez(“—’) (15)
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Differentiating with respect to £

dfr} = —u,.a. Y (f-lf ¥ye xr'
dr ' o
and allowing lor the demand :
(), =t b
dr /r=a ~ ¢ —_— IS — V5. - u:” ,
we find for the particle charge
Q= as{l + ), (16)

If desired, we can also express the potential into th i h
combining (15) snd (16 yel potential into the particle charge, by

0 e:l.(lcz—r)

T i Taa

For'large particles, for which the double layer thicknass is
small in comparison to the particle radius, these equations must
approaph the corresponding equations (7) and (13} for small
potentials for the flat double layer. Actually, if @ is very large,
in the diffusc [ayer the quotient a/r will be almost 1, and
xa 3> 1, so that eq. (16) will pass into the form

e
Q= 4ra’. 7 = a. ey or 5 = - U
47

For small particles, however, we see that the factor |/ causas
the electric potential to fall off more rapidly than the purely
exponential expression found for the flat double layer. Tf indeed,
the particle is small in comparison to the thickness of the doublz
Iayer, then the charge in the surrounding ionic atmosphere,
going from the particle surface to the bulk of the solution. must
be distributed among spherical shells of increasing volume. This
explains the characteristic difference between spherical and flat
double layers, and shows that the equations for the spherical
double layer are especially important if xa £ 1.

It seems, therefore, worth while also to consider the electric
potential function around spherical particles for larger values
of the potential. i.c. outside the validity region of the ap-
proxuymative Debye-Hickel equations. This has heen done
by Hans Mdller! This author has integrated numerically
2q. (3) or the spherical case, and summarized his results in a
number ¢ talbles.

Y H. Miller, Kolloidchem. Beihefte, 26 (1928) 257.
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The storting point of Muller's procedure was that the outer part of the
potentinl curve, where [ is still small, will again approach the general Debye-

Hiiekel solution :

The constant A, however, is now undetermined, and no longer equal to the
value found from the boundary condition r = @, as in this region the solution
is no londer wvalid.

Miiller therefore chose a number of arbitrary values for this constant. In
this way, starting from a given outer part of the electric potentia} function, he
calculated pumerically the curve in the direction of the particle by determining
successively and proceeding in small steps the derivative along the whole curve
with the aid of the complete differential equation (3).

Comparing the results of Miiller with those corresponding
to the Debye-Hiickel equations, we find that the dif-
ferences are not very large, though it should be considzred that
Miller’s tables do not go to very high values of the potential
where the deviations will certainly be higher.

If we choose the particle radius in such a2 way that xa = 0.2,
we find in a definite case the following values of ¥, compared
with the values for the Debye-Hiuckel curve with the same

outer part.
TABLE VII

ILLUSTRATING THE DIFFERENCE BETWEEN THE APPROXIMATION OF DEBYE
AND HaCKEL AND THE THEORY OF MuLLER FCR SPHERICAL PARTICLES.

_ved
| Y=g
ar » (r — a) i
i Miiller D.H.
i
02 0.0 } 2.83 278
0.5 0.3 0.826 0.825
10 0.8 : 025 ! 025
|

In the foregoing section we have seen that the deviations
(even for these rather low values of z) are much larger in the
case of a flat double layer. This may be shown, in addition, by
the following table, containing a comparison of ey, (6) with
eq. (7); for eq. (7) we gave z the value 2.78 again, and for eq.
(6), z was cbosen so as to make both curves coincide in their
outer parts,
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TABLE VI

DIFFERENCE BETWEEN THE LINEAR APPROXIMATION (EQ. 7) AND THE
EXACT EQ. (b)) IN THE CASE OF A FLAT DOUBLE LAYER.

! * = kT
zX | sy
\
\ eq. () eq. (7)
R e . B R
0.0 | 3.44 | 2.78
03 2.28 2.06
0.8 | 1.30 .25
1.5 ! 0.62 0.61
3.0 0.14 0.14

A comparison of Loth tables is also instructive, as it reveals
the fact, referred to earlier, that the potential decays much
more rapidly in the spherical case than for a flat double layer.

That the Debyce-Huackel approvimation is so much better
in the case ot a spherical particle, for the same value of the

double layer potential, especially when the particlz is small in |

comparison to the thickness of the double laycr. is ecasy to
understand. The potential decays rapidly with incrcasing distance
from the particle, and accordingly reaches hish values only in
the comparatively small volumnc close around the particles.
Hence this part of the potential curve will bave rather a
small influence upon the form of the curve in the entire diffusc
layer, as it comprises only a small part of the total space charge.
In a similar way we may understand another remarkable point
to be derived from Miller’s tables. For a flat double layer
we found that the form of the electric potential curve is
radically changed by an increase in the ionic charge. Miller's
data however, show, that for a spherical particle (with za <€ 1)
the valency of the ions in the solution has only a minor in-
fluence upon the decline of the electric potential in the diffuse
layer. Hence, also in this respect the Debye-Hiickel theory
15 2 much better approximation for the spherical double layer
field than for the flat double layer. once we wish to apply this
theory to cases where the potential is no longer small.
Summarizing, we may state that the application of the
Debye-Hliickel eguations is only feasible for spherical
particles when their dimznsions and the electrolyte concentra-
tions are small enough to satisfy the relation xa <€ 1; in . that
case it will give rcasonablz results, even when the potential is
.no longer small. For larger particles and (or) larger ionic con-
centrations, however, except for the rare cases in which the
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double layer potential is actually very low, these cquations
become practically worthless. As soon as xa 1S farge Lfn cor;\-
parison with unity it will be necessary to account for the
deviations from the approximated theory, either by Muller’s
method or by reverting to the cquatlons_fpr ple}nc surfaf:cs\
derived on the basis of the complcte differential ‘cqua‘tlo?.
For a theory of coagulation, or similac cases'whcrc appreciable
amounts of clecerolyte are always present the system. xa
is usually larger than 1. As a basis of such a theory the D.H.

equations will accordingly be of practically no importance.

§ 5. Stern's theory [or a [flat double layer

1o the following chapters the theory of the interaction of'two
double layers will be built up in the first 'place on the basis of
the plane surface theory, for the reasons discussed in the prgcel-
ding section. Before doing so, however. we must consider
Stern's attempt to improve the theory of a single flat double

er, ‘

layAs 4 matter of fact. the Gouy-Chapman theoty. dis-
cussed in section 2 of this chapter, has a rather serious dcfgct.
which is for the main part a conscquence of thc' neglection
of the finite dimensions of the ions. In diluted so]u_ttons, where
the extension of the diffusc layer is considerable, this neglection
is in some degree permissible; but in more concentrated electro-
Iyte solutions the picture according to. the uny—Chapmaln
equations becomes incorrect in -c§scnt‘m1 details. If the dou? e
layer potential has rather a high value, for instance 300
millivolts, it is clear that, for a 1073 normal solution (v :.1).
we get into difficulties. According to eq. (2) we should find,
in this case. that the concentration of counter-tons nearmthe
surface would be given by c_ = c exp (ved/kT) = 103, el =
160 normal, which is clearly an absurdly high concentration in
view of the finite dimensions of the ions. )
" The difficulty obviously originates from the assumption that
the ions are point charges and can approach the surface charge
without any limit. The theory will consequently become 1n-
sufficient as soon as a considerable part of tbc space ‘charge
should be present, according to the theory. within a distance
of, say, 5 X 107® cm from the surface. .

Stern! has therefore altered the model underlying the
double layer thcory for a solid wall by dividing the liquid
charge into two parts. One part is thought of as a layer of ions
adsorbed to the wall, and is represented in the theory by a
surface charge concentrated in a plane at a small distance 3

1 O. Stern, Z. Elektrochen., 30 (1924) 508.
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from the surface charge on the wall. This distance 3 is assumed
to be of the order of magnitude of several tiines 107* om.
The second part of the liquid charge is then taken to be a
diffuse space charge, as in the old theory, cxtending from the
plane x == 3 to infimty. The decline of the electric potential
in a double layer according to this model is represented
schematically in Fig. 6. Between x = O (the surface charge on

charges -
g ;‘ I ‘53
— A

P

g

A —_—

Fig. 6. Schematic representation of the double layer according to the
theory of Stern,

the wall) and x = 3 (the adsorbed layer), the electric potential
declines linearly, as in the dielzctricum of a plate condenser.
(The relation berween the potential s, the potential drop in
the diffuse layer, and the so-called {-potential known from
colloid chemical work, will be considered in the following
section).
" Assuming that such a double layer could exist at absolute
cero temperature the [liquid charge would be found entirely
in the adsorbed layer; at higher temperatures a more or [ess
considerable part of the adsorbed counter-ions will have
"evaporated” from the wall as a consequence of thermal motion,
and will be transferred into the diffuse part of the liquid charge.
In order to calculate this distribution equilibrium of the
‘liquid charge hetween the two layers (which may be called the
Stern-layer and the Gouy-layer, respectively), Stern
procecds in a way somewhat analogous to the derivation of
the “adsorption isotherm™ of Langmuir.? We will simplify
Stern's cquations by considering only the counter-ions, i.e.

* I Langmuir, /. Am. Chem. Soc., 38 (1916) 2221: 39 (1917) 1885:
40°(1918) 1361
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by neglecring the contribution to the Stern layer ofh the ions
with the same charge as the charge at the wall,_as we have scen
that the latter play a rdle of no importance In the'forma_u.on
of the liquid charge. In that case the Stern eguation, gving
the surface charge associated with the adsorbed icnic layer,
reads:
N, .ve (17

Nk
1] + 7 ¢ 2T

M.n
where N; = the number of adsorption spots on 1 cm?® of .tk}1]e
wall, N = the number of Avoggdro, M = mdecu'lar welght
of the solvent, and # is the specific chemical adsorption poten-
tial of the counter-ion adsorbed to the wall,

Stern's derivation of this equation might t_:asil_y be quprovelc_l lt;lpo:ta byl the
metheds of statistical mechanics, and the equation itself w1(lil ze iable \?J';Elriifz
corrections by a more critical treatment. We have wolrke . owever,d ; ! the
original equation, because we only needed its ge_nera”prc:)portlesa adnf o
precise one hardly seems needed in view of the simplifications and defects
i i ern's picture.

]m’,l(?l{j\;e‘jd::ivsattion ofp his equation runs as follows. If the number ZofFat(quot;Eeﬂ
ions per em? is #), the nwinber of avai}ablergdsorption spots per £ ol eeaSia]
is N,—m,. The number of available positions in the solutlgn*-lis a less 1 m}:
definable quantiry, and is taken by Stern to be N/M per Cmb. ter;]:e, ac]psl::)fbed
Boltzmann's theorem, the thermal distribution equilibrium about the a

layer and the solution is determined by:

. VE 4,,5 + ri',
noo_ 1’\_/,:-7 "o ef hT
n NiM ’
Considering further that =
. g = mve

and combining both equations we directly find eq. {17).

A complete set of equations to determine the dl.stnbutlon .of
the charges and the electrical potcn_tial tunction 1n the entire
double layer may then be obtained i the follpwmg way.

In the first place the discontinuous change in the derivative
of the clectric potential must again be proportional to the

surface charge at the wall, whence

s
£

7 o= 4‘75 (g — L) (18)
in which the prime denotes that the dielehctric :,constant” in the
"imedium” of the condenser of atomic dm_lensnons. between the
surface charge and the adsorbed layer will be difrerent from'
(probabiy considerably less than) that of the solvent. Both ¢
and 3 are unknown gquantities, 1t 1s true; but the wvalue of
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the capacity (¢'/473) of the atomic condenser may be derived
from other information; for instance from the work of Gouy
on the clectro-capillary curve,

The charge of the diffuse or Gouy layer is of course given
by the Gouy cquation given carlier:

) "-ERT el
, == ‘ 2Tn sinh (1227:) (19)

7

As a fourth cguation we have:

s = o o, (20)

so that the four unknown quantities (if ¥, is given) 7, 7y, 0
and ¥ can now be calculated from the combination of (17),

(18), (19) and (20).

For diluted clectrolyte solutions the product M.z is considerably smaller than
N: for instance in 107% molar solutions is # = 1078 . N. Hence, provided that
s and < are not too large (e.g. the exponent smaller than 8) the exponpential
form in eq. {17} is large with respect to unity, and we obtain

veyy + 5
_ NyeMn T RT

7, = N e (21)

i.e. a more simple equation, wbich may be used in many cases instead of eq. {17).

Fig. 7 gives, for a double layer potential v, = 200 millivolts,
and for 1-—1 valent clectrolyte in water, a graphic represen-
tation of corresponding values of 5, /7, Lsand n for a number of
values of the adsorption potential 4 (the latter countcd positive
if work is gained by the adsorption). In the calculations tha
“capacity” of the condenser of atomic dimensions was assuined
to be

;

K = i;— = 107 cm,
47 a

in accordance with measurements of the electro-capillary curve
in concentrated electrolyte solutions (where practically the
whole liguid charge is present in the Stern layer); for
3 =5 x 107 on this capacity value corresponds to & = 6.5.
For the number of adsorption spots on the wall per ¢m? the
» value N; =5- 10" has been taken. The value of 7 is constant
along the curves <s = constant, and may easily be calculated
from eq (18).

From fig. 7 we see that, for more diluted electrolyte solutions,
and for small values of the adsorption potential ¢, only a small
part of the total potential drop occurs in the Stern layer. At
the same time, the fraction of the counter-ions adsorbed to the
wall is unimportant; accordingly for this case the Stern picture
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of the double layer approaches that of Gogy. In 1119'r[3 :clonceri;
trated selutions, however, we find a large potential arop

the Stern laycer.
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Fig. 7. Corresponding values of iy &y and 1 for different values of the

7

= v o= 0. d
adsorption  potential ("T' = 000: o = 0.05: o 0 lOlan
5 = 0.20 eV), for I—1 walent electrolytes and a double layer
potential by = 200 mV.

It i¢ actually this division of the pqtenFial drop b-et\yea:_élcél;c
(wo layers which necessitates the application ofStern’s tioyr;
Fig. 7 shows that 4, is determined mainly by the cdonglef]ga on
(and the valency) of the electrolyte apd only secon farlhy ]y the
adsorption potential 05 The corresponding partition ? t I.e ¢ ag.for
may still vary to a large extent, depchent on tht,1 \L1>_1€ [;

In diluted solutions 5, may be large. if only ¢ 15 large enOugl,
but the course of the potential nevc_rthel-ess rcsemb}es veéy rr;ucg1
that of the pure Gouy picture. This may be readily lﬁ’l ers o_c-t
in view of the large extepsion and, therefore, the small capacaty

e diffuse layer. ‘
OfIS](e:ocrllfintrateﬁ solutions., however, even for small lvalues c?t
% (and small 7,) the potential drop occurs for the main part 1n
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the Stern layer. Obviously the diffuse layer is then "com-
pressed” by the increased ionic concentration to such an extent
that its capacity {owing also to its high dielectric constant, more
than ten times that of the Stern-condenser) exceeds that of
the Stern layer. However, there may be some doubt as to
whether the model underlying this thcory is applicable to such
concentrated solutions.

Stern’s theory may be considered as an improvement upon
the Gouy-Chapman theory in two respects. In the first
place it explains that for large electrolyte concentrations the
double layer capacity docs not rise above the value of about
10uF/em*; according to Gouy's equations it would rise inde-
finitely to values more than ten times the experimental ones.
In the second place it distinguishes between the total double

_ layer porential 4, and the Gouy potential ¥5. As lias been

" shown by recent work on the Agl sol, originating from the labo-
ratory of Kruyt, both these quantities are accessible experi-
mentally by combined analytical and electre-chemical measure-
ments !, although all difficulties, especially with respect to
the determination of <y, have not yet been solved. Thus tar
the data available are insufficient for a quantitative test of the
theory. They show, however, that <, will often have values of
several hundreds of millivolts (in nesative Agl sols, for instance,
it is wsually — 250 to — 300 millivolts), for which Gouy's
theory would give rise to difficulties. As a consequence of the
presence of the Stern layer, in practical cases the potentdal in
the Gouy layer, according to Fig. 7, will rarely exceed 100 or
150 millivolts; the values found cexperimentally, are indeed, of
the same order of magnitude. Using Stern’s theory we will,
therefore, always be able to work with a diffuse layer for which
the Gouy-Chapman equations may be more confidently
applied.

§ 6. {he value of the surface potential and the significance
of potential determining ions. The zéta-potential

In most colloid systems and suspensions the electro-chemical
double layer has its origin in a distribution equilibrium of
“potential determining” lons between the particle surface and
the sol medium. This has been proved extensively by the
work done on the Agl sol!, and it has been made plausible
for many other systems (e.g. for suspensions of extremely
insoluble oxides in water and other media).®

1 E.J. W Verwey and H. R. Kruyt, Z. physik. Chem., A 167 (1933)
137, 149, 312,
H. De Bruyn, Rec. frav. chim., 61 (1942} 5, 12, 21, 189, 193.
2 E.]. W. Verwey, Rec. trav. chim., 60 (1941} 625,
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We may consider, for instance, the system AgL‘water in
some detail. In this case the double Iayfzr pot‘e.ntlal appears to
be determined by the concentration of the silver- or iodide
ions, respectively, in the solution. When Agl particles, as
present in an Agl sol, are in equilibrium with an aqueous
solution containing 107¢ eg. Ag©ions per litre (and t_herefore
10710 eq. I-ions, as the solubility product 'of‘.AgI is about
10710 eq./l at room tempcratura_a), the Agl is just about u}rll—
chatged, hence no double layer 1s present (4o = 0). When t Cclz
Ap*ions are hrought to ten times th1s. _concentratlon _(an
accordingly the I to one-tenth their Qngmal conc-cntratlo_n),
the distribution cquilibrium of the Ag!ions about.the particle
surface and the solution is shifted in _thg direction of more
Ag" at the surface. Hence, whien -cqulhbnum has been newly
established, we will find that the particle slurface no longer
contains equivalent amounts of Ag*® and I~ ions, but a small

cxcess of the former.

The result is that the Agl particles are positively charg'ed,
and the particles are now surrounded by an electro—c_hemic_al
‘double layer. The corresponding doub[e layer potential }Vﬂl
have such a magnitude that the clectrlgal work e, outweighs
the change of the chemical pctential dlffe_reﬂce, Ap .

At the particle surface the concentration of the AgTions
has not perceptibly altered, as the excess of Ag™ carrying the
positive particle charge is only a very small excess 1n com-1
parison to the amount of Ag' normally present at the crysta
face. These excess lons are, moreover, In principle indistinguish-
able from the original Ag' ions of the crystal surfacg, and boupd
there in exactly the sane way. The thermodynamic potential
of the Ag' ions at the particle surface inay ther_efore be con-
sidered, as a first approximation, to be a constant 1pdependent}y
of the double layer potential. ) ] .

The thermodynamic potential of the Ag¥ions in the solution,
however, has been increased by an amount LT In 10, as a
consequence of the increase in concentration by a Tactor _10.
This increase must equal the product ey, and the resulting

double layer potential is therefore ¢, = (kT/e) In 10 =
23(kT/e) = 57 millivolts. More generally we have
by = H In 5,
e g

in which ¢4 is the concentration of the.potentlal determining
jons (here the Ag'ions) at the zero point of the_charge. Eor
a given systemn, where ¢y Is detgrnm_led by its phy'sﬂslcai
properties, the double layer potential is thgrefore entl_rely
determined by the concentration of these lons 1n the solution,
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i.e. the concentration at a point outside the double Ilayers
where the electrical potential is zero.

The important point in this cquilibrium of potential deter-
mining ions is that by its existence the total potential difference
in the double layer is completely determined, and conscquently,
in all problems of colloid chemistry, we have to consider
the potential ol the double layer as a given quantity, to be
influenced only by the concentration of one species of ions.,
The charge and structure of the double layer adapt themselves
to the variable properties of the system, such as concentration
of indifferent (non-potential determining) electrolytes, dimens-
ions and specific adsorption of the counter ions, form and
dimensions of the particles, etc.

This total surface potential ¢, may be of the order of several
hundreds of millivolts. Indeed, every factor 10, by which the
concentration of potential determining ions differs from that
at the zero-point of charge, causes a shift in the potential
of 57 millivolts, and concentration differences by a factor 10¢
or 10® are by no means inconceivable.

In a normal, well dialysed Agl sol, for instance, the concentration of I* ions
is usually about 107> normal, whereas the zero point of charge is situated at
1079 nI-. Consequently in such an Agl sol the potential Y, is nearly
— 300 millivolts. .

We will try to realize now what is the connection between
the surface potential discussed above and the {-potential,
which has been investigated so frequently in colloid chemistry.
This {-potential is a quantity not determined directly by
potential measurements, but it is derived from experiments
on electro-kinetics, such as electro-endosmosis, streaming-
potentials and electrophoresis. All these expariments have this
in common, that they involve tangential displacements of the
liguid along the wall (or the reverse), and according to the
theory of these phenomena it is possible to calculate from
‘them the value of the potential in the plane where the [iquid
can move perceptibly with respect to the wall (slipping-plane).
This potential is called &

It has ‘long been recognized that the {-potential has quite
a ditferent character from that of the potential <, (the total
-potential difference of the double layer). ¢ is usually con-
siderably smaller than ,; it reacts strongly to the addition
of indifferent electrolytes, which leave ¢, unaltered. Although
{ is perhaps not identical with the potential ¥ (the potential in
the diffuse layer according to Stern’s picture), it is felt that
¢ will resemble s much more than ;. '

1' This would mean that the slipping plane mentioned earlier coincides more
or less exactly with the first layer of adsorbed ions.
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On the other hand, investigations of later ycars made it pretty
clear that the evaluation of the {-potential from clectro-kinetic
phenomena presents more difficultics than was originally su;\»-
posed. There are practically no cascs s.tandmg vthc test of even
moderate criticism in which determinations of { for onc system
with different methods give concordant r'esuits.”‘ This may be
explained partly by the djfficulties of getting really co'n}paral?le
surfaces for the different experiments, partly by the difliculties
in the interpretation ot electro-kinetic phenomena. ! And in all
interpretations of electrokinetics we always retain the funda-
mental difficulty that even if < could be calculatea_l exactly, the
place of the slipping plane is by no means self-evident, so that
farther-reaching conclusions remain open to doubt. ‘

1t is no exaggeration to state that at this moment p.ractlcally
none of the values of ¢-potentials, as found in the literature,
can be relied upon to give fundamental information on the

le layer.* '
dOlIJr[l) viexx}/] of the latest investigations in this field. it may be
hoped that in a few years time thg sit}lation will somewhat
improve, but in the mean time we think it better to _forgg‘o the
use of Z-potentials for our purposes, the dangers of misinter-
pretation being too great. o .

This seemed to us all the more justified because, as \yﬂl
become clear from the following chapters, we were able to give
a fairly consistent theory of the stability of colloids, with o‘nly
very rough notions about the exact valugs of the potentla'ls
involved. Nevertheless we found it impossible to pass over in
complete silence a quantity which has played such a widespread

role in colloid chemistry.

We would finally make a few remarks on the double layer
at the interface of two liquids. Except when at least_one_of the
liquids is non-polar, and the solubility or electrolytic dissocia-
tion of electrolytes, accordingly, zero, elgctrolytes added to
the system, even in very small amounts, will each act there as

* Note added in proof. In the meantime De Smet (Versl. Kon. Viaamsche
Acad. v. Wetensch., VIl (1945) no 5) has published an investigation on Fhe
streaming potential and electro-endosmosis of glass in which both_ methods give
the same reliable value for the Z-potential. P. W. O. Wijga obtained analogous
results in his thesis (Utrecht, 1946).

1 Cf. Rutgers and coworkers on streaming potential and electro-endosmosis,
and Overbeek on electro-phoresis.

A. ]. Rutgers, Trans. Faraday Soc., 36 (1940) 69.
M. De Smet, Versl. Kon. Viaamsche Acad. v. Wetensch., NI (1941)
12, no 14. - _
o A. ]. Rutgers, E. Verlende and M. Moorkens, Proc. Acad. Sci.

Amsterdam, 41 (1938) 763: 42 (1939) 71, 764.
]. Th. G. Overbeek, Kolloidchem. Beiheffe, 54 (1943) 287.



50 DISTRIBUTION OF CHARGE AND POTENTIAL I

a potential determining clectrolyte. These electrolytes. apart
from being gencrally distributed unequally about both phases,
build up the electric double layer at the incerface because of
_the unequal distribution coefficients of the positive and negative
ions. As a matter of tact this represents the most simple case
Qf a double layer caused by a distribution equilibrium of potent-
ial determining ions, as already considered by Nernst and van
Laar. Each electrolyte gives rise to a different potential drop,
depending on the properties of the ions. The distribution
coefficient (for a 1-1 valent electrolyte) and the corresponding
potential difference are, according to well known thermo-
dynamical considerations,

2kTIn (r,/ny) == (e T — ) +) 4 (w,— — )
(3 — @) = e (= — -)

“in which ¢ and @, are the electric potentials in the interior
_of the phases, ¢, + the partial chemical potential of the positive
1ons (for instance in the standard state) in phase 1, ete., and
npand n, the fonic concentrations (which may be different from
the‘ electroiyte concentraticns hzcause of incomplete  dis-
sociation). By using, for the quantities g, which may be called
the free energies of solvation, Born's equation

o= (e}2r)(1 — /),

in which r is the ionic radius. it has been tried to derive gencral
rules concerning the sign of the potential ditterence!. Such
attempts, however, can never be quite successful, as theoretical
caleulations show that these solvation energies are not solely
klerermined by the dimensions ol the ions, but also depend,
tor instance. on the structure of the molecules of the liquid,
cte. * The main difficulty, however, is that in this way we find
the value of the potential difference between the interior of
the phascs (which is not accessible expertimentally), and not
the double layer potential (which differs from the former, as
there is generally the unknown contact potential ditferance
at the phase boundary, caused by oriented dipoles, polarisation
effects, etc.).

E. J. W. Verwey, Thesis, Utrechr 1934, page 61.

A. ). Rutgers, Physica, 5 (1938) 54.

E. ] W. Verwey, Trans. Faraday Soc., 36 (1940) 192.
E. . W. Verwey, Ree. trav. chim., 61 (1942) 127
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III. THE FREE ENERGY OF A DOUBLE LAYER
SYSTEM

§ 1. Introduction

As was pointed out in Chapter [. our aim is to obtain a
guantitative expression for the total potential energy curve
of two particles (or plates), including the van detr Waals-
London attraction and the interaction of the double layers.
The potential energy of the two parricles with respect to
cach other, as tar as the interaction of the double Jayers is
concerned, can be obtained, in principle, in two different ways.
In the first place one may try to find an expression for the
force between the particles or plates as a function of their
distance; the potential energy is then found by integration with
respect to the distance. In the second place one may determine
the free encrgy of the system of two double layers as a function
of the distance i.e., the difference between the free energies of
the entirc system with and without the double layers at the
interfaces. As this free energy is identical with the amount of
work assoclated witll some isothermal and raversible process of
butlding up the double layers, the variation of the free cnergy
with the particle distance directly cquals the variation of the
potential energy ot the two particles with respect to cache other.
Hence the free energy would give us direetly the potential curve
for the douhle layer interacticn.

Both methods have their advantages and drawbacks. [t appears
comparatively easy to derive an expression for the forcz acting
between two plates; for two spherical particles the problem is
considerably more difficult. Serious difficultics arise, however,
in the subsequent integration of the force with respect to the
distance, even in the case of two flat double layers. For, the
expression for the force in the latter case is not a simple func-
tion of the plate distance; its integration must therefore be
carried out either numerically or graphically.

In view of these difficulties we have investigated the second,
more straightforward, way: the determination ot the free cnergy.
General expressions for this thermodynamic quantity can be
derived, and applied to different cases. We therefore followed
usually this second way, which immediately led to the desired
potential curve.

To this end we shall consider, in the present chapter, the
general problem of the free energy of a double layer system.
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This problem deserves special attention. becausz it was the
main source of the difficulties and discrepancies in the literature,
as mentioned in Chapter 1.

As stated above, the free encrgy is the amount of work to
be performed in building up. by some reversible and isothermal
process. the double layers of the system. The formation of these
double layers occurs spontaneously when the wall and the solu-
tion are brought into contact. Hence we can state. a priori,
that the free energy of a double layer system must be a negative
quantity (work is gained by the formation).

The determination of the free energy of a system of double
layers may follow a number of different ways. We shall here
consider two methods.

1. In the first place it is possible to consider a process in
which the double layer is built up (or removed, if we wish
to consider the inverse process) by a transfer of ions from one
phasc to another. A similar method was alrzady proposed by
Derjaguin,! in his discussion with Levine; the charging
process will be carried out here in a somewhat different way.

2. Secondly, one may apply what may be called an extension
of the method of Debye and Huckel in their theory of
electrolytes, consisting in a consideration of the total work
associated with a gradual decrcase of all ionic charges of the
system.

§ 2. First method

We imagine the particles (or plates, etc.) to be brought
into contact with an infinitely Jarge amount of the solution,
ionic equilibrium at the interfaces, however, not yet established.
Starting from this system, where the charges at the surfaces
and in the solution are still absent, the double layer is now
thought to be formed, isothermally, in the following way.
Potential determining ions are allowed to be transported by
infinitesimally small quantities from the bulk of the solution
towards the surfaces; after each step the szcondary rearran-
gement of the charges in the solution is allowed to occur,
until, as far as the solution is concerned, ionic equilibrium
has been reestablished. For instance, in the case of a negative
Agl sol, we may represent the formation of the double layers
-by letting the Agl particles adsorb I ions step by step from a
diluted HI solution, and allowing the equivalent amount of
H"ions to diffuse. after each step, to the neighbourhood of
the particles. When the final state, complete ionic equilibrium
being established, has been reached, the total amount of work

! B. Derjaguin, Trans. Faraday Soc., 36 (1940) 203.
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associated with the lonic transport will give us the free 2nergy
of the double layer system. This amount of work consists of
\ Its: o )
tvz(:. p%he origin of the double layer is ;m'u_ncqgaf distribution
of positive and negative, potential dctermln‘lr}g ions about the
surface and the solution. If 1n the final equilibrium state the;e
is an cxcess of one of the ion species in 'Fha surface. there 1s
obviously a chemical preference of these ions for the surface
above the solution. Hence, if the ions go from one meadiwn
to lanother, in each step of the process considered above a
constant amount of free energy Is gained, cor_respondmg' to
the chemical free energy difference, Ap per 1on (ch_emxcal
part of the partial free encrgy). In the final state this fn‘eeI
energy difference Ap exactly outweighs the electric potentlla
difference due to the double layer !, and therefore equals — e<,
The chemical part of the free energy ot lthe double layer 1is
therefore — eb, per ion, or — s, per ¢m? surface, in which
5 is the charge density of the surface. ] _

b. During the charging process an electric double layer is
gradually built up; calling the surface potential at an _arb1trary
stage of the charging process dy', we observe that 'J/(’, increases
gradually from 0 to ¥, and the clectrical charge, ¢, at '1 cm’
surface in an analogous way from 0 to 7. This potential <q
counteracts the ionic tramsport from the bulk of Fhe solution
(where the electrical potential is zero) to the pnrtxcle surface.
Hence, a gradually increasing amount of clectric wprk has to
be done, ¢, 'ds’ for cach step, and for the w_hole charging process
we find the purely electrical work guantity

2

FQ :] '\-/o'dQ". (22)
0

which may be called the electric part of the free energy ‘of the

double layer. This frec cnergy, associated with tlie setting up

of the charges, is clearly a positive contribution to the total

free energy, like the free energy of a charged condenser (energy

is needed for charging it). ‘ )

A third work guantity which might be considered here is the
energy gained in the secondary rcarrangement ot the charges
in the solution. This rearrangement, occurring after each step,
is responsible for the formation of the liguid charge layer. It is
clear, however. that this formation of the liquid charge does

' This follows directly from the condition that the partial free energy (in-
cluding electric work) per ion must have the same value in both phases, or

Ap + ey = 0.



54 FREE ENERGY OF DOUBLE LAYER SYSTEM 11

not contribute to the free energy of the double layer. These ions
arc accumulated in the neighbourhood of the surfaces as a
consequence ol the equilibrivin between the electric attraction
by the surface charge and the thermal motion tending to <listiri-
bute the tons over the entice solution. Hence the clectric energy
gained by (hese fons Gaccumulating i a region where the clec-
tric potential has an opposite siga) is spent again in Favouar
ol counteracting thermal motion. Each ion, reaching a point {x)
where the clectric potentinl is {x). gains an amount of (¢lec-
tric) encrgy wed' (x); simultancously it is brought to a point
where the concentration has been raised from n to rn,' (x), and
accordingly its cntropy has been decreassd] by an amount
kIn (' (x)/n). In accordance with the circumstance that in the
diffuse Tayer thermodynamic cquilibrium is constantly maint-
aincd, these two contributions to the partial free cnergy counter-
balance cach other exactly. Or, trom a more kinctic point of
" view: as the whole charging process is an isothermal one, the
clectric work gained by the ions is transferred to the other ions
and to the water molecules as kinetic energy, and finally flows
in the form ot heat out of the system.

Hence, the total free energy of the double layer (for 1 cm?2
surface) amounts to:

2

F= —si 4+ | 2/dr,
0
in which, obviously, the first (chemical) term is always larger
than the second (electrical) term. By partial integration both

rerms c¢an be summarized into one single term. so that we
finally obtain

A

i \
F=—| sdy/ ° (23)
T |
_ R R
Hence the free energy is always negative, in accordance with
what initially has been said about this quantity,

If the electric surface potential is small, so that the linear approximation can
be applied, eq. (23) simplifies to

F=— 74y, (23)

as in that ‘case the charge and the potential increase proportionally during the

charging process. Hence, in that case the electric work to be done is exactly

half the chemical work gained in this process. For Jarger values of the potential

the charge increases rapidly with increasing potential (for a single double layer it

(e
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increases. roughly, according to exp (2/2), sce cq. (12)), and accordingly the
electric work is now between the limits
Loty < 1 <ty

vahie of the free enerpy of 1he double Looyer nytem, therefore,

The abnolute e / ‘ e
and only in the limiting case of very small potentsals

is generally less than f AU

coual o) fI'J_/“_

Several other derivations of (23) are possible. A lairly simple
derivation, of a more thermodynamic nature, may be given in
connection with the theory of the clectrocapillary curve. In
that case we must introduce a new set Qf variables. We start
from the well known Lippmann equation

((J?_f_) o (dq) -, (24)
d"‘bﬁ W A Jw J, A

0+

giving a relation between the interfacial tension qf a phase
(in clectrocapillary work usually a mercury surface) in contact
with an electrolytic solution and the clectric properties of the
double layer at the interface.

This equation can be found in the following way. _
If ¢ be the charge of the double layer, the free energy change corresponding

to an isothermal increase of the interface by dw cm? is
dFf = rdw + 4’0 dg.
We now introduce a new function, L = F — &y - which is completely
defined by the state of the system: whence

dL = pde — gdd,

As dl is a total differential, we find from this directly eq. (24).

According to eq. (24) the surface tension shows a maximumn
for o == 0; at both sides of this zeropoint of the charge, i.c.
both for positive and negative values of 7, » is lowered by an
amount », — » by the presence ot the double fayer. 7, the
surface tension for the case that no double layer is presenr,
1s thc amount ot work performed against the intermolzcular
forces when the uncharged surface is incrzased by 1 cm”. Hence
» — % actually a negative quantity, is identical with the.fr.ee
energy of 1 cm® double layer. This holds cqually for a single
double layer and for a system of double layers, as, for instance,
two interacting double layers. Hence, integrating egquation (24),
we have again

2 %

I Yy

J ddy

<
5
[
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We have now obtained a simple exprzssion (eq. (23)) for the
frec encrgy of a double [ayer system, which, for the sake of
convenicnce. has been given in a form valid onfy for a single
double layer. or for two parallel flat double layers, where the
surface charge is constant throughout the entire system. It may
easily be cxtended to morz complicated cases, for instance for
two interacting patticles of arbitrary form, where the surface
charge density is a function of the coordinates on the surfaces.
Jn that case we have, in addition, an integration over all sur-
faces:

i
~0

F=—{as[ qary (25)
S 0

if ¢'dS is the charge of a surface elemant dS.

In spite of its simplicity, the integration of eq. (23) entails
considerable difficulties because of the complicated relation
between 7" and ¢’ as soon as we leave the region of potentials,
where the linear approximation may be applied. (cf. eq. (12)).
These difficulties are espacially great in the case of double layer
interaction. For our computations of the potential curve due
to the interaction, therefore, we did not make use of eq. (23).
but of the gencral expression obtained according to the second
method. Only in those cases where the lincar Debye-Hickel
approximation is applied, is it advantageous to make use of
eq. (23) or a related expression.

§ 3. Second method

Because of the difficulties encountered in the application
of eq. (23) we approached the problem of the free energy of a
double layer system in a way analogous to the method used
by Debye and Hiickel in their theory of strong electrolytes.
In this theory the free energy of the arrangement of the ions
under the influence of the electrostatic forces between the
ions plays an important part. Each ion in turn is surrounded by
an ionic atmosphere composed by all other ions. The theory is
here concerned with the amount of work necassary to remove
the ions from their ionic atmosphere by some reversible and

N %so?bermal process. In order to calculate this work quantity it
1s 1magined that the jonic solution is converted gradually into
a- solution of neutral particles of the same concentration. To
fchis end we imagine, that the charge of the ions is transported
in infinitesimal small steps dg from one ionic species to another,
and ‘calculate the total amount of work to be done in this pro-
cess by integrating over all steps. The total amount of work
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will then be / 2:'dg per ionic pair (in which ¢’ is the elec-

tric potential at a given ion due to its atmosphere at some
moment during the discharging process), because the charge
dg must be brought from a point where the potential is -- <’
to a point where it is — ¢’. The total amount of work thus
obtained is not identical with the total electrostatic energy of
#the ionic arrangement, which is equal to ¢y, for each pair of
tons (g, is the charge of an ion, ¢, the potential due to its
atmosphere). During the discharging process the charge ot all
ions gradually decreases, and the ionic atmosphere accordingly
becomes more and more diffuse and finally disappears entirely.
In the Debye-Hickel theory the free binding energy of
the ions in their atmosphere is consequently smaller than thc
electrostatic energy. (Actually it proves to be two thirds of it).

In the case of the electrochemical doublz layer, or a system
of double layers, things are somewhat ditferent, because hete
the element of reciprocity is lacking. In an electrolytic solution
all lons are simultaneously captured in an atmosphere, and
each contributes to the atmospheres of ali surrounding ions.
Hence we only need to calculate the work needed to discharge
reversibly a single ion. In the case of a double layer system
we must make the double layers vanish everywhere. We must
therefore discharge all surface charges and simultancously re-
move the charge from every point of the space in the solution.
In mathematical Janguage: for the calculation of the total work
in this reversible process we must integrate twice: over the
discharging process, and over the entire space occupied by the
double layer system.

There is, however, a second important difference. In the
electrolyte theory the charges of the ions are given quantities,
and complete dissociation is supposed. In the double layer case
the charge is caused by potential determining ions being ,ad-
sorbed” on the particle surfaces. The corresponding distribution
equilibrium cannot be left out ot consideration In the reversible
and isothermal discharging process. In addition to the electric
work the chemical work must be taken into account, exactly
as we have done in our first discharging method.

We proceed in the following way. We imagine that all ions
(the ions which are present in excess on the surfaces, and all
fons in the solution) are gradually discharged by transporting
their charge in small steps, + or — wed A, to infinity. After each
step the system is allowed to re-establish thermal equilibrium,
and the system is connected with a large reservoir of constant
temperature. The degree of discharge is measured by the varia-
ble A, decreasing gradually from 1 to O.

It is advantageous to imagine this discharging process to be
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carried out under such conditions that the surface potential
4, remains a constant all:the time. With regard to the equili-
brium condition sedy - A = 0, we must imagine the chemical
potential difference..au, to be reduced at the same rate as the
ionic charges. In this way we obtain that, for ecach degree of
the discharging, . we have — iedy = ~.2g, so that ¥, remains un-
changed. In the opposite case the mathematical difficulties in
the following calculations would be considerably increased:
if, for instance, Ax would be left unchanged during the dischar-
ging process, the electric potential £, would increase to infi-
nity because of the equilibrium condition — Aed, = Ap.

Accordingly. in each step an amount of chemical work Ap.d2
per surface ion must be performed. Simultaneously, an amount
of electric worle edyda is gained in decreasing the charge of
this surface ion by an amount ed» Hence electric and chemicat
. work associated with the surface charge compensate each other

in each step. The very simple result is that we find the total
free enecrgy of the double layer if only we calculate the electric
work necessary to discharge stepwise all ions of the solution.
As we include in this way both the chemical and the electric
effects, the expression found for the free energy will be wvalid
for the case of true equilibrium in the double layvers.
‘ A further sinplification is that we need only to consider those
ions which are present in cxcess in the solution and carry the
liquid charge of the double layer, since for the mutual neutral-
izq.tion of all other.ions, present in equivalent amounts in each
point of the space. the net work is zero. The neglection of the
mutual Debye~-Hickel energy of the ions seems justified,
because this cnergy cither bzars no relation to the surface (for
the ions in the bulk of the solution) or is only a second order
effect (for the ions in the double layer).

For the determination of the free energy for a given system
of double layers, we denote with ¢ and ¢’ the charge density
and the clectric potential corresponding to an ionic charge ie;
the primes distinguish these quantities again from p and &
before the discharging process. The number of excess icns in
a volume element dx dy dz is given by {(¢/r.v.e) dx dy de:
the amount ot work to decrease the charge of these ions by:
a fraction d is. therefore, p'¢'(d~/7) dxdydz, and the work
associated with the entire process:

1
F= [ iy e (ny 2 dedy az, (26)
Q

in Yahich the _thrcefold integration must be carried out over the
entire space in the solution.
It is of some interest to consider, as we have done for the
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first method, the nature of the thermal effect occurring in
this process. After each step there will again bz a rcarrangement
of the charges. More particularly, if we consider a single  flat
double layer, because of the sradually decreasing ionic charge
the liquid charge layer becomes more and more diffuse. This is
expressed by the decrease of the guantity %', which is proport-
ional to ». Here we have, therefore, something analogous to
the first method, where the formation of the liquid chargz had
to be performed by a secondary diffusion towards the neigh-
bourhood of the surface. During the discharging process
considered here the counter ions must diffuse more and more
back into the solution. This diffusion cccurs against the electric
forces. Hence, in the rearrangement of the ions occurring after
cach step, the ions in the liquid layer lose a certain amount of
(electric) energy. Simultaneously, however, the local concen-
tration of these ions is lowered as a result of the extension of
the liquid charge layer over an increasing part of the solution.
1t may easily be seen, as in the case of the first method, that
the corresponding increase of entropy (77 AS) exactly outweighs
the increase of the internal energy (AU), so that the net change
in the tree encrgy is agaiu =zro. The energy ncaded to raise
the electric energy of thess ions must be teken up from the
surrounding ions and molecules, and is delivered as kinetic
energy from the thermal motion of the latter. As the whole
discharging process occurs isothermally, a corresponding amount
of heat will flow from the reservoir into the solution.

It may seem somewhat surprising that, according to this
second derivation of the free energy. the negative value appears
to be a result of the action of the counter ions, extending over
a certain region in the solution where the space charge and the
electric potential have opposite signs (the product g4 in (25)
is therefore always negative). This suggests a contradiction
(o the first method, where the counter ions did not contribute
to the free energy, and its nagative wvalue was caused by thie
chemical free encrgy of the surface charge ions. Tt should be
clear, however, that there is, at least gualitatively, complete
accordance Between the results obtained by both methods. There
are three different forms of free energy to be considered, viz.
the chemical and the electric free energy of the surface charges,
and the electric frec energy of the charges in the diffuse double
layer. The first method appears to be a way of calculating the
work necessary to suppress, primarily, the surface charges;
the second method gives the work required to disperse, primarily,
the liguid charge from the diffuse double layer towards the
bulk of the solution: in both cases the method has been chosen
in such a way that the removal of the sccond layer occurs
secondarily and automatically.
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Although in chis way it may be argued, physically, that the
two gencral expressions (23) and (26) may very well lead to
the same result, the gencral proof that both expressions arc
quantitatively cquivalent is desirable. For special cases it can
be shown more or less easily that both expressions give identical
results. This is, tor instance, the case for a flat double layer, or
for two parallel double layers, on the basis of the Gouy-
Chapman thcory. The identity of both expressions is made
quite plausible by these results.

For a general proof, given in the Appendix added to this
chapter, we are indebted to Prof. Dr H. B. G. Casimir of
this laboratory. As the first expression comprises an integration
over the surface charge. and the second over the charge in
the _solution‘ the general proof appeared to be possible by the
apphc.at.ion of Green’s theorem known from the theory of
electgaty. This proof shows that the conversion of one ex-
pression into another is a complicated procedure. This is one
of the reasons why we derived, in the present section, both
expressions separately. A second reason was that we have
\Yorked with the second expression (25) in the following con-
siderations, whereas the calculation of the free energy according
to a method analogous to the first one is already to be found in
thAe_Iiterature. The consideration of both methods of dater
mining the frec cncrgy may therefore be useful in a discussion
Qf the differences in the results of other authors, to be given
in the Appendix at the end of this book, while it may also
further a better understanding of the nature of the phenomena
investigated here.

§ 4 On double layer interaction

Starting from the image of the free energy of the double
]ayer. as developed in this chapter, it is not difficult to trace
in broad outline the consequences of the Interaction of two
or more double layers.

If two surfaces are brought so close together that their double
layers overlap sensibly. these double layers cannot develop
to the tull extent, and the double layer charge will become
smaller, as may be seen most clearly by imagining two parallel

- flat surfaces, where the double layers may be completely made
to d1§appear by bringing the plates into contact. As a result
of this Interaction of double layers the free energy becomes
less negartive: yhcrefore work must have been performed on
tbe system, or in other words: the interaction of double layers
gwes rise to a repulsion between the surfaces bearing them.
It has been explained in § 2 of this chapter that the free energy
Is composed of a — negative — chemical part and a — positive —
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electric part, the negative value of the total free energy arising
from the greater absolute value of the chemical part. Putting
it somewhat schematically we may say that the rtepulsion
between double layers is a result of the chemical contribution
to the free energy, i.e. of the difference in partial free epergy
of the potential determining ions in the two phases. It has been
tacitly assumed in the foregoing that the double layer potential
is indcpendent of the distance ot the surfaces. In view of what
was stated in § 6, chapter II, concerning the equilibrium of
potential determining ions, this corresponds to the assumption
of thermodynamic equilibrium everywhere in the double layer.

The existence of thermodynamic equilibrium may even be assumed during the
rapjdly passing moment of the encounter of two colloidal particles, both subject
to their thermal (Brownian) movement. If two particles approach each other, it
follows from the above that the double layer charge at the particle surfaces
facing each other decreases, and a number of fons must accordingly diffuse
temporarily from the particle surface into the solution. Hence, thermodynamic
equilibrium will exist, if this adjusting of the charge in the region between two
encountering particles occurs sufficiently rapidly, so that at each moment the
charge distribution corresponds to the particle distance. It may be assumed that
this condition will generally be fulfilled, because the Brownian motion of
the comparatively heavy colloid particles is much slower than the thermal
diffusion of the ions.

In exceptional cases it might be possible that the transition
of ions from the surface to the solution or in the inversc
direction needs an activation energy. That such a barrier at
the interface of two phases may sometimes be present 1s
suggested by certain phenomena (overvoltage, etc.) observed in
electrolytic processes. In that case adjustinent of the charge
would occur slowly, and the assumption that the double layer
charge is a constant, independent of the particle distance.
would then be a more suitable approximation ' In a case like
that of Agl, behaving as a perfectly reversible clectrode, and
in many other systems, the assumption ¥, = constant will be
more correct,

In the following chapters, therefore, we have based our ge-
neral considerations on the assumption i, == constant, and only
incidentally studied the second case, 7= constant. In this second
case the main effect of the interaction, instead ot being a reduc-
tion of the charge, is an increase of the surface potential .

It might seem that this increase of the potential would result
in a reversal of the sign of the interaction. compared to the
case Y, = constant. We should not forget, however, that in the

' Also in some cases of organic (hydrophilic) colloids like gum arabic where
the charge is determined by the dissociation of discrete ionogenic groups in the
molecule, the supposition of constant charge may be nearer the truth than that
of constant potential.
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case of constant charge there is no thermodynamic equilibrium
in the double layer, while no ionic transport from one phase to
another occurs when the distance of the surfaces is varied. We
have only to deal. therefore, with the clectric part of the free
cnergy, P

F, = / L, do’ (22)

0
- As &y increases with increasing interaction, we also find an
increase of F,, and the result of the interaction is again, as 1u

the case ol constant potential, a repulsion.

It should be noted that, for a given configuration of the systewn, the force
acting between the surfaces must be independent of the choice of the parameter
to be held constant in a subsequent variation of their distances. Hence differen-
tiation of £ as expressed by (23) with respect to @ (2 parameter expressing the
distance between the surfaces)

will lead to the same result as differentiation of Fe {eq. 22) for 5 = constant ;

2

(a [,, ra ’
adjz S 707
0
It can easily be shown that both expressions are identical and equal to
2
cod
—p e [P
J o od
Q

For the second expression this is at once clear, the limits of integration being
kept constant during the differentiation.

In differentiating the first expression it should be borne in mind that 5 is a
function of &, and '_f/o’ a function of 5 and . Hence,

v

dr

B

= (), 1 [ aan| (), [ -

lod 1Ly lor ad )by, 0 dd

o O
[ T

Ja (df oy’ Tk,

— iy, | — + -+ [-»—‘—Q ds’ = / 0y —= —
0 (dd)-,LO T \dd>% J od S od P
1} 4}

so that we get exactly the same expression for the repulsive force in both cases.
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In order to obtain further quantitative data on the interaction,
we shall, in parts IT and IIL, deal especially with the cases of
interaction of two flat parallel plates and of two spheres
respectively. These examples are comparatively easy to handle,
and also constitute suitable approximations of cases occurring
frequently in the reality of colloid chemistry.

For crystalline particles which are large in comparison with
the double layer extension, the effect of the interaction will
practically be restricted to the crystal faces which are brought
in opposite positions during a particle encounter. The effect
upon crystal faces not facing each other may be neglected as a
first approximation.

This means that the conclusions drawn from the model of
flat plates will probably hold to a large extent for crystalline
particles. provided the double layer is sufficiently compressed.

On the other hand. when the particles are small in com-
parison with the double layer extension. so that, in a particle
encounter, one particle may be enclosed by the double layer
of the second and wice versa. the model of interacting spheres
is mote adequate. Morcover, the influznce of the particle
dimensions can be gathered move easily from the case of spheres
than from the infinitely large flat plates, where particlz dimens-
ions have to be introduced in a more or less arbitrary way.

APPENDIX

§ 5. On the equivalence of the two methods

We want to show the identity of the two expressions for the free energy, viz,,

Ly

0

and

! -
£, = +./- ‘j_’] [// LRy z) o (A v 2) dady ds (26}
o

where I/ satisfies, everywhere outside a number of closed surfaces S5, S, ....,

the equation
47
Ay = — 2P
with the boundary conditions <L’ — O at infinity and L' = ;;;0’ on Si. Between
the charge-density p" and the potential <’ there exists a relation of the form
4!
— I =iy {27)

&
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it will not be necessary to specify the function f, and our proof remains valid
even if [ depends explicitly on the coordinates x. ¢, z. Let us denote by [ the

constant  value -J,U’ which L’ assumes on the surfaces S, and let us introduce
a function 7 defined by

PN
This function satisfics the equation
7. 1,

Ay L B(x), (28)
with the boundary conditions 5 > 0 at infinity and 5 = 1 on S.. The ex-
pression (25) becomes:

T A D (S ) g 0 (29)
R . BN n
0 S

where the surface integral is taken over all the surfaces Si: d/dn denotes the
derivative in the direction of the outward normal and dS is a surface element
on .

1
47 Tar (. . .
TR e = Y] bt arara @)
0

We differentiate both expressions with respect to g, which for (29b) is iden-
tical with a diffcrentiation with respect to o as in the second method. the surface

potential is considered as remaining constant:
7 d/: o y ~
L // v 9% 45 (30a)
¢ oy JoT on
Si
1

47 ng ’ i o o« . ;
T o[t e s+ ) aves oo
£ 0y X JJ

0

where % is the derivative of », with respect to J. In order to transform the

volume integral in (30b) we try ito express it in such a form that Green's
theorem can be applied. Differentiating (28) with respect to 2 and [, we find:

1 ) «w v !
AZ} = «© f 4“ T (‘7\4 + ;\“%1) r
7. 7 o
AZ: E { + SO (/% + )\\Z:) {',
s < :

whence
C(dg —28%) = Cx: + ra)+ 0 8xxe — 22 x2)f)

Clxdxy —omdz) = — r)l+ (82 + 223020

‘
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It follows that

T el

+ Uxaz — A x]] dvdrdz

Applying Green’s theorem and obscrving that the outward normal to the
region of integration is the inward normal to the surfaces Si. we obtain:

47 ()/r2 / /,/ [”7 0% dx:
1 - ;. o2 " — i +

¢l +‘ d/. . on A on X

0 Si
)% ) .
| ,(( X 5 oz ‘ 7}[ ] ds.
“lon on "
But bccnuse‘ of the boundary condition, 5 = 1 on S, %) and % vanish,

so that

a7 | d}_/'/'v()z;. ds

_ “ L0x (= 1) o

. a'_'-z-or JA4T on R on
) 0 S S
for 0 (»=0)/dn = 0. Thus we have proved that
o, o
oLy ¥,

Since for by = 0 both F, and F, reduce to zero, this establishes the required

result-



PART 11

On the interaction of two parallel flat plates

IV. CHARGE AND POTENTIAL FOR THE CASE OF
TWO FLAT DOUBLE LAYERS IN INTERACTION

§ 1. Interaction of two stmple double layers

Proceeding now to the problem of the interaction of two
parallel flat double layers, we shall base our considerations, as
a first approximation, on the same picture as that underlying
the Gouy-Chapman theory. Later on we shall consider
possible corrections of the theory by taking into account the
finite dimensions of the ions in the sense of the Stern-
theory.

We imagine two parallel plates (symbolizing two particles
with plane surfaces) immersed in an electrolyte solution, at
such a distance that the double layers interact and influence

yix)

g id 2 G % ——e

Fig. 8. Schematic representation of the electric potential between two plates,
in comparison with that for a single double layer

each other. The first question to be answered is then the static
problem of the distribution of the charges and the electric
potential function in the liquid layer between the two plates.
Muthemutically this problem difters from that considered in
Chapter II, Scction 2, because of the different limiting con-
ditions. In view of the symmetry ot thz problem we shall
only consider the liquid layer between tha left wall and the
central plane between the two plates, i.e, if the plate distance
is 2d, the system between x =0 and x =4. (Sze Fig. 8).
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Starting again fromn the “complete” differential equation (37):

d%y

4 = sinh ¥, {39
we have to find its solution satisfying the boundary conditions:
ﬂe.\b(l dy _
y=u= and cTéIO for x = d.

In Chapter I, § 2, we saw that the general solution of this differential equation,
after integrating once, reads;

dmy? .
(—) = 2¢coshy + C.
dg
In the central plane in which x = &, ¥ = & and dp/dE == 0, whence
0= 2coshu + C
or C= —2coshu.

For the solution we obtain ':

;-i-‘% —= — 1 2coshy —2coshu (31
S

In order to find the electric potential function we have to
integrate eq. (31) a second time; this will give us, if the
iutegradon is carried out between the limits x = 0 and =z = d
(or between y = z and v = u), the desired expression giving
us the potential midway between the plates (#) as a function
of the plate distance (24). Hence

i »d

[ e g=—wd ()
s 1/2(cosh y — cosh u) 8

This integral leads to an elliptic integral of the first kind,
for which tables are available; it can therefore be solved
numerically. The results are given in Table IX. Here, for a
number of values of z, from z = 05 up to z = 10 (i.e., for
monovalent ions. up to ¢, = 256 millivolts), we give the values
of xd tor a series of values of % From these data a graphic
representation of u as a function of the plate distance, for
a given value of z, may easily be obtained.

' A similar equation was already derived by Corkill and Resenhead,
Proc. Roy. Sec., A 172 {1939) 410.
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In order to carry out the integration we bring the integral into the general
form (annotation of Jahnke-Emde ') :

v !

7 ' o dd

I (koy) . / ; /.., Ly Vl Cin? « sin?
, 2 gin? - . sin®
0 ’l/ — k= sin” L !

0

For this purpose we put

) . i
e ¢ = J = sine and ey = sina.sin®d.

Differentiating the latter form we have

e—¥dy = — 2 sinasin L cos L d & = sin « sin® L dy.
or
2d<
4y = ———"
y ™

Further on we have the limiting conditions:
y = u corresponds to sin® ) = 1, or L = w2,

and for y = z we have sin®) = exp 3-—- (z—u)z or

L == arc sin exp 34 (z—u)/Z‘,
whence
z
' dy
0 = / e e e e D
v 1/ 2coshy — 2 cosh u
7]
%[
' / —2dd L
o - u e N - N T T --—__E) lw/:)
Pk 1 1 , - 2
S 2 ; ol — 1) 4 sina(sin®d ~— |
arc sin e tg L {sin - <sin2 " ) —+ f
?/2 2dd :
- L L ;
. - 1 i _'77'_i' g -2";
arcsine 2 1—/— ' 1/ | — sm?asin® L
sin «
7}'/2 4
- S
= 2e 2 [ z-u e et ———
W - =5 { — sin® asin®
arc sin e 1/ E

= zd = 2 exp (— #/2) (F (exp (— ). 7/2) — ?

— F (exp (— w), arc sin exp :— (z ~- IJ)/'ZS)].

Accordingly (32) is found from the difference of two functions F (k ¢) which
may both be read directly from the tables of Jahnke-Emde.

- oo [ ]
1 E. Jahnke and F. Emde, Tables of functions 2nd ed., Teubner. Leipzig,
Berlin 1933, p. 124 et. seq.
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Before investigating the properties of (32) more closely.
we shal_i consiajer two approximations. Both for small and for
strong interaction it appears possible to derive explicite ex-
pressions approximating (32). and the former case especially
leads to a simple expression for u as a function of x4 which
proves to be very useful. '

If the interaction is small. the electric potential due to one
douh_le layer will be negligible at the surface of the second plate
and inverscly. As a first approximation we may therefore assumc,;
that the electric potential in the neighbourhood of the central

4 ! e = —'—L:—_-_T':‘ —— J {
[ ! 2 3 4 Snx
Fig. 9. Electricv potential function berween two plates (z = 8) for smail
interaction (xd = 2.5). Approximately, the potential can be built
up additively from the electric pofential functions of the two
single double layers scparately (dotted lines).

plane is simply built up additively from the electric potential

functions duc to the two un
: perturbed double layers separately.
(CL. fig. 9). Hence we put g s

u = 2y,

i which y'y = ved'y/kT measures the electric potential for a
squfle (Iioul?]e layer at a distance d from the surface.

As the Interaction is small the plate distance | I

' e 1S necessaril
large, s0 that %431, and eq. (13) can be applied: g

. N Zly
va=4r.e 7 with 5 = .01
e?lr 4 1
and accordingly we obtain .

u= 8y ¢ (33)
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Hence we sce that, for small interaction. for a given wvalue
of the electric potential at the surface of the plates (and there-
fore a given value of ). the potential midway between the
plates decreases exponentially with increasing plate distance.

In order to show the validity region of this approximation
we compare, for two values of z, the values calculated with
the aid of (33) to those of Table IX;

TABLE X
VALUES OF ¥ ACCORDING TO (33) AS COMPARED WITH THOSE OF TABLE IX

Il
Bl

‘ z =6, y == 0905 ‘ z = 8§, y = 0.96¢
0 el
(01025 050] 1.0 20, 01 ! 035 | o.so! 10| 20
| ! ! | l
, | 5 ] ‘[ | |
ad (eq. 33) (428 3365|267 [1.98 129 ||4.35 |3.43 273 |204 [1.35
»d (table IX) || 4.280 | 3.354 | 2.635 1.876(1.061-‘3 4343 3,417]2.698 1939 | 1124

This comparison shows that the deviations become appreci-
able in the neighbourhood of «d = 1; according to the approxim-
ation the value of = has there been computed somewhat
too high.

As u is proportional to ¥, which (if the double layer potential
is not very small) is only slightly dependent on z, we see that,
if the interaction remains small, neither is u very sensitive
to variations of z.

The approximative equation for strong interaction, rcferred
to above, is obtained when the electric potential between the
two plates is everywhere large, hence u 3> 1. The formula is
less interesting than eq. (33), because it is not so simple:
moreover, for the stability problem investigated further on.
the electric potential function for small plate distances (xd <€ 1)
proves to be of minor iinportance.

If & >> 1, eq. {(32) can be simplified to
2

wi [
o ¥y’
Ve — e

with neglection of e™ and e™. This enables the integration to be executed:
z .z
. — /. — /.
/7 “Z d"‘}‘"" o= E‘lt/z / e.., /3'dy = — 28-1‘:/2 [ '>7de )‘fz - =
' 1 ¥ — v u 1 e — e Ml VS
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- 2¢ 4y ['n'c sin ¢x T ”)]Z
A & p _—
N ( 2 "
T A [mg sin exp ( SSE) "
\ 2 2

—u/, zZ—y
2c /2 arc cos cxp(— i [).

Hence we gec !

xd = 27 M arc cos cxp (-k-z_.’-l>
2

exp <~- 2711) = cos {fd . e“/z}
2 2

The values ot % as a function of xd, ha
_ ‘ ’ , ve been r2 >
<graphically in Figs. 10 and 11. In fig. 10 curves arer g%:/eesrfnig(:f

(33a)

0 05 10 20 30 40 50 60w

Fig. 10. po[cn[lél (4) half-way berween the plates as a function of the
plate distance (2d) for different values of the surface potential

(L,)- In rhe figure the values of 1 — V-e-.‘l/fj. #d, and z =
_ kT
are given, .
a number of z values. In fis. 1 1
a . g. 11 (holding for z = 8) the full
line refers to the data of Table IX. the dotted Iineg refer to

' E. ] W. Verwey, Trans. Faraday Soc., 36 (1940) 192.
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the approximative cquations (33) and (33a). With increasing
intcraction the potenrial midway between the plates increases
continually from 0(d - co) to . -z (for « ~0). All curves
show an inflexton point, so that the strongest increase ol u
always occurs for finite values of d. :

u="e¥

Fig. 11. Potential () half-way betwecen the plates as a function of the
plate distance (2d) for Ly = 204.8 mV (z = 8).
Dotted lines: approximative for strong (eq. (33a)) and small
(eq. (33)) interaction. .

It the value ot u is kbnown, the whole electric potential
function between the plates may now be derived with the aid
of eq. (31), giving the derivative in every point. Again, the
value of d¢/dx for x = 0 will be especially interesting. From
(31) we find directly

o D —_
(d;/> = (dy) ) ﬂ = — sz- 12 coshz— 2coshu, (3la)
dx/o d&/y " wve ve
showing that, for constant values of z, the initial slope ot ¢ (x)
dccreases with increasing w, and, accordingly, with decreasing
plate distance. For d = oo or u = 0, cosh v = 1 and eq. (31a)
reduces again to the corresponding eq. (5b) for a single double
layer.
~The electric potential as a function of the distance batween
the plates, for a number of plate distances, is given schematic-
ally in Fig. 12.
As the charge of the double layer is directly proportional
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to {di/dx)y, the above remark about the initial slope of the
potential will hold invariably for the charge 7:

Ied
: EN) e e
= _/ cdae = - 4 (ax)o — ‘ ”‘ZTF.‘L/?_coshz — 2coshu.  (34)
0

0 Y —x

Fig. 12, Electric potential funcrion {left hand part) between two parallel
plates (schematically) For different plate distances. With increasing
interaction the potential midway between the plates increases,

, di
and the initial slope dl for a == 0] decreascs.
X

‘ The Fl-ecrcase of the double layer charge with increasing
interaction, for a constant value of the double layer potential,
is illustrated in Fig. 13. It shows that the double layer charge

a
f,___

a 1 2 —=xd
TFig. 13, Surface charge, 7, as a Function of the plate distance for z =8.
is only slightly affected as long as the interaction is small

(For z == 8, for instance, the charge for »d = 1 is still 99.7 %
of the charge for d = o). Neither will the electric potential
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function in the close ncighbourhood of the wall be sensibly
changed by the interaction, cven for moderate plate distances.
Considerakle changes of charge and potential function only
occur if ad <7 0.5, i.e., if the plates are brought rather closely
together (their distance being smaller than the characteristic
length of Debye, [/x).

We alrecady mentioned in § 4 of Chapter III that this decrease
of the double layer charge may well be considered to be the
most important feature in the interaction of two doublelayers.
It follows from equation (23} that the free energy of the double
layer increases (becomes less negative) with decreasing charge.
Now an inctease of the free energy is equivalent to a repulsion
between the plates, so this decrease of the charge is the primary
cause of the repulsion between two double lavers. This point
is dealt with in more detail in Chapter V.

3

Ua(0)
for 2= o

-y 4 LY
x=0 x=f/,§? —t X

Fig. 14. The interaction of two double layers at the interface liguid/liquid.
The electric potential for small values of [ when the liguid
with the smallest dielectric constant, phase 2, is not infinitely
large but present as a thin layer (thickness 2d) between two
phases 1. Carve (a): 2d = ©9; curve (b): 2d = 1/, curve
(¢}: 2d = 1/2x,. In the drawing itisassumed that #ye /1,6, = 100
and xy/%, — 2. For 2d = 1/x, the partia! potential in phase |
is 0.44 times that for 2d = ©©; for 2d = 1/2x, it is 0.25
times that for 2d = ©©,

§ 2. Interaction of two double diffuse double layers

It is instructive to consider finally the case where two double
diffuse double layers interact; ie., the double layer interaction
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occurring when two equal liquid phascs are separated by a thin
layer of a sccond liquid'. This case is illustrated by Fig. 14, the
paraliel of Fig. 8. showing the eleceric potential funcrion for
different thickncsses of the central liquid layer. The partition
of the clectric double layer porential D = ——, (0) - <, (0)
about the two liquid laycers on both sides of the interface (we
use here the same annotation as in Fig. 3, showing the double
layer at the interface of two liquids) is now influcnced by the
interpenetration of the two diffuse layers in phase 2. The cir-
cumstance that in this case not only the potential in the inter-
mediate phase 2 but also that in phase 1 is altered, expresses
very clearly the incomplcte development of the electric double
layer as a rcsult of the intcraction.

The partition of the clectric potential may again be calculated f{rom® the
condition that the charge in phase | and that in phase 2 between ¥ = 0 and
x == d compensate each other; hence, according to eq.(14) and eq.(31), we have

Vi, Vicoshz, =2 = Vi V/ Teosh 2, — 2 cosh

v

with
—21+Z2 = A= "kT.
Together with the relation (32) between # and d we can calculate, for a given

value of D, corresponding values of z, « and d. For small values of D the
cquations may be further simplified.

' E.J. W. Verwey, Trans. Faraday Soc., 36 (1940) 192.

V. THE POTENTIAL ENERGY DUE TO THE INTER-
ACTION OF TWO FLAT DOUBLE LAYERS.

§ 1. Introduction

We shall now pass to the calculation of the potential enzrgy,
for a system ot two flat double layers, as a function of the dis-
tance of the plates. These calculations will be given for two
double layers according to the Gouy-Chapman model, and
are thereforc based on the complete differential equation (3).
We shall therefore make use of the equations derived in the
preceding chapter for the distribution of the charges and the
clectric potential function for this case.

We shall follow two different ways. In the first place we
caleulate, with the aid of the general expression (26) on page
58, the free energy of such a double layer system. The potential
energy due to the interaction may then be derived immediately
from this quantity. By this method we shall be able to give a
complete numerical evaluation of the potential energy for arbi-
trary plate distance. For, the integration leads to an elliptic
integral of the second kind, and can therefore be computed
numerically with the aid of the well known tables. — In the
second place we shall derive, by integrating the force between
the plates with respect to the distance, an approximate cxplicit
expression for the potential energy; this expression has only a
limited validity, but proves to bc useful in special cases.

§ 2. Potential energy via the free cnergy

We start from the general expression (26) for the free cnergy,
and make use of the expressions derived in chapter IV betwecn
¢, ¢ and 4. The integration, a somewhat tedicus one, leads to
the following expression for the free energy of [ cm?® double
layer (between x = 0 and = = d):

. 2nkT (xd

F = " —2— (38“ — 2 — e_“) 4

Z
+ 21 2coshz— Zcosha 4+ 2 [ ot S dyl (59)
“ 1/2coshy — 2coshu

123

The integral in this expression may be converted into an
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elliptic integral of che scecond kind, for which tables are avail-
able. Combinng this expression with

Z

xd :]— Y (32)
1”2 coshy — 2 coshu

which is computed numerically in Chapter IV (Table [X), we
can evaluate F (for a given value of z) as a function of d.
For d = oo, i.c. for a single double layer, the tree energy may
be found cither by integrating cq, (26) on the basis of the equa-
tions of Gouy and Chapman discussed in § 2 of Chapter II,

or by specialising eq. (35) to the case d = oo, In both cases we

find the explicit expression:

Foy = -2kl %4 cosh 2 — 4} (36)

K

In these two expressions, eg. (33) and eq. (36), we dispose of
the necessary equations for the calculation of the variation of

the free cnergy of the double layer system as a consequence of °

the interaction.

The conversion of the general expression (26) to the special cases (35) and
(36) can be effected in the following way.

Introducing the wvariable 7.’ we make the {ollowing substitutions [or f’ and

pl in eq. (26)‘
Ay oo
d/ J.oEn - P ,‘ . . 3
L ds 7 d7 7 > d
and
P E oY = S e
S am et T

and obtain, by specializing (26) to the case considered here, ie. to 1 cm? surface,

1 d =1 x=d .
L far g <= [ e ey 2
== s L de = — 27z¢ sinh . T dp o dx -
/ A ‘/‘ L X ‘ / 1€ Sin oT o A .dx
0 0 0 [}
A=l x-.d }
I S a? _
0 0

In the first of these integrals the integration with respect to . may be carried
out immediately.
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e
Y

. . s E
1, / / 2u kT sinh I(’\'b d ?‘LFJ_' cdy
. . i k1

0 0

d
’ - b
= — | ki B 0 dw,
‘/ i (CDS kT ) Y
)

in which <« denotes the potential, when the double layer is [ully charged
{Z = I). The second integral may be written:
2.
(d‘b) d 4/ } d , dx,
dx dx. 07

A=1 x=4d
the first half of which may be integrated immediately with respect to x, and is

Y )
T 4w, dr  di
Zero, as:

O Q

d
for x = {: ( 4}) = 0, because eq. {20) is derived on the assumption that

di
Yo is kept constant during the charging process,
oL’ . : :
for x = d: P 0, hbecause of the minimum in rthe potential midway
x

between the plates.

The remaining part of /, may then be written:

A=1 x=d
= ] ./ d (a“}) d2 . dx,
a1 dx
. . . o
and be integrated with respect to 2 (in which = = 0 for 4 = 0):
X
d
P AT
Iy = — .~ / (aT)) dx.
87 dx
O
Hence the complete expression for £ runs
d d
. ) /2
F= —ErLkT] (cosh Q — l) de — £ / El_) dx {373}
kT Jo\dx

8m .
0 s}
It is now convenient to introduce again ¥, # and £ as variables, then to take

+2nkT cosh &£ under the [irst integrand, and transform the expression
cosh ¥ — cosh & with the aid of equation (31):
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z_l da
F = —2nkT f (cosh 2z == 1) dx — 2u kT / (coshy — cosh ) dx —
0 0
d
s2B2T2 [ [dp\2
= / (ﬁ dv =
gTer | \d§
0
d d
dr\2 ek /dy\2
= —wmkT d(coshu — 1) — nkT / (d\) dv — g g / (di‘) dx.
0 [}

The integrals (which are equal) may then be transformed into an integration
over Y.

174

2/1//4 A / ———

= -2 kT d(coshu — 1) + 1/ 2coshy — 2coshu dr (37b)

z
The integral contained in this cxpression may be transformed tnto an elliptic

integral of the second kind. To this end it is written and transformed in the
following way :

o n
Iy - / 1 2coshy — 2coshu dy = / + e ___:,,, % dr=
. ]/2 cosh y — 2 cosh
z
1
/ey L i - "—l-2e9—2e"d
- I - s — y =
T/Q coshy — 2cosh «
z
z z
: 2 mhy dy
= [ v s e dy — 2sinh o —
V? cosh y — 2 cosh u ]/2 cosh y — 2 cosh iz
i u .
. Sy +u
a7 / Tt _dy=

VZ cosh y y — 2 cosh «
u

= — 21 2coshz — 2cosh it ~— 2 xdsinhu — 21,

in which eq. (32) is used for the introduction of xd.

Substituting again e v =sina and ¢ ¥ = sina.sin? ¢ the integral /, may be
written {notation of Jahnke-Emde)
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/= — 207 / 171 —sinfasinig dy =

P o —
= — 2e? EE (e “, 2) -- E (c' Y, arc sin exp (w 2’2 11) ) ‘ (38)

and wec obtain for F the (ina] expression:

. . 2n kT
F=—2mhkTd(coshuy — 1) + — - [y =
_2nkT -
= P ( 5 3e" — 2 — e ¥ 2 1/2 coshz — 2 cosh v + 21‘) !

This equation cnables us to calculate the free energy for any given value of
the surface potential (z) and the plate distance (=d).
For xd == O it can easily be shown that the first term between the brackets

- —xd .
1s zero (1 approaches to zero as e y and we find for

ki

l:d:M = 2”kT |2 VZCOShZ*Z — 4 / cos ¢ dy |
arc sin e‘)'<p (— 2/2)
2”” 21V 2coshz—2 — 4 §) — cxp(—2/2){]
= E’E_EI (4 co _;_ — 4) (36)

which is, therefore, the free energy of a single double layer.

The quantity we are chiefly interested in is the amount of
work needed to bring the plates from infinity to a distance 2d
(i.e., the repulsive potential). As the free energies F and Feo
are related to the double layer of 1 ¢m? of onz plate only, this
repulsive potential per cm?, Vp, 1s:

Ve = 2(F — Foo). (39)

Hence, passing now to a reproduction of the results of the
numerical computation of (35), we shall give these data by
tabulating (Table XI) directly the valucs of Vi obtained by
combining eq. (35) and (36).

Inspecting (35) and (36) we note that this quantity Vp may
be written Vg = (x/v) [ (u, z); the form between brackets
contains only u and z as variables (xd is, itselt., a function of

6
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TABLE XI
fa.z) = (v¥/»})VR in 107 dynes, and corresponding values of #d. for different values of z = vedgolkT
(# = vely/BT: VR = repulsive potential due to the double layer interaction for two parallel plates per cm? plate surface).
The numbers given have been computed for a temperature of 25° C and a dielectric constant of 78.55.
Cu—ue | us N ! T
nHN_NIWHNJanlom nHo_ﬂ_aHm‘aMw nuo.mﬂm_a.h.* u=3lu=2u=1 aHo‘m_aHo.mm_aHoL
z=10 f{uz) | 2683 228.2) 192.6] 160.0| 127.1, 75.4 | 443 | 254 | 141 | 736 | 342 | 126 | 26 | .06 | 015 |.0023
wd 0000 | .00434| .00836] .0134| 0204 0437 0813 | .43 | 244 | 412 | 690 | 1.148 ] 1962 2721 3.440 4.36¢
z=9 | f(wz) | 161.5] 135.2] 115.2] 95.6 S 763 443 | 254 141 | 736 3.42 ] 126 26 | 06 | 015 | .0023
| =d | 0000{ .0073| .0138 | .022i 03371 0721 134 | 236 | 403 | .679 | 1.139| 1.953| 2.712| 3.431 | 4.357
=8 | f(uy @@.ﬁ 80.56 | 68.56 mm.mo_ | 448 | 254 | 141 | 7.36 | 342 1.26 | .26 | .06 | .015 | .0023
| xd [ 0000 0121 | 0227 | .0364 10555 119 | 221 | .388 | .665 | 1.124| 1.939 | 2.698 | 3.417 | 4.343
=7 | f(wz) | 57.13] 47.46| 40.18| 32.89 1258 14170 7.36 | 342 | 1.26 | .26 1 0.06 | .015 | .0023
xd | 0000 | 0199 .0375] 0600 | .0915) .196 | .364 | 641 | 1.101| 1.915| 2.674 | 3.393 | 4.318
z=6 | fluz) | 33.27| 27.47] 23.04 ] 18.66 1438 7391 3421 126 | .26 | .06 | .015 |.0023
L xd 0000 0327 | L0618 .0990 15091 323 | .601 | L.OG6E| 1.876| 2.635| 3.354 4.280
=5 | flaz) | 18831 1532] 12.69| 10.07 752 | 343 126 | 26 1 .06 | .015 |.0023
[ xd | 0000} 054} | 1018 .1632 2488 533 | 995 | 1.8111 2.570| 3.290 | 4.215
z=4 | fwz | 1013] 807 | 651 ] 497 3.50 Si 26 | .06 1 015 | .0023
| xd 0000|0891 .1680 | .2692 4105 | 884 | 1.702] 2.462| 3.181] .4107
=3 v f,z) | 4962 3.793 | 2.913] 2.061 | D L291| 26§ .06 | 015 | .0023
| »d | .0000| 1471 | 2774 .4455 681 | 1518 2.280 | 2.998 | 3.924
z=2 | fle | 1.9931 14131 966 | .584 265 1 06 | .015 |.0023
xd | 0000 | 2435 | 4643 751 1178 | 1.915] 2.680 | 3.608
z=1 |tz | 4s575] 280 [ 135 | 0348 | 063 | 0I5 | 0023
| =d | .0000| 4353 .855 | 1.537 | 12837 2.035 ] 2,971
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combinations of z and x is obtained from Table IX, but. for
the sake of convenience. it has been repeated in Table XI =o
that V', as a function of d may bc read directly from the table.
As in Table XI we give the dimensionless quantity xd, we find
d for « = 109 cm™ in 10" cm, ctc.

Ve
12

o | L l
o 1 2 3 —=xd

Fig. 16. As fig. 15, showing cspecially the Vi curve for large values of x//.

Scale of #d: 0.1 /£ that of {ig. 15.
Scale of Vir: 10 X that of fig. 15.

In Fig. 15 and 16 the repulsive potential for 1-1 valent electro-
lytes is shown as a function of zd. Fig. 15 especially gives Vg
for small values of x=d, showing a considerable spread ac-
cording to the value of z. Fig. 16 shows the outer part of the
curves, for large values of xd, where the interaction is small.
Both sets of curves show that the influence of z upon Vy
" decreases with increasing value of =z

The gencral character of these Vy curves is much more
strikingly revealed by Fig. 17, containing log Vg as a function
of xd (full curves). We see that for xd > 1 the Vy-curves
approximately show a simple exponential decay with increasing
plate distance since log Vg varies linearly with xd. For strong
interaction the curves show dcviations from this simple be-
haviour. If z is small (z < 3) the repulsive potential increases
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less rapidly with decreasing distance than the exponential curve,
for larger values of z (z > 3) the repulsive potential increases
cven more rapidly. It is remarkable that all log Vg curves run
parallel for large values of zd. This purely exponential part
of the curves shows distinctly that che influcnce of z upon
the repulsive potential is chicfly perceptible if z is still small;
for large values of z the parallel logarithmic curves for succes-
sive, increasing z values approach each other more and more.

| F
I

—] 10 0t | w0 0*

- |
units 7, 1072 07
o/lVa Mg/cm' englO/m;lergx 0/1"2 ergx %Z

20
Ve

1!0

N

n

S
|

El

FE
IR XITN

0 05
Fig. 17. Repulsive potential on a logarithmic scale against the distance
separating the plates.

Full curves: exact according to Table XI.

Dotted curves: approximated cquation (43) vide infra.

OF course this behaviour must be closely connected with the
face  mentioned earlicr, that according to the Gouy-
Chapman theory the electric potential function in the outer
part of the double layer is only slightly affected by the value
of the surtace potential as soon as = rcaches higher values.

The cxponential behaviour of the repulsion curves may be deduced from
equation (35) or more easily [rom considerations on the repulsive {orce which
will be dealt with in the next section.

The curves in Figs. 15, 16 and 17, giving Vy or log Vp as a
function of xd, are applicable for arbitrary values of «, if
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only the potential energy is measured in the proper units along
the ordinate. Thus, as indicated in the small tables accom-
panving Fig. 15 and 17, the cnergy scale represents ergs per
cem? for = 107, tenths of crgs per cn® for = = 109 ete.,
and intermediate energy units for intermediate values of =«
This i1s obviously a direct consequence of the circumstance,
mentioned above, that v%x.Vp = f(u, z), and thercfore, for
a given value of z, a function of xd only.

The influence of the concentration of the electrolyte in the
solution upon the repulsive potential between the two plates
is entirely expressed by the quantity x. As x is proportional to
ni, the wvalue of [ (w, z), as read from the table, must be

Vofergs/em?)
3327

J

2

?

K =10
k=107
g I — e — i
4] 0 100 150 4 200x10%cm

Fig. 18. Repulsive potential for 1—1 valent electrolytes, assuming that
Wy = 1536 mV (z = 6) for different concentrations.

multiplied by a factor which increases according to the square
root of the ionic concentration. Hence, for equal wvalues of
F (u, z), i.e, for equal values of xd, the repulsion potential
increases with increasing ionic concentration. Thus, for in-
stance, for xd = 0 the value of 'y is proportional to. n!
(provided that the surface potential ¥ is not altered by the
change 1n ionic concentration, as will be fulfilled when in-
different electrolyte is added to a diluted sol or suspension).
Hence we infer that for small plate distances the repulsion is
increased by an increase in ionic concentration. This increased
repulsion may readily be explained by the fact that the total
charge of the double layer 1s increased by more electrolyte
in the solution (with increasing concentration the doyble layer
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is less diffuse. and has therefore a larger “capacity™). In the
previcus chapter we have scen that the decrease of the surface
charge, which accompanies the drawing together of the plates,
is the fundamental factor governing the repulsion. If, by the
interaction of the double layers, more charge must be removed
from between the plates, more work must be done in bringing
the two plates completely together.

Generally, however, we are not interested in Iz as a function
of xd, but as a function of . Accordingly, when the ionic

Ve lergs/cm?)
40

kle]

20 S

100 200x10Em

_..,0‘
Fig. 19. The same as Fig. 18, with a logarithmic scale of Vg

concentration, and therefore », is increased the repulsion
potential decays more rapidly with increasing plate distance.
This more rapid decay (like the quantity x proportional to
ni) is obviously a consequence of the reduced double layer
extension by the increased electrolyte concentration.

The total result of an increase in ionic concentration, thera-
fore, is a reduced repulsion for great distances, but an increased
repulsion for small plate distances. This influence of the con-
centration is illustrated in Fig. 18 and Fig. 19, for 1—1 valent
electrolytes, and ¢, = 154 mV. (z = 6).
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The influence ot the valency is rather complicated. T the first
place the valency o of the tons enters into x ina way analo-
gous to the concentration n: the quantity x is dircetly propor-
tional to the valency. According to this factor an increas: of
the ienic valency influences Vg as a function of d in much the
same way as an increasce of n does. For larger ionic charges the
liquid charge is concentrated closer to the surface; the corres-
ponding incrcasc of the double layer capacity again implizs a
larger repulsion for small plate distances; the corresponding con-
traction of the double layer, however, will again have the result
that the repulsive potential decays more rapidly with increasing
distance, and will accordingly be diminished for greater plate
distances.

In addition to this there are two other factors influencing
V'r when the ionic valency is altcred. To discuss these two
factors, we shall compare solutions of a 1—1 valent and a 3—3
valent clectrolyte at such concentrations that x has the same
valuc for both selutions. It then follows from the definition
of =« that the molar concentration of the trivalent clectrolyte
is one-ninth of that of the monovalent electrolyte. The cffect
of the valency upon the V' curve is then twofold.

We again assume the clectrical potential on the plates to
be the same in both cases. Flence we must consider that z =
vel,/hT, and that z is increased by a factor 3 if we pass from
v = 1 to v = 3. If the surface potential has already a large
valuc. ‘this increase of z has only a minor influence upon the
Vg curve, especially in the outer part of these curves. It the
surfaces potential is small, however, the repulsive potential is
still rather sensitive to changes of z, and V7 is raised appreci-
ably by the corresponding transition to a curve with the
threefold value of z.

In the second place the influence of the valency is present
in the factor #/v? According to this effect the whole curve is
lowered by a factor 9 (i.e, a constant amount, log 9, has to
be subtgacced from the log Vg curve) if we pass from v == 1
to v = 3.

Accordingly the two effects considered here work in op-.

posite directions. This is illustrated, in the logarithmic scale,
in fig. 20. Passing from a system for which ¢, = 25.6 millivolts,
coptaining 1—1 valent electrolytes, to a system with 3—3
valent electrolytes aid the same value of » is equivalent. in
Fig. 20, to a transition from the curve v = 1, z = 1 to the
curve v = 3, z = 3. It will be seen that, as a result of these
two effects, the repulsion is increased for very small values
of zd, but decreased for moderate and large values of xd. For
larger values of the electric surface potential ¢y we find an
analogous result, as is shown by a comparison of the curves
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vz==1,z=2 and v==3, z=6 (L, == 51.2 mV) or the curves
v=1,z=3and v:==3, z==9 (L = 76.8 m{/). The diffcren-
ces, on both sides of thie intersection point of cach st ol curves,

are here larger than for small <, valucs, where both curves
almost coincide. This is rather important, as we shall sec later

unts of Vg
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Fig. 20. Repulsive potential (logarithmic scale) as a function of xd, for
dilferent valencies of the electrolyte (v == 1 and v = 3).

that, for our purpose. the most important part of the [y curves
is situated in the neighbourhood of zd = 1. For this value of
«d we see ‘therefore that the repulsion is diminished by an
increase in the ionic charge, especially for larger values of. <.

The considerations given here refer to a comparison of two
solutions with equal values of x If we want to compare
solutions of egual ionic conceatrations (mol/l) we must ac-
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count for the corresponding increase of x. From what has been
said above about the influence of x it tollows that this gives
an additional decrease of the repulsion for larger values ol the
plate distance.

The final result of the cffect of the valency ot the ions upon
the repulsive curve is summarized in Fig. 21. In order to avoid
too large a spread of the various curves. we have here made
the comparison of an 1 I valent and a 2—2 valent clectrolyte
(Lo = 102.4 millivolts).

Veferas/fem?)
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i
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1-1 slecirolyte, gg‘jsmor !
o5\ rri4,£=707 WI
2-2 electrolyte, 0.25x 16" mol
\\ 2ad, k=10"
2-2 electralyte, 10 > mol/?
N K = 2x108
-~ ~
a e | _
¢ 50 100 150 ,  0x0 &m

Fig. 21. Repulsive potential as a function of the plate distance (2d) [or
comparable concentrations of an 1-—1 and a 2—2 valent clectrolyte.
Ly = 1024 mV: 2 =4 resp. 2 = §).

§ 3. Potential energy via the force

An expression for the force acting between the two plates
and due to the interaction of the double layers has been derived,
in the second part of his paper. by Langmuir?!, while Der-
jaguin® also gives an expression for the force, but only for
the case of very small surface potentials 3. The considerations

VoL Langmuir, /. chem. phys., 6 {1938) 893,

2 B. Derjaguin, Trans. Faraday Soc., 36 (1940) 203.

¥ Bergmann, Léw-Beer and Zocher, Z physik. Chenr,, A 181 (1938) 301,
gave a theory of so-called "Schiller-layers”. based upon the repulsion hetween
two flat doublc layers. Their derivations. ahthough correct, are too niuch
specialized on the case of Schiller-layers, i.e.. a case ol very small interaction
and large distances. to be able to serve us as a useful starting peint for a
general theory of the stabilicy of colleids where large interactions and small
distances are involved.
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of Langmuir and Derjaguin appear at first sight to de-
viate considerably. but it can be proved that thc_ay are assentlallly
cquivalent. Actually, Derjaguin's cquation 1% onl_y a _spec_lal
case of that of Langmuir; in view of the appreximation in-
volved in the former (development ot the exp(_)nel_ltlal from
and breaking oft after the lincar term) and the objections ra1§ed
carlier in this work against the application of this approximation
to actual colloid systems, we shall here only consider Lang-
muir’s eguation.

This cquation for the force acting between the two plates
per cm?® reads:

p == 2nkT (cosh u — 1) (41)

This equation may be derived in various different ways. In
the first place, it s obtainable directly trom the expressions for
the free encrgy by differentiation. Eq. (41) may be obtained for
instance, by differentiating eq. (37) with respect to d.

Starting from (37b) we fiod

a kT 9.
po= - (?TI;)Z = 2n kT {coshu — 1) 4- 2 kT, d'd_d (cosh 1} 4 - d‘d?
u
in which, again, /4 == / 1/ 2coshy — 2coshu . dy.
z
o 2 {— 2cosh u) " — sinh#. g”
ol 77/ sa’ T / o b
R — = = . dy = -
gd J 2 1/2 cosh ¥ — 2 coshu - VZ coshy — 2coshu
z <
= — x4 sinh# . gg

Hence we [ind

. . o
p o= 2ukT {coshw — 1) + 20 kT d  sinhu .g:;fl'zkf.d.smhii.did:
= 2 kT (coshw — 1).

Tt is also possible to derive eq. (41) without making use of
the expressions respecting the free cnergy. Langmuir works
with the osmotic pressure of the counter-ions between the
plates, Derjaguin (as wcll as Bergmann, Léow-Beer
and Zocher) considers the clectric force acting on the surface
charges. A common point in their derivations is that they c_al—
culate the force on both sides of one plate and by subtraction
$ind the resultant force driving the plates apart. 1n this proce-
dure it may seem esscntial that on both sides the plate is in
contact with the same liquid. It has alrcady been pointed out
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by Levine and Dube! that this must be a supertluous
complication, as the double layer is a system in equilibrium, so
that no force can be excrted on the outer side facing infinity.
This complication is not involved in the derivation we will give
below. Moreover, the latter avoids a number of othar diffi-
culties associated with the considerations of the authors men-
tioned above. The introduction of osmotic pressure, for in-
stance, In such dcrivations of physical chemical laws always
gives them a somewhat artificial character (ctf. the well-known
critical counsiderations of Van Laar? on this subject). The
consideration of the clectric force acting on the surface charges
also creates certain difficulties.

If we consider two infinitely large parallel plates with liquid
between them, but confined on the outside by a neutral sub-
stance (e.g., air) we must add a reservoir, containing an infini-
tely large amount of liquid in order to balance the change of
volume when the distance of the plates is altered. This reservoir
is imagined to bc beyond the field of the double layers. and
conscquently contains the solution at a concentration of =
mols/cm? at an clectric potential zero and at a hydrostatic pres-
sure which we shall call P os.

Now the cquilibrium of the system reguires that at 2very
point of the solution phasc thc¢ gradient of the hydrostatic pres-
sure and the force on the space charge balanc2 each other:

dP 4 ¢ddv = 0 (42a)

Using Polsson’s cquation and specializing to the problem
betwcen the two plates this equation may also be written

dP e dide
dx 47 T dx? “dx T

d_ [P s (d‘;}\f] %

0

dx 87 " \dx
or:
bt (d;)?
—er g T constant ; (42b)

thus we sce that the difference between the hydrostatic pressure
and Maxwell’s stresses has everywhere a constant value. As,
midway between the plates die/dx = 0, this differance is equal
to Py the hvdrostatic pressure for x = d. Hence the force
which drives the plates apart in excess of the hydrostatic pres-

' S. Levine and G. P. Dube. Trans. Faraday Soc.. 36 (1940) 215.
* J. ). van Laar, Sechs Vorlrige liber das thermodynamische Polential,
Vieweg Braunschweig 1906.
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surc of the reservoir, or the force acting on L cm® of the_ phase
boundary of one plate due to the double layer interaction, 1s
simply identical with p = Pqy — Pew.

In order to evaluate Py — PPeo, we have to integrate (42a)
between the middle of the plates and a point in the reservoir,
or between ¥ = 4y and ¥ = 0.

So
d dd
Ps—Poo = | dP = — | :d¢
o 0
With ¢ as found in eq. (2a) )
L vey
¢ = — 2nwe sinh v
we find
by U '
’ ' L . Ve,
——./ pdd = / 2nwve sinh l—f:j% d = 2nkT (cosh /\T{ — 1)
0 0
or p == 2nkT (cosb u—1).

In this way, therefore, we arrive at the same expression as
that given by Langmuir, and we should have found cxactly
the same result if we had applied Derjaguin's method on
the basis of the complete Gouy-Chapman picture. Actu-
ally, all three derivations are essentially identical.

Langmuirs derivation makes use of the osmotic pressure caused by the
excess of ions present between the plates. This excess is a result of the fact
that the oppositely charged ions (hence for positive 44 the negative jons) are
accumulated there. The increase of the negative ions (for x = d proportional
to ev — ) is always larger than the corresponding decrease of the local con-
centration of the positive ions (for x = d proportional to 1 — e—u). Hence the
total increase of the concentration of ions at the central plane, where the
electrical field is zero, will be equal to

nier — 1) + (e-e — D)f = 2 (cosh u — 1).
The difference between the osmotic pressures midway between the plates and

at a point outside the fields of the double layers. and therefore the force acting
between the plates, will be
p = 2nkT (cosh v — 1)
Derjaguin’s argument, too, is connected with the derivation given here. It
may be reproduced in the following way. The clectric force, pressing the space

charge of the double layer into the direction of the surface charge, is. according
1o the theory of electricity {cf. also our eq. (42a) and (42b)) equal to

e
g7 \dv
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Constdering the system ol two plane double layers in interaction, this force
gradually increases [rom zero (in the central plane, where d:l/dx = 0) to its

g [ddnd

5 \ac ),
in the thin liquid layer adjacent to the plate surface (x = 0). An equal force,
but working in the opposite direction, will accordingly be exerted on the electric
surface charge, under the influence of the space charge in the solution.

As {dip/dx)y is a function of the plate distance, and decreases with increasing
interaction, this force acting on the surface charges, and pointing into the
direction of the solution, will also vary with the plate distance. It reaches its
~ maximal value for & = @, and this is therefore at the same time the force

acting at the back of the plates facing infinity (thought to be in contact with
the same solution).

Hence, comparing the forces acting on both sides of each plate, Derjaguin
finds for the repulsive force the expression

2 HES AR (G
&r . dx Q)oo dx old ’

Applying now the expressions derived in cbapters II and IV for the derivative
of the electric potential for one and two double layers, eq. (5b) and eq. (3la):

N ; o
(82)). - VI e

<

{(dﬁb> } = VM .1/2cosh_z—2coshu .
old

dx P

final value

7=

we again find Langmuir's equation:
p=2nkT (coshu — ).

Considering the three derivations given here we may say that their equivalence
is a direct result of the circumstance that they are all based on a double Jayer
theory invoiving the equilibrium between the electric and “osmotic” (thermal
diffusion) forces acting on the ions in the solution.

The equation for the force acting between the plates owing
to the interaction of the double layers has a very simple form.
It is noteworthy that it applies equally well to a systen with
constant electric surface potential (with varying plate Jistance)
as to one with constant surface charges. This does not mean
that the force varies with varying 4 in the same way. In
Chapter IV we saw that the quotient s/il, decreasas with
decreasing plate distance. The elzctric potential midway between
the plates is Increased by the interaction, but it is zvident that
in tbe first mentioned case (= constant) it will increase less
than in the second case (s = constant, and therefore 4, in-
creases). Hence, in the latter case the repulsive force will
increase more rapidly with decreasing plate distance than in
the case ot ionic equilibrium (¢4 = constant).
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A remarkable point about eq. (41) is that it contains neither
the electric surface potential (i, or z) nor the plate distance 2d,
but only the electric potential midway betwezn the plates
( 44 or u). But the relation between z, u, and & being rather
complicated (cf. Chapter IV), it is impossible to integrate
eq. (41}, for a given value of 4, with respect to the distance.
Hence there is ne advantage in using this force equation to
evaluate the repulsive potential Vg, for a system of two plane
double layers, on the basis of the complete differential
equation (3).

However, as we have seen in Chapter IV, an explicit relation
between d and % may be obtained in a special case, namely
in the case of small interaction. For this case we found the
approximate equation (33):

u— 8y, g
ezﬂ _ 1
ith = —
w1 7 ezf'z __'_ 1

The consequent application of this relation in the force

“equation then leads to the following approximative equation

for the repulsive potential
__64nkT Ly o2t

Ve = S4nkl (43)
b4
As
S
od’
we have for the repulsive potential :
d
Vp = 2 (F— Fup) = —2 / pdd.

As the interaction is small, the eleciric potential midway between the plates
will also be small, so that # < L For that case eq. (41) simplifies to

1+1J-|-1-"21+1—11+u7-~2
p=12un kT{ 3 %*} = nkT .u? (417)

Inserting then the value of # given by eq. {33) we find for the repulsive force:

——xd

o 6dnkT e

and accordingly for the repulsive potential :

o)
Vi = 64 akT 2.2 [ e 24 gy =

d
64nkT | 0.4 ( Be P T
= T vt .e == .

< T

—22(1‘) )
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According to Chapter IV, Table 1X, «d is slightly less than 2 for # = 1
(except [or very small values of z, where it becomes appreciably smaller chan 2).
The validuy region of eq. (13) may therelore be said to be. according to its
derivation, xd > 2.

Inspecting cg. (43) we sce that it expresses that, for small
interaction, the repulsive potential decays purely exponentially,
and the rate of decay is independent of the value of the surface
potential: 1t Is entirely determined by the quantity x. This
is exactly what was found in the foregoing section for the
Ve derived via the freec energy. There we saw that the log Vi
curves become, for larger values of xd, straight lines, which
prove to run parallel to each other for all values ot =z

Fig. 17, giving log V'x as a function of xd for a number of
values also contains (dotted lines) log Vg according to the
approximate cquation (43). Comparison of both sets of curves
yields the following facts:

a. In all cases, except those of very strong interaction at a
large value of z, the approximate curves are a little higher
than the exact ones.

This may be explained by considering another approximation.
viz. the Debye-Hiickel approximation. For that case, where
the potential is everywhere small, we find

_ anT 5 . _ 471](T 5 Q'_Zd
Vie= . 22(l —tanh zd) = -, ¢ 1—:}_ e—27d

(44)

This equation is easily found by considering that, for z <7 | (and ¥ < 1),

A 1 = — e ——————— =
X ’ ]/2coshyf2005hu ]/y‘-'_ g

"

8 4

i+ V-

u

{

= In

R

This expression for »d may be rewritten and leads to:

= cosh xd.

:{N

Now Vg is found by integrating p (eq 41" with respect to d, which leads to

i B 2 20kT |
VR:] l)dd:“/ nkrmdd = . 22 (1 —tanh xd).

d

When z is small and xdis large, (43) and (44) give identical

results as for z < 1, »? = 2%/16 but when x is smaller, (44)

shows that the repulsive potential energy will increase less
steeply than should follow from eq. (43). The additional
exp. (— 2«d) in the denominator of (44) explains the trend for
a negative deviation from the approximated curves in figure 13.

By combining eq. (43) and (44), we may find an expression
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for the repulsion satisfying in all cases when the interaction

1s pot very strong:

64 nkT 4 e~—2xd 32nkT ,

= -y A — = v
e l fe—2«d —  x

V' = (1 — tanh xd) (46)
b. The steep increase of the repulsion for strong interaction
and large values of z has to be explained by the great ac-
cumulation of ions at very small distances from the wall when
the surface potential is large. At these small distances the
electric potential of the double layer goes much steeper than
the simple exponential expression (exp (— xd)) would demand,
causing at the same time a stceper repulsive energy curve.

c. Although eq. (43) has been derivaed for the case of small
interaction, its approximate validity appears to extend to a
considerably larger region.

The combination of the two deviations from the approximate
eq. (43), one diminishing and the other increasing the energy
of interaction, is the cause that the exact curve and the ap-
proximated one run nearly parallel over such considerable
distances.



VI. THE VAN DER WAALS-LONDON ATTRACTIVE
FORCES

8§ 1. The attraction belween Lwo aioms

As stated carlier we shall asswme that the atrractive potential
between the particles of a colloid system is mainly due to
Van Der Waals-London attractive forces. When the
particles come into contact forces of a different origin will
also have to be considered, for instance attractive forces caused
by residual chemical valency fields. For the preseut, however,
we are Intercsted in comparatively long-range forces, for which
‘the type mentioned above is the only type coming up for
consideration. .

The attractive forces acting between two neutral, chemically
saturated molecules, postulated by Van Der Waals, may
be partially understood from a classical electrical point of
view. If tlie molecule carries a dipole nioment the two molecules
will inutually influence their spatial orientations in such a way
that, on the average, attraction will result (Debye)l
Moreover, cach molecule induces a dipole in the other mole-
cule and the attraction is reinforced by this mutual polari-
sation (Keesom)? Betwcen nonpolar molecules, too, however,
attractive forces are active, as is shown by the liquetaction of
heliumy, hydrogen, carbon disulfide, etc. These universal attractive
forces, acting between all atoms, molecules, ions, etc., were
explained by London on the basis ot wave-mechanics® They
may be undersiood as being the result of the mutual influencing
of the electronic motion in two atoms under consideration. The
charge fluctuations in one atom cause, as a first approximation,
a fluctuating electric dipole in the atom considered. This tem-
porary dipole induces a dipole in the second atom, and the
result is attraction. Inversely, the fluctuating dipole in the
second atom induces a dipole in the first atom.

As the field of an electric dipole is proportional to the inverse
third power of the distance from the dipole, the induced dipole
moment will also show this dependence on the distance of hoth
atoms. The attractive potential between two dipoles. on the
other hand, is also proportional to r~*; the corresponding at-
tractive forces decrease according to 7 % Hence according to
London’s theory these universal Van Der Waals-forces

L p. Debye, Physik. Z., 21 (1920 178; 22 (1921) 302.
2 W. H. Keesom, Proc. Acad. Sei. Amsterdam, 18 (1915) 636 23 (1920) 939,
3 F. London, Z Physik 63 (1930) 245.
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between two atoms will be proportional to ', which means
a rather rapid decay with increasing atomic distance; the
corresponding attractive potential varies as » Y. Accordingly:

g (47)

r

in which 4 is a constant depending on the properties of the
atoms  (or molecules) under consideration. Because of the
reciprocal character of these forces this constant will be
proportional '(for two equal atoms) to @2, # being the polariz-
ahility of the atom (for two different atoms it will be pro-
portional to 2 a,).

It appears to be rather difficult to evaluate the constant 2,
and to express it completely in terms of physical constants of
the atoms. On this point the gquantum-mechanical theory is
still imperfect. More or less rough approximate equations hawve
therefore been proposed. One of them is that given by
London. For two equal atoms it reads:

— 3 42
C A = ¥athy,

in which Aw, is a characteristic amount of energy corrcsponding
to the chief specific frequency v, taken from the dispersion
equation of the atom considered. An alternative approximation
forinula was derived by Slater and Kirkwood®:

A= 11.25 - 10— n"‘IT%%.

in which n = the number of electrons in the outermost shell of
the atom. The last mentioned equation gives higher results in
some cases than the former, and has the further advantage
that not much doubt exists in most cases about the choice
of the quantity n. Finally, a third equation may be derived
from a paper by Neugebauer?:

A= —2mc? a2y = — 1.62 X 1070 ay

in which x is the diamagnetic susceptibility of the atom under
consideration. This equation sometimes gives still higher results,
especially in the case of the negative ions, where the latter
equation seems to be the better approximation (In this case
the results may differ by a factor 2 or more).

A fundamental implication of the quantum-mechanical treat-
ment of these forces as a result of second ordzr perturbation
theory is that these forces are additive. Hence, in an assembly

1 §.C. Slater and . G. Kirkwood, Phys. Rev., 37 (1931) 682.
2 Th. Neugebauer, Z. Physik, 107 (1937) 785,
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of atoms each atom attracts all other atoms, and this attraction
is. as a first approximation, independent of the presence of the
surrounding atoms. Only when the density of the surrounding
atoms is very high. as in condensed systeins. are the attracrive
forces slightly weakened by rthe diclectricum  through which
they are transmitted.

§ 2. The attraction between two flat plates

On the basis of this theory the attractive potential between
two particles may then be calculated approximately by a sum-
mation of the attractive potentials for all atomic pairs tormed
by two atoms belonging to different particles. As a next ap-
proximation the summation may replaced by an integration,
which will be permissible for all cases where the atomic
distance is grecat in comparison to atomic dimensions. This
integration may easily be carried out for special cases. such

as two infinitely larse blocks with parallel plane surfaces facing -

ecach other (J. H. De Boer)!, and two spherical particles
(Hamalker)® The first case will give us approximate infor-
mation as to ::e attractive potential between two cubic par-
ticles closely approaching each other, or for other particles with
a low* number of crystal faces. The second case will be a
better approximation if the partticles resemble spheres, or if
the particle distance is great in comparison to particle di-
mensions. In the following we shall, moreover, consider the
case of two infinitely large parallel planes with a thickness
small in comparison to their distance. The latter approximation
will be applicable in certain cases of blade-shaped partcles.

All equations derived in this way have this in common, that
the attractive potential between the particles decays more
slowly with increasing particle distance, than the attractive
potential between two atoms with increasing atomic distance
(eq. (47)). This different behaviour is a direct result of the
cooperation ot all atoms of the two particles. In the case of
two large blocks with parallel faces, for instance, an increase
ol the particle distance will only imply an increase of the atomic
distance by the same factor for atomic pairs in the adjacent faces
right opposite cach other; for all other atomic pairs the atomic
distance is increased by a smaller factor.

Following Hamaker we will introduce the gquantity

A = ﬂ'qu}\,

1] H. De Boer, 7rans. Faraday Soc., 32 (1936) 2].
2 H. C. Hamaker, Physica, 4 (1937) 1058.
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in which g is the number of atoms contained in 1 cm® of the
substance building up the particles considered. It the substance
contains more than one atomic specics we will have a somewhat
more complicated expression defining A in that case it contains
also a summation over all these spccies.

The expression obtained by intcgration as indicated above
for the case of two spherical particles is rather complicated. It
will be given in Chapter XI of Part II1. More simple expressions
are obtained in the case of two large parallel plates, especially
in the limiting cases that the plate distance is either large or
small in comparison to the thickness of the plates. The attrac-
tive potential for two plates of thickness 3, at a distance 2d
from each other, is found to be

vy =~z b+ e w
with the following useful approximations:
S A #525_2;? [ (48)
@ 4> Va= g

These equations are found in the following way. We first consider an atom
opposite to an infinitely large plate of thickness d. The distance from the atom
to the surface plane of the plate will be R. The Van Der Waals-London
attractive force is then found by adding together the components of all
attractive forces exercised by the atoms of the plate substance, in a direction
perpendicular to the surface plane.

Differentiating eq. (47) we find for the force

[ = 67
and, therefore, for the force component (cf. fig. 22),
6/.
S=5

=3 €08 ¢
The volume of the ring with radius 5 is dx. 2xp. dp. and the number ol
atoms contained in this ring, (herefore, 27q.gdp.dx. As cos ¢ = x/r, and

r* = (p* + x% we find, substituting the summation by an integration. for the
total force
%) R ‘}_ ) I
S = 12749 / 2dp / xdx (2L %
0 R
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We now consider o row ob stoms extending from the atom consudered ar o
distance R. to. o distance, & - 4, in a dircction perpendicular o the plates. T'he
total attraction force s then simply a superposition of the attraction forces
exercised by all these rows. Hence, we find the total foree from

A
_ ‘ Tk )l 1
f=uq / dO'/ “y {’Rf —mi 5‘).1} dR =

atom ® Cx x+ldx

Fig. 22. Illustrating the London-Van der Waals forces betwecn
an atom and an infinitely large plate of thickness &

The corresponding attraction potential is then found by final integration with
respect to R between oo and R:

g | | l 2
v, = — 29+~ 1 — <
A 1z | R® T (R 4290 (R 9]

From this the cquadons {48) can casily be derived,

It 1s clear that the quantity A, and the attractive potential
V.. are proportional to ¢ It is scen that che attractive poten-
tial between the two plates decays comparatively slowly with
the plate distance. especially if the plate thickness is very large
in comparison to the distance: in that case the potential decays
according to d7%,

A difficulty when operating with equation (48) is the infinitely
large negative value of I/, when d = 0, i.e,, when the plates

§ 2 ATTRACTION BETWEEN TWO FLAT PLATL 103

ate in immedinte contact. This, of course, connot have any
physical meaning. It is true. that the attractive encrgy rcaches
large negative values when the plates touch cach other, but the
value of equation (48) will be doubtful for distances smaller
than an atomic diamerer {say 3.10°% cm). For these small dis-
tances vet another kind of forces should be inttoduced, viz.
the Born-repulsion preventing the interpenetration ot matter.

Moreover, a physical surface is never perfectly plane in the
matheinatical sense of the word. It always possesses a certain
roughness much cxceeding molecular dimensions. So if two
surfaces touch each other, they are only in direct contact in a
few protruding points, which diminishes the London-Van
der Waals attraction and invalidates the equations (48) for
small distances.

Fortunately when combining the London-Vander Waals
attraction with the repulsion found in the foregoing chapters,
the interesting region proves to be situated at {in most cases
considerably) greater distances between the plates. Consequently
the above comnplications farm no serious hindrance in applying
eq. (48) to the theory of the stability.

It the medium between the plates or particles is no longer a
vacuum, but a second substance (e.g. water) we have to ac-
count for the facr that each plate or particle replaces an equal
volume of water. A is then composed of a number of similar
quantities A, A, A,y in which the first refers to the inter-
action between the atoms of the plates or particles, the second
to that between this substance and the water, and the third
to that between the water moleculzs.

A= A, + Ay — 24,

It can be proved that this total A is always positive, so that
between two particles of the same substance immersed in a
second medium there is always an attraction '

The influence of the medium through which the forces are
transmitted may be roughly taken into account by dividing the
constant A found in this way by the square of the refractive
index, as the LLondon-Van der Waals force is essentially
of an electric nature. But as we are not Fully imtormed as to
the cxact values of the London-Vander Waals constants,
we shall leave ihis point aut of the discussion for the present,

In view of the ctheorerical uncertaintics and the various ap-
proximations involved in these considerations, there would be
no sense in trying to calculate the value of A in special cases.
In order to form an 1dea of the order of magnitude ot this

' H. C. Hamaker, Physica, 4 (1937} 1058.
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constant we shall compute A., ie. the constant relevant to
the intecraction water-water. and the term returning e A for
all aqueous colloid systems. Using the Slater-Kirkweod
equation ! we find, for this case, (n = 8, « = 1.43 . 1072")

2= 54 [0~ and A,, = 7*q*» = 0.6- 10—"%

From this we infer that in most practical cases we may
expect, according to the theory, that A is in the neighbourhood
of 10712

§ 3. Relativity correction to the theory of London-Van

Der WWaals forces .

In applying the theory of the attractive forces as developed
in the preceding section to colloidal systems. we met with
some difficultics, espccially in the treatment of coarse sus-
pensions. because the London theory as such is not relativ-
istically invariant, and by working out this idea we found
that precisely in the casc of coarse particles a relativistic
correction may well become important.

We have to consider the fact. that the L ondon-forces,
being of an clectrical nature, need a certain time for ctheir
propagadon. In the theory of London, this tme is com-
pletely neglected, as it uses the non-relativistic Schradinger
equation. But for great distances a reladvistic correction be-
comes necessary.

If we consider the picture of the London-Van Derxr
Waals forces as given above. viz.. as an artraction between
the temporary dipole of one atom and the dipole induced
by it of the second atom, the finite velocity ot propagation
ot electromagnetic actions causes the induced dipolz to be
retarded against the inducing one by a time equal to r/c
(if r is the distance between the two atoms and n the re-
fractive index of the medium for the frequency coupled with
the temporary dipole). The rcaction of the induced dipole on
the first one again is retarded by the same time. and if in this
total time-lag of 2rn/c the direction of the first dipole ig altered
by 90%, the force exerted is exactly nullified, and by a change
of 180° even reverted from an attraction into a repulsion.

! Using the Neugebauer cquation we find (specific susceptibility =
= —0.72.107% hence y = —2.2- 107

=351 10
whereas London's equation leads to the value (if we use for hy, the ionisation
potential, 13 eV.)

A= 320107
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If we call the frequency of the |notion_ot electrons 1n the
atom v the wavelength connccted with 1t 7, 'the first zero
of the London-Van Der Waals force will be reacl*_led
at a distance r == 4 . time-lag.velocity = 1/8 . cln = 2[8.
If we assume that the frequency invo}ved here is the same as
the frequency in the London equation
Yy h

i"b '

A is of the order of 1000 A, so r is of the order of 107¢ ¢m,
This means that beyond this distance the London-Van
Der Waals force is practically non-existant. .

Of course the picture sketched here will have to be refined
in different respects. viz. a sharper discussion ot the value
of v, an exact calculation of the decay of the London force
for large distances, and the infiuence o{‘ the summation or
integration over larger volumes on the eﬁe;t mentioned.

We believe, however. that for the principal aspect ot the
question, and the determination of the or_d-er ot_magmtude, the
above suffices. The conseguences of this cutting oft ot the
London-Van Der Waals forces are unimportant for small
particles (=< 107%) where these forces do not. anyway, reach
farther than 1079 ¢m. The influence in the case of’ larg_e
patticles (1071 and larger) will be Jiscussed in Chapter XH.,%;)..

Very recently Casimir and Poldlel:' succecded in giving
an exact guantum mechanical deseription of the influence
of the retardation effects on the London-Van Der
W a als-forces. They found. in fair accord with what was

V= —

~expected hy the seini-classical reasoning given above. that a

significant teduction of the Londen-Van Der Waals
force between two atoms is felt for distances larger than 2/3.
When the distance is very large the London-energy 15 pro-
portional to 1/r 7, instead to1/r® as is found when no account
is taken of the retardation.

1 H B. G Casimir and D. Palder, Phys. Rev. 1948 (in press): cf. also
preliminary comm. in Nafure, 158 (1946) 787.



VII. TOTAL POTENTIAL ENERGY (REPULSION +
ATTRACTION) FOR TWO PLATES, AND
APPLICATION TO COLLOID STABILITY.

§ 1. Examples of potential energy curpes.

In Chapter V we derived the potential znergy of a system
of two parallel plates due to the interaction of the double
layers (corresponding to a repulsion). In Chapter VI we con-
sidered the Van Der Waals-London potentiai for the
same system (corrcsponding to an attraction). In the present
chapter we shall study the result of both actions together:
the rtotal potential curve, being a superposition of the two
separate potential energies as a Function of the plate distance.
We may expect to arrive in this way at a quantitative theory
for the interaction of colloid particles for all colloid systems
in which the particles are sufficiently large in comparison to
the double laver extension. and accordingly an encounter of
two particles may be approximated by a system of two large
paralle], plates.?

It depends on the shape of the particles what equation should
be used for the attractive potential. We will assume tor the
present that the particles are cubic (or of another regular
form). This case is approximated by two plates for which the
plate thickness is considervable v comparison to the thickness
of the double layer. As we are chiefly interested in plate
distances of the same order of magnitude as the double layer
thickness. we may use eq. (48c) for the artractive potential
(See, however. § 4).

In Chapter V' we found that the repulsive potential }g
decreases with increasing distance according to a more or less
exponential decay. At any rate the curve starts with a finitz
value of V' p for zero distance (the free energy of the double

! Cases may be imagined, in which the attraction between colleidal particles

is caused by other forces than the London-Van Der Waals forces. Such a
case was dealt with by Bergmann, Léw-Beer and Zocher? wha explained
the existence of the so-called “Schiller-layers” by an equilibrium between the
double-layer rcpulsion and the gravitational forces pressing the plateshaped
particles to the borrom of the vessel, and thereby pressing them together. In the
layers of particles originated in this way, the particles lie horizontally and
parallel to each other. Their distance can be measured by observing the inter-
ference colours generated in them. and is found to be in reasonable accordance
with che theoretical calculations of Bergmann cs.

o

> P Bergmann, P. Léw-Beer and H. Zocher, Z. physik. Chem., A 181
(1938) 301.
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layer is finite), and the curve approaches a purely exponen;al
one for moderate and larse plate distances. The attractive
potential, according to eq. {48c). decreases quaclratma]ly_ \ylth
increasing distance. Hence, on the basis ot the unlimited
validity of this cquation we may infer that the absolute value
of the attractive potential |74 will always be larger than VR
for two cases: for very large and for very small plate distances.
Indecd, it is well known that an exponential']y decr-easl_ng
function goes to zero more rapidly than a function decreasing
with a negative power. Accordingly, for great distances (though
the absolute value of I/4 may there be very small) the at-
tractive potential according to eq (48¢) will always surpass
the repulsive potential. For small distances. /4 approaches
the valuc — oo, so that, for sufficiently small distances, the
attractive potendal will, again, always be larget than the
repulsive potential. _

Tn the intermediate distance region (i.e., distances ot the
order of magnitude of the “thickness” of the double Iayjars‘
or distances around # — 1 x) there are. gcnera_lly speaking,
two possibilities. Tf the rvepulsive potential is suFFxcm'ntly large
in comparison ro the attracrive potential. the potential energy
VR - V 4 may reach positive values over a certain region of
distance: in that casc the total potential curve will there show
a maximum reaching beyond the horizontal axis. As illustrated
in Fig. 23 we may therefore distinguish betwezn two types ot
total potential curves: o _

a. Curves with a potential enetgy ”barn.cr”, cgrresppndmg
to positive values of Vg -+ V. As with increasing distance
this quantity again reachcs negative values and finally approa-
ches the ahscissa asymptotically. these curves also show a weak
minimum for moderately large plate distances. '

b. Curves for which Vg -k V4 Is always negative or zero.
As the minumum for greater distances is always very shallow,
these curves will show at most a very low energy barrier; gene-
rally, however, the total potential energy will decrease conti-
nually with decreasing plate distance. _

As the torce between the plates is given by the (negative)
derivative of the potential. we read from Fig. 23, for curves
of the type (a), that with decreasing plate distance, a weak
attraction between the plates is found at fiest, until the
minimum is reached. For distances between the minimum and
the maximum. worle must be petformed in bringing the plates
together. and accordingly a repulsive force is active ba'tw‘een
the plates. Fot plate distances smaller than the maximum,
again, we once more find attraction. _

If, on the other hand, tlie total potential curve is of the
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type (b) we shall gencrally find attraction prevailing for all
plate distances; only in the intermediary case of curves showing
a very small barricr touching, or almost touching, the horizontal
axis will there be a small repulsive force again for interinediate
plate distances.
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Ffs. 23. Curves of total potential energy found as combinations of
one repulsion curve (marked Vo, v=1, z = 3.4y =

76.8 mV) with as eries of different attraction curves, showing
the different types of curves of total potential energy.

In applying these potential curves to the problem of the
stability of hydrophobic colloids, we observe first of all that
the particles in a sol or suspension are subject to Brownian
movement. This implies that encounters take place continually
between two (or more) particles. If the potential curve between
two particles is of the type (a). the potential barrier will
prevent lascing contact between the particles and after the
encounter the two particles retain their independnece. If. on
the contrary, the potential curve is of type (b), the particles
attract  each other and if they are brought rtogether
by Brownian motion, they will yield to their mutual attraction
and form a lasting combination — difficult to separate — so
that afrer 1lic encounter one double particle results instead
of two single ones, which means that flocculation has set in.

Hence, us a first approximation. we will assume that type (a)
represents stable systems. type (h) flocculated systems, and
that the transition between stable and flocculared systems is
Tepresented by the potential curve with a weak potential
barrier for which the top coincides with the horizontal axis
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In doing so we make a double neglection: (1) the influence of the kinetic
energy of the particles due to thermal motion: and (2) the influence of the weak
minimum. Hence we do not take into account the possibility that in the case of
a potential curve with a Jow maximum a particle approaching another. one may
still be able to cross the potential barrier as a consequence of their relative
thermal motion. Neither do we account for the fact that the poteptlal curve
corresponding to the intermediary case still contains a weak maximum as a
consequence of the weak minimum at great distances. We return to both points
separately in following sections; we shall see that the neglection of thermgl
motion is the more justified the larger the size of the particles, and that in
reality the weak minimum is probably much less pronounced than is suggested
by the simple London-theory. Moreover, both effects tend to cancel out each
other. At any rate, an approximate theory involving both neglections will give
us the general aspects of colloid stability.

Accordingly a study of stability conditions of a 'collqd
system will then be equivalent to a study ot the question rtor
which values of the parameters of the system the transition
case between (a) and (b) is found to exist. A

Now for a system built up by given substances, the Van
Der Waals-London constant A will be a given quantity;
by a change in electrolyte concentration within the limits
usual in colloid practice it will not be perceptibly altered.
As a matter of fact a change in the properties of the system,
for a given valency of the ions, can be entirely covered. by a
change in the two physical quantities ¢, and x. The first is
soverned by a change in the concentration of the potential
determining ions in the sol medium; the second by a char}g-e
in the total electrolyte concentration of the ions. A third
variation is introduced if the valency of the ions is also varied.
We shall consider this case later on.

Accordingly, there are in cssence two different ways to
transfer potential curves of the type (a) into potential curves
bf the type (b); in the first place by a decrease of ¢, in the
second place by an increase of x. We will discuss both these
possibilities separately. »

In considering the influence of &, upon the form of the total
potential curve we are still free to choose the quantities x
and A arbitrarily; in order to obtain reasonable results they
should be adjusted to experimental conditions. We will first
consider the case of a colloid system containing such amounts
of electrolyte in the dispersion medium, that flocculation h_as
just about been effected. For the sake of simplicity we will
assume that the electrolyte is 1—1 valent. The quantity =x
will then be of the order 107 (corresponding to a |- 0.1 molar
solution). ‘

As to the quantity A, we had already found that. theoretic-
ally. its magnitude is expected to be ot the order 107!¢, more
ot less dcpendent on the nature of the substances involved.
We shall consider potential curves for a number of values of
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A. Starting with the value 3 x 107 (a very large value in-
deed), we give, in Figs. 24—28, for 1--1 valent electrolytes,
in each figure a sct of potential curves for ditferent values ol

z, where in cach following graph the value of A has been —
decreased by a factor 2 or 24. We see that 4 =5 x 10 ¥ is
actually such a high value of the Van Der Waals-London 05
constant that, even for the largest values of z (e, for very
high double layer potential), the total potential curve ex-
presses attcaction between the particles or plates (a hydrophobic
colloid would =accordingly not Dbe stable). In the second
graph, however, for which A = 2 »x 1071% positive values tor
V g+ V qare reached for z = 6 or higher, and in the following

graphs the repulsive forces already predominate to such an

d=half of disfance between the plates

— palential enerqy”
<

extent that a low value of z is sufficient to prevent coagulation.
As we considered a system containing as much as 100 milli- ~05 — —
equivalent of a univalent clectrolyte per liter, on the verge
"~ of flocculation, for which we can only expect stability if the
double layer potential is large, we may infer that graph 25 | )
approaches experimental conditions better than the other graphs;
hence 4 = 2 x 10712 seems to be the hest value of A, Fig 25
18 .
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Fig. 24—28. Curves giving the total potential energy per cm? against
the separation of the plates. Potential of the plates
Yy — 2 BHmV.
The electrolyte is supposed to be univalent.

Fig. 26.

For other units cf. the conversion tables inserted in each
figure.
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It is interesting to study in some detail che influence of
the double layer potential on the potential energy curve, by
inspecting Fig. 25 more closcly. This graph very distinctly
shiows the inctcasing action of the double layer repulsion with
increasing values ot z. For z <7 4 the curves arc purely at-
tractive. i.c. dV//dd is cverywhere negative. In the neighbour-
hood of z == 4 the curve shows a point where dV//dd = O,
spliteing, for still higher values of z, into a maximum and a
minimum. Hence part of the cucve here has a negative deriv-
atlve, corresponding to a distance region where the force
between the plates is a repulsive one. For z = 5 the curve still
has a maximum corresponding to a negative value of the total
potential energy (V4 + V'g). For z = 6 the maximum has risen
above the abscissa. It is noteworthy that tor the intermediary
case, between z =5 and z = 6, where the maximum touches
the horizontal axis, the maximum is pretty neatly situated at
xd == 1. For higher values of z the maximum rises well above
this axis, at the same time shifting to lower values of xd.

For the reasons mentioned earlier we shall not here go into
the question of the significance of the minimum; it should be
clear that this minimum is lowest when the repulsion is just
about sufficient to counteract the attraction. It shifts to
greater distances when the repulsion is increased by increasing
values of z.

Figs. 26, etc., show essentially the same behaviour as Fig. 25,
though the minima are here less pronounced. Indeed, a rather
low minimum will not occur when the repulsion predominates
very greatly. Favourable conditions for a low minimum may
obviously be expected, on the basis of an unrestricted validity
of eq. (48¢c) for V4, in those cases where strong repulsion and
strong attraction are roughly of the same order of magnitude.

We shall now consider the case that the eclectrolyte concen-
tration is 100 times smaller than in the case considered above.
Hence the medium contains 0.001 mol/l of an 1—1 wvalent
electrolyte, and » = 10% approximately. We observe that for
this case we can make use of the same graphs as used above.
In Chapter V, § 2 we have already stated that, for a given value

of z,
Vple == £(xd).

Hence, if x is decreased by a factor 10 we obtain thz same
Vg curve when the energy units are decreased by a factor

10 and the distance units are increased by a factor 10. As V4
is proportional to d 2, we have, again for a given value of z,

Vale = 2A. g (xd),
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(where g {#d) is another function of =«d) and the transfor-
mation ot units therefore leads to the result that we obtain
a V4 curve with the same value of x4, Hence, il x is decrcased
by a factor JO, the value of A belonging to a given potential
curve in onc ot the graphs 24--28 is simultancously raised by
a factor 10.

Accordingly, if we wish again to censider the graph for which
the value of A is equal to that found above to be the most
plausible value (A = 2 x 107'%), we must pass ro Fig 28
Making then a comparison with Fig. 25, we note that by this
decrease of the lomic concentration the minimum has almost
been made to disappear, and has shifted to about 10 times
greater distances. For x» = 107 the depth is of the order of
0.1—0.2 ergs/fem”; for » = 10% it has decreased to less than
0.01 ergs/em® As to the influence of the double layer potential
uponn the potential energy curves. we again note a rapidly
increasing stability maximum with increasing clectric potential.
The transition case between “stable” and "unstable” potential
curves 1s now situated between z = 1 and z = 2, which means
that a double laver potential of a few tens of millivelts is suf-
ficient to attain stability of the colloid system.

From the latter intluence of ionic concentration upon the
valuc, of z corresponding to the transition case, it may already
be seen that a second method to transfer potential energy
curves of the type (a) into curves of the type (b) may be by
increasing the quantity xz. This is illustrated in more detail in
Fig. 29, holding for 1—1 wvalent electrolyte as well, and for
z = 4, being the valuc of the double layer potential. If the
Van Der Waals constant A = 1071%, the curves 1—5 belong
tc » values ranging from 10" to 107 (electrolyte concentrations
varying from 107% to 107' molar approximately), and have a
maximum above the horizontal axis. Only for the very large
value » = 1075 (correspending to about 1 molar solutions of
electrolyte) does attraction prevail for all distances. Hence we
lind that, for these values of A and z, the transition between
stable and flocculated systems is found in the concentration
region where the theory reaches the limit of irs quantitative
applicahility. The same graph may ke used again for other valucs
of the constant A, wirh the proper transformation of the units.
For instance. for A == 107'! the transition case between “'stable”
and Tunstable” potenrial curves is found between the curves
« = 10% and 10%%(i.e., roughly bztween 107" and 10°% molar),
and for mtermedlate values of A the transition is found some-
where between these two sets of x values.

Inspecting Fig. 29, we observe that for more diluted solutions
(i.e., for decreasing values of x) the height of the energy
barriers goes through a maximuum value and then decreases
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again. The breadeh of these energy barriers increcases con-
tinually with decreasing ionic concentration, in  accordance
with the increasing cxtension of the diffuse layer of the double
layer.

The question arises, however, whether the potential curves
found for very low eclectrolyte concentrations have any sig-
nificance, as the approximation of the flat plates here loses
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Fig. 29. Ilustrating the mflugnce of the concentration of electrolyte
{expressed chrough #: cf. inscrted table) on the potential
energy curve.

its applicability for real colloids or even suspensions. Adequate
treatment of this question, however, can only he given in
Part I, where colloidal particles are approximated as spheres.
We will find there, that the decrease in height ot the potential
barrier for low electrolyte concentrations is not confirmed
by the theory for spherical particles.

2. Graphic survey of the stability conditions

Although a discussion of graphs such as Figs 24—29 1s rather
instructive in discussing the balance of attractive and repulsive
[orces, it is difficult to obtain a complete survey of all possible
potential curves. We shall thercfgre investigate, in the following
pages, the problem of stability in yet another way.

The question of whether the total potential energy curve is
a “'stable” or an Tunstable” peotential curve for a given case
(ie., for a given valency of the ions, for given values ot A,
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zor P, and z) may be scttled elegantly by plotting in one
graph both log Vp and log (—V,4) against the plate distance.

If the log (—V1) curve and the log Vp curve intersect twice,
there will be a region in which Vg 4= V4 is positive, and we
are accordingly dealing with a case where the total potential
energy cutve is of the type (a). If. on the other hand, both
curves have no point in common. the log (- V) curve will
always be above the log Vjp curve, and the attraction accor-
dingly prevails for all distances. The potential curve will then

be of the type (b). ‘
The two cases are illustrated in Fig. 30.
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We may consider, for instance, the two cases z == 4 and
z=26, for A =2 X 107!¢ and » = 10‘. The log (— V) curve
corresponding to these values of A and x is curve 2. From
fig. 30 it is then seen at a glance that the first case lzads to
an "unstable” potential curve (type (b)), as log Vp for z = 4
and the log (— V) curve considered do not intersect. The
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second case, however, corresponds to a "stable” total poten-
tial coaergy curve (type (a)), as the attraction curve 2 cuts
the log Vg curve for z = 6 twice. This is in complete ac-

cordance with Fig. 25 (in Fig. 30 the log Vp curve for z = 35
has been omitted for practical rcasons). _

A similar comparison can be made with Fig. 28, which was
scen to hold for the same value of A, but for x = 10%. The
gencral picturc of the sct of potential curves given there
may, again, be read dircctly from Fig. 30. The log (—V ) curve
corresponding to these valucs of A and » is now curve 5 We
see that this curve gives rise to a ’'stable” potential curve
with the log Vp curve for z = 2, but to an unstable one with

the repulsive curve for z = 1, both again in accordance with
Fig. 28.

The transition case is realized for those curves in which
the log Vi curve and the log (— V4) curve touch each other

and have only one point in common. This transition case defines
a relation between A, ¢, and ». This means that, for a given
system or a given value of A, there exists a set ot combinations
of the double layer potential and the clectrolyte concen-
tration which will be just sufficient to convert a potential
curve of the type (a) into one of the type (b). In the fol-
lowing the latter concentration will be called “flocculating
concentration” of the clectrolyte under consideration.

The evaluation of this “flocculating concentration” as a
function of A, ¢, and x may be done (1) with the aid of an
explicit relation, to be derived by using an approximate equation
for Vg, or (2) graphically, with the aid ot diagrams such as

Fig. 30. These considerations may be easily extended to
variations of v, so that we can now simultaneously . introduce
the wvalency of the ions as an additional variable. and turn
to the 1mportant problem of the effect of ionic valency
upon the flocculating concentration of electrolytes.

In Chapter V we found a simple expression (eq. 43), giving
Vg as a function of xd. This equation was derived as an ap-
proximation for large values of xd; but it appeared to be
applicable more or less satisfactorily down to xd = 1. With the

aid of this equation and of equation (48c), we can therefore

derive an approximate explicit relation between the floccul-
ating concentration and the physical properties of the system.
For the transition case we obviously have the conditions:

dVg  d(=Vy)

?{7— dd and VR:_VA
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Applying cquations (43) and (48c). we derive from these
conditions:

xd = 1.

Hence, according to the approximation (43) (corresponding
to a straight line for log Vi, which mecans a purely exponential
decay of Vp) we should find that, for the transition case, the
log Vi and log (—V,4) curves touch cach other (ie, tha
maximum In the potential curve touches the horizontal axis)
exactly at xd = 1. As stated in the discussion of Fig. 25, the
Jatter is actually wvery nearly the case. From this result we
casily derive that for T = 298" K and ¢ = 7855 the flocculat-
ing concentration is
q{

Y
— q. -2 7
c = 810 IR (49)
¢ being expressed in millimols per liter.
Equation (43} reads
Vi 64!1!{7'. 2 ?X”’.
X
whence .
‘ dVy 4
e S 2k .
Combining chis result with
A l dVa 2
Va = = .— — = V. =
AT e e ad A
we easily find '
i = 1.
Applying again the equations for Vi and Va, we have
64nkT | ] A
T2 et o N
x 187
in which
. g,e:fE; I. 4 o — 8zn ll,g
’ 24 ana = AERT) v .
Hence,
1072385 Toyd
n o= <= (49a)

Az (ve)s
From this we obtai, for room temperature, eq. (49).

Th.us we find a rather simple relation between the floc-
culating concentration and the double layer potential. For low
and moderate values of z, concentration increases with in-
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creasing double layer potential; for large values of z (i.e., for
large values of v or (and) ¢,) concentration becomes rather
insensitive to the wvalues of the potential, and approaches a
limiting value. since » approaches unity for larger values of =z

As I—1 wvalent electrolytes cause flocculation ol most lyo-
pliobic colloids in a concentration of 100—200 millimol/liter, and
as a stable sol or suspension has a comparatively large double
layer potential (so that # approaches the value 1) we can
directly derive (using the highest values for ¢ and »*) that A
will be about equal to

U PR R L
a=y 200 20107
which is the samec valuc as that found in § 1 from a study of
the potential curves individually. This value is wholly within
the linits set by the quantum-mechanical theory of Van Der
Waals-London forces.

Still more interesting conclusions may be drawn from eq.
{49), as to the cffect of the valency of the ions upon the floc-
culating  concentrations. Eq. (49) contains ¢ both cxplicitly

and in the guantity o, iplicicly. [T, however, the double Tayer
potential is sufliciently Tavge, so that cven For univalent Tons
(o=~ 1) the factor o1 approaches [, the value of »1 will, a
loviior, be I for larger valencies, and therelore proctically

independent of v, (For = =8, » = (ot — 1) (! | 1) = 0964
and »*=10864). In that case the concentration ¢ is simply
proportional to o~% Hence, under the conditions presamed
in this chapter (involving in particular the assumption that
the diffuse laver thcory of Gouy and Chapman mav be
applied), cq. (49) leads to the very important result that we
must cxpect the quantitics of 1—1 valent. 2—2 valent and 3—3
valent electrolyte, ncedzd to flocculate a lyophobic sol or
suspension, to be in a ratio

e (3®: ()% or 100:1.6:0.13
This result of our theory isin very good agreement with colloid
chemical experience.

Although egq. (49) appears to show all essential features to
describe the flocculation phenomenon as a function of the
system, and, as a Ffirst approximation, gives quite satisfactory
results, most of our calcularions have been done according to
the second method, in which the approximate eq. (43) is sub-
stituted by the "exact” values of Vi as obtained from Table XI.

To this end we applicd the sraphic method mentioned above.
We determined graphically, for a given value of A, a number
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of correspon!ing values of z and x for which the log Vg
cutve touhos the log (—V4) curve. This was done for all
three valencies of the jons. In the discussion of Fig. 30 we saw
that a change of x from 107 to 10% is quite simply effected by
a vertical shift over a logarithmic unit of the log (—V4)
curve, if a transformation of units occurs simultaneously in
such a way that the log Vg cutves hold for all values of x. We
have secn carlier that this corrclation was made possible by the
circumstance that v?fx © Vp = f(xd) and Vyx = x A = o (xd),
so that the shift of the log (—V4) curve is determined by the
condition that xA must be kept constant. Hence, for constant
value of A, the Vy, in the transformed scale, must be de-
creased by a factor 10 if x is multiplied by this factor.

The graphic determination of the "flocculating” x values for
a number of z values may, therefore, easily be performed by
accurately measuring the vertical shift necessary to bring the
log (—V4) curve in touch with the log Vg curve belonging to
the value of 2z considered. This determination is made espe-

cially easy by the fact'that the curves very nearly touch at
xd = 1.
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Fig. 31. Conditions of limiting stability (focculation values) for two values
of the London-Van Der Waals constant A and the valencies
v=1v=2andy = 3.

Left and top = stable, right and bottom = unstable.

. The result of this investigation is given in Fig. 31, wherelogc
is plotted against Yg. This graph therefore represents, for a
nu{nber of values ot A4, and for v = 1, 2 and 3, the “floccu-
lation curves”, separating the’ Yy, log ¢ - field into two regions.
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The upper lefr - hand part of the &, log ¢ - ficld, corresponding
to the lowest valucs of the concentration and the highest values
of the double layer potential, is the “stability region”, where
part of the total potential encrgy curves corresponds to posit}‘ve
values of Vg + V 4. In the remaining part of the ¢, log ¢ - field
Vi + V4 is everywhere negative; the combination of ¢, and
¢ indicated by a point in this “instability region” will accord-
ingly be associated with a flocculated system ™.

The flocculating concentrations ¢ found in this way ac-
cording to the “exact” expression for Vg are, on the whole.

in good agreement with those given by the approximate theory
given above. The difference between both procedures is only
quantitative and not very significant, especially in view of
the many simplifying assumptions involved in the present
sexact” theory. For a number of valucs ot A and 4, we give
in Table XII (p. 122) the flocculating concentrations ¢, as they
may be read from Fig. 31. In order to obtain the best agreement
with average experimental flocculation data, especially with
respect to the influence of the valency of the flocculating ions.
the Van Der Waals-London constant A must obviously
be chosen as
A =2 x 10712,

As stated in Chapter VI this is the order ot magnitude pre-
dicted by quantum-mechanical theory, considering the un-
«certainty inherent in the latter. The results obtained here
even suggest that the “experimental” value ot A is slightly
larger than that found according to the wusual approximate
equations. If this conclusion should be allowed, the theory
developed here would create the possibility to determine A
from colloid chemical data with greater accuracy than that
attained by the theory of atomic forces in its present stage.

* Stability curves, representing systems on the verge of flocculation, have
Yy g sy

already been used by H. C. Hamaker, Chem. Weekblad, 35 (1938) 47 (Cf.
also Hydrophobic Colloids, page 16, D. B. Centen’s Uitg. Mij. N.V. Am-
sterdam 1938), with this difference that Hamaker used the particle charge as
a variable instead of the double layer potential. Such curves proved very useful
in discussing colloid phenomena. The general form tentatively proposed by this
author for his flocculation curves in the g. ¢ field appears to be in qualitative
agreement with that derived here for the curves in the y,, log ‘¢ field on the
basis of our theoretical considerations. As ¢ is a continuous function of Lo both
representations are more or less comparable. The present theory (cf. Chapter III
§ 4) leads to the conclusion that W, is a better parameter to characterize a
lyophobic colloid.
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TABLLE X

STABILITY LIMITS REAL FROM FIGURLE 1)

) L, [INCINTTAY N 150 mV
Cin ' ’
millimolssliter ‘ . ‘
| A RV | 20t - 20107
| .
v \ 260 50 410 100
v 2 | 9 | 2.2 I 10 2.2

o3 | 085 | 021 0.85 021

The theory as developed thus far, leading to Fig. 31 or the
table given above, still contains a considerable number of
simplifications. We have applicd the concepts of the diffuse
double Jayer. and more especially the equations valid  lor
two parallel plates. The latter simplification means that our
conclusions arc valid only for sufficiently large particles, since
only in that case does the main part of the interaction occur
at the crystal faces of the particles facing each other in a
particle encounter. It has been ;assumed here that during
this cncounter the particles will be ogrientated nore or less
in such a way that the opposite ceystal faces of the two
particles approach parallelism. In using the equations fer pa-
rallel plates we bave neglected the offect of the edges ol the
other crystal faces, and the guantitative importance of this
etfect cannot be estimated casily.

This simplification will be the less detrimental the larger
the size of the particles. If we take (more or less arbitrarily),
as tbe limit of applicability. rhat the edge length of the
particles (imagined to be cubes) & must be at least 5. % the
double layer “thickness™ or the characteristic length 1/x, we
find that for 1-—1 wvalent electrolytes the present theory may
be roughly applied if the particles are > 510" cm, (floc-
culating™ z-value about 107). For 2—2 valent clectroiytes we
find in the same way as a limit: 5 > 21079 ¢m, for 3—3 valent
clectrolytes 6> 5.107¢ ¢m.

In Part Ill, however, where we deal with the case of
spherical particies, we find relatively unimportant deviations
between spherical particles and flat surtaces. The reality will
probably be found between those two extreme cases. and tor
the time being we may conclude that the model of flat plates
already gives us a fairly accurate picture of the stability con-
ditions in actual colloids and suspensions.
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There is o sceond reason, apart Trom the geometric lactor,
however, why our simple theory needs to be corrected. This
is that we have neglected the kinetic cnergy due to the
thermal maotion of the particles. We will consider the effect
of this factor mn the Follewing section.

§ 3 Correction of the theory o respect of thermal motion
of the particles

One of the simplilications used in the theory ol colloid
stability given abowve is that we have associated the floc-
culation limit more or less arbitrarily with a total potential
energy curve for which the point Vi 4- V4 = 0 coincides with
the maximum of the curve. If we now drop this simplification
we shall have to consider that the sol particles are able to
pass over an energy barrier owing to their thermal motion.

It will be evident that the effect of thermal motion depends
on the particle size. The potential curves given in § 1 of this
chapter were expressed 11 cnergy units per cm® For a given
physical system the encrgy to be supplied in surpassing a
potential  barrier will be proportional to the arca of the
crystal Faces, hence proportional to the square ol the particle
dimensions. * The amount of kinctic energy supplied by thermal
motion, however, is independent of the particle size. For the
somme physical system, therefore, ieo for the same prorecting
double layer. the potential barricr will be crossed more casly
by thermal motion when the particles are sinaller.

As a first approximation we assume that a potential barrier
is sufficient to prevent coagulation only ib its heighe 1s at
least 10 BT or 4 . 107% ergs. In that case, for a particle of
1076 c¢m, the total potential curve shduld show a maximum
of ar least 0.4 ergs/cm? For a particle of 107% cm, however,
an energy barvier higher than 0.004 ergs/cm? would be suf-
ficient to reach the same effect.

Considering a4 colloidal system containing only monovalent
ions. where the flocculating concentration was seen to correspond
to about x» = 107, we see from fig. 25 that an energy barrier
of 0004 ergs/cm?® as stability limit does not materially change
the “critical” double layer' potential; the distance bztween
the maxima of z = 5 and z = 6. for instance, Is almost 0.2
ergs/cm?, For the smaller parricle. however, whare thestability
limit would correspond to an energy of 0.4 ergs/cm? the cor-
rection for thermal motion appears to be of considerable

* Tt will be shown in Part Il that for spherical particles this energy is pro-
portional to the first power of the particle dimensions.
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importance: setting the stabilicy Jimit at  Vip 4+ Vy =
= 0.4 ergs/cm? instead of Vp 4 V== 0 we would find for the
critical valuc ot z the value = -- 8 instead ot the value z = 5
a 6, found according to our primitive theory.

We may therefore infer that a serious influence ot the
particle dimensions will be found for particles of 107 cm and
smaller, whereas for the larger ones the influence of thermal
motion and patticle dimensions will be less important. This con-
clusion will be fully confirmed by our considerations on the
spherical particles (Chapter XIT).

From the above considerations it may casily be inferred that
in regard to this influence of the particle size the theory leads
to the intcresting conclusion that thermal motion has the
effect of decreasing the stability of small particles. It is a
well-known fact. indeed, given by colloid chemical experience,
that it is gencrally much casier to prepare a stable colloid with
larger particles or a suspension, than a system with a very high
degree of dispersion (a gold sol. for instance). A similar effact
is to be expected if we compare the small particles of a sol
and the agglomerates present jn the partially flocculated sol.
As a result of the cooperation of the particles in one floc we
may expect again that thc agglomerates will be more stable
than tMe individual particles. Hence, in a slowly coagulating
sol, wherc the particles gradually join to form larger kinetic
units, we might cxpect a gradually incrcasing stabilicy, so
that finally the flocculation may even come to a stop. This,
again, was observed by several authors in the case of different
colloid systems.

[t is clear that the influence of the dimensions and the
thermal motion of the particles will emerge more easily from
a discussion on spherical particles, where particle dimensions
are introduced guite naturally, than in the case of more or
less cubic particles approximated by flat plates. We shall there-
fore postpone detailed discussion of these effects to Part III
(Chapter XII).

§& 4. The minimum in the potential curves for large distances
between the plates

In our considerations on the potential energy curves we
have so far neglected the minimum occurring at great distancas
between the plates, where the London-Van Der Waals
forces again surpass the repulsion. This minimum, if low enough,
will lead to a coagulation of the colloidal particles, although
this coagulation will be of another character than the coa-
gulation in the low minimum where the particles are in
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immediate contact. This new form of coagulation is more
reversible, both through the shallowness of the minimum and
through the fact that there exists no potential barrier between
the situation represented by this minimum and the complete
separation of the plates.

An example of this sort of coagulation is probably given
by the formation of tactoids in sols with plate-shaped or rod-
shaped particles!, by the scparation of an anisotropic phase
from solutions of the tobacco-mosaic-virus?® and by analogous
phenomena? In all these cases a phase containing a high
concentration of the colloid is in equilibrium with a more
dilute solution. X-ray investigation and optical phenomena have
shown that in the concentrated phase the particles are orientated
parallel to each other. the distances between the particles
being of the order of 10—1000 Angstroms.

The distance between the particles is very sensitive to the
concentration of electrolytes in the system and in the case
of the tobacco-mosaic virus to the py of the solution. In high
concentrations of electrolyte or at a py near the iso-zlectric
point of the protein, the distance is small, in good accord with
the behaviour of the minimum in the potentiaf curves which
shifts to short distances for large values of x and tor small
values of the surface potential y,. Cf. figures 25, 26, 27.

Hamaker*5 considers a secondary minimum of this kind
to be the cause of thixotropy i.e. an easily reversible torm
of gelation. The difference between thixotropic gelation and
the formation of individual tactoids or the separation of a
concentrated phase would then be that in the thixotropic gel
the tactoids that have been primarily formed are interconnected
by thin threads of the concentrated phase, according to an
image put forward by Bzrnal and Fankuchen? thus
immobilizing the whole system by the formation of a network
structure.

The fac: that the thixotropic gelation can be abolished by
simply shaking the system is easily explained by the shal-
lowness ot the minimum in the potential curve.

Also the phenomenon of rheopexy. discovered by Julius-

' Cf. H. Freundlich, Kapillarchemie 11, 54, Leipzig 1932.

2 J. D. Bernal and L Fankuchen, /. Gen. Physiol., 25 (1941) 111,
8 Cf. Chapter [, § 4, p. 13.

5

H. C. Hamaker, Chem. Weekblad, 35 (1938) 47. Cf. also Hydrophobic
loids, page 16, D. B. Centen’s Uitg. Mij. N.V., Amsterdam, 1938.

H. C. Hamaker, Rec. Tray. Chim., 56 (1937) 727.

6 1. D. Bernal and I. Fankuchen, Lc. figure 11. W. Heller, Compl.
Rend., 202 (1936) 61: /. Phys. Chem., 45 (1941) 1203.

4
Co



126 POTENTIAL ENERGY FOR TWO PLATES Vil

burger?! flits into this picture. Freundlich and Julius-
burger observed that a ligquclicd thixotropic system sets to
a gel inoa shore time il the system is subjected to a regular
motion ti. a rotation. Apparently this rotation favours the
parallel orientation of the particies and therewith che Formation
of the tacteids and threads present in the gel structure,

There remains the question whether the depth of the minimum
in the petendial curve is of the right order of magnitude. It
may be scen from figures 25 and 256 that this depcth may be
of the order or 0.1 erg/cm®, 1.c. when the flat surface of the
pacticles 1s morc than 107 cn¥ the minunum is decper than
kT and maey manifest itself It should be borne in nind, that
the retardation? of the Van Der Waals-London force
will diminish the wvalue of the minimum but it will never
make it disappear completely as even in the corrected theory
the attraction goes with some reverse power of the distance,
and thus for large distances is always more important than the
repulsion which decays exponentially.

That the phenomena mentioned in this section are ex-
clusively  found with anisodimensional particles should be
explained by the relatively enormous flat (or cylindrical) sur-
face of these particles. When orientated parallel, cylindrical
particles may bc on the favourable distance of each other
over fheir whole length, diskshaped particles even in two
diimensions. Morcover with cylindrical particles a configuration
can be formed in which each particle is surrounded by six
othier ones, thereby enbancing the interaction six-fald#

In order to offcr a same surface of iInteraction more nearfly
spherical particles would have to be large, i.e. in the range of
very coatse colloidal systems or even of suspensions. For
such particles the effects of gravity and of slight motiens in
the liquid are much larger than for elongated particles and
would tend to destroy any structure based upon the floc-
culation in the secondary minniinum. It is, however, worth while
to apply refined techmniques of observation to suspensions of
nearly spherical particles In order to detect phenomena con-
nected with che existence of this minimum of energy.

§ 5. Theory for two flat double layers on the basis of Stern’s
picture of the double layer

~Our entre theory as developed thus far is based on the
simple picture of the diffuse double layer, neglecting the

' H.Freundlich and F.Juliusburger, Trans. Faraday Soc., 31 (1935) $20.
2 CJF Chapter VI. § 3, p. 104
B CE E.]. W. Verwey and |. Th. G. Overbeek, Trans. Faraday
Soc., 44 (1948), in press.
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finite dimensions ol the wons. In & 5 of Chapter [T we have
seen that the correction, introduced by Stcern!, had a number
of advantages. lt is worth while here to consider brictly the
inlluence of this correction when it is applicd to the theory
for the interaction of two double layers.

The prelimnary problem to be solved will then again be
the problem of the distribution of the charge and the nature
of the clectric potential function for two Stern doublelayers
in interaction. The next problem is the determination ot Vp,
for this case, as a function of the plate distance. For two
diffuse double layers these problems are dealt wich in Chapters
IV and V.

In many respects we shall be able to make use of the con-
siderations and cquations given earlier, as what happens in
the interaction of two Stern double layers is primarily an
interpenetration of the diffuse Gouy layers of these double
layers. As we need to cousider only moderate and large plate
Wistances, the Stern layers do mnot interferz directly, and
will be altered only sccondarily by the interaction. The dif-
[erence from the theory given in Chapter Vo will be that the
clectric potentjal of the Gouy layer, &y, will now be a function
ol the plate distance.

The discribution of the charges, and the clectric potential
function, in the two interacting Stern layers will be deter-
mined by the equations (17), (18) and (20), where eq. (19)
must be replaced by eq. (34) with s=7,; morcover, u=vels/kT
is a function of o given by eq. (32), where the plate dis-
tance 2d must now be mcasured from the beginning of the
Gouy layer, i.c., from the point x = 5, With the aid of this set
of equations we can compute nuinerically in what way, for a
constant value of ¢y, the potential ¢y and the charges 7, o,
and 7, depend on the plate distance.

1t is obvious that such calculations, which prove to be
rather laborious, may be carried out for a great variety ol
parameters, as apart from the double layer potential the
capacity of the Stern layer, too, {which is determined for
instance by the dimensions and the polarizability ol the counter
ions) and the adsorption potential of the ions (sce § 5 of
Chapter II) may be different for different systems. Further-
more, a new calculation has to be set up for each ionic con-
centration and for each wvalue of the valency of the ions. A
further difficulty is that especially the adsorption potentials
of the ions, which depend on che properdes of the lons and ot
the wall material, are entirely unknown quantities.

1 Q. Stern, Z. Elektrochemie, 30 (1924) 508.
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For all these reasons the introduction of the Stern cor-
rection into our considerations will be wvaluable only as an
illustration of the influence of the individual properties ot
the ions in a gualitative way, and not as a quantitative theory.
We have therefore made a number of calculations for which
the adsorption potentials of the ions have been more or less
arbitrarily taken equal te zero. As a plausible average value
of the capacity of 1 cm? of the Stern layer we used the same
value as in the calculations of Chapter II, viz. 107 cm.

For a special case, i.e. ¢, = 200 millivolts, and for a number
of electrolyte concentrations, the results of the calculations
are summarized in Fig. 32 and Table XIII.

TABLE XIil

THE POTENTIAL “Pc‘f OF THE STERN LAYER FOR DIFFERENT DISTANCES
OF THE PLATES, WHEN THE TOTAL POTENTIAL ¢0 IS 200 mV.

[ g in mV for

wd S L
[ x = 10 x — 108 x = 107

o0 160 ‘ 935 22.5

2 160 ! 935 23.5

1 160 \ 95 27

0.5 160 ‘ 98 33

03 \ 161 {05 41

0.0 ! 197 153 55
\ ;

Table XIIT shows the wvariation of the potential ¥ and
Fig. 32 the variation of the charges in the double laver as a
function of xd.

The graphs show that the result of the interaction is a
decrease .of the charge (s,) in the diffuse Gouy layer. Simul-
tanecusly ¢ decreases but not to the same extent as r,, because
the charge of the Stern layer (7)) increases at the same
time. Thus the interaction is accompanied by a notable transition
of charge from the Gouy layer to the Stern layer. The
decrease of the surface charge ¢ results in an increase ot the
potential <y (cf. eq. 18),

r
£

7= xS (Lo — L) (18)
but as the changes in s, especially for slight and moderate
interaction (xd > 0.53), are rather unimportant, 3 changes
only in a slight degree, as is clearly demoenstrated in table V.
A perceptible increase of ¢s sets in only for xd <7 0.5. The
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increase is strongest for large values of x where ¢y 1s only
a small fraction of the potal potential drop Ly

A difference from the case of the interaction of two double
layers according to the picture of Gouy-Chapman, dealt
with in the foregoing sections, becomes apparent in the neigh-
bourhood of d == 0. For it is seen that for d = 0, where tha
Gouy layers are completely pushed aside, the total charge has
not decreased to zero, as in that case therz is still a certain
amount of charge left in the Stern layer; the latter amount
is then equal to the total charge of the double layer (6, = 7).

Charges O, Gang 05
wn es/ om?

Fig. 32. Demonstrating the change of the charges in the combined
C‘Iouy-TShtern llayers as a function of the distance of the
plates, "I'he total double layer potential «f._ is supposed to
be 200 m.V. o 1SR

=

= total charge of the double layer —-= 7y F gy,
— charge of the Stern-layer.
5, = charge of the diffuse Gouy-layer.

Q

In considering the total potential energy of a system of pa-
.rallel plates we have seen that the form of the potential curve
is virtually determined by the contribution of Vg in the neigh-
bourhood of xd = 1 and for larger values of d; the contribution
of Vg for small distance has only a minor influence upon the
Vg4 V4 curve, because in this region the attractive potential
V 4 predominates anyway. Accordingly the relevant part of the
potgntial energy curve may be determined, as a first approxi-
mation, with the aid of the assumption that i, has every-

where the same value as for d = oo (c.f. table XIII). Hence,
9
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for the contribution of - Vg for two Stern double layers to
the total potential curve, we can make use ot the Vp function

derived earlicr for two Gouy double layers with a surface
potential ecqual to the potential &y of the Stern double
layer.

This Is rather an unportant result. In the considerations of
the foregoing scctions, working with the model of two Gouy
double laycrs, the rcpulsive potential was determined by the
surfuce potential 4y, For diluted colloid systems, where the
addition of indiffercrt electrolytes does not materially change
the concentration of the potential determining ions, we could
assume that this surface potential was independent ot the elec-
trolyte concentration., and the stability theory could be based
on the assumption of a constant value of ¢, Introducing now
the Stern correction. we find the repulsive potential is not
determined by 4, but, as a first approximation, hy the poten-
tial 45 The consequences thereof are twofold:

1. Comparing systems with the same value of ¥, but with
different electrolyte concentrations we must consider that by
is a function ot the ionic concentration and decreases notably
with increasing conceitration.

2.‘ In systems containing no capillary active ions, ie. in
systems where the adsorption potentials have no excessively
high wvalues, the potential s is always smaller than the surface
potential.

The first point Implies a complication of the theory: the
second point is in a certain respect an advantage, as'it elimin-
ates the very high potentials in the diffuse layer for which
the theory becomes less reliable (application of the Boltzmann
factor in eq. (2); vide the discussion of this equation in the
itroductory part of chapter II),

It may be observed that the application of the Stern cor-
rection to our theory results, in a way, in a compromise
between our simple theory and older comceptions of the sta-
bility of colloids. A current working hypothesis in colloid che-
mistry is that the electrolyte coagulation of a lyophobic colloid
i1s connected with the reduction of the potential drop in the
outher diffuse part of the double Iayer; it was originally thought
that this reduction of the electric potential was caused by a
reduction of the charge by the electrolyte (adsorption theory;
Freundlich!); later on it was recognized that such a reduc-
tion of the potential might also be understood on the basis of
the double layer theory, as in the case of a constant charge,
too, the contraction of the diffuse charge layer and, therefore,

' H. Freundlich, Kapillarcheniie, Band 1, 4. Auflage, 129 (Leipzig 1932).
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the increase in the double layer capacity, must fead to a de-
crease of the potential (Miller!, Verwey®). In the theory
developed in the foregoing sections we have shown that coagu-
lation may be understood entirely as a result of the contrac-
tion of the diffuse layer only, so that cven for a constant value
of the potential the repulsive forces do not gextend far enough
into the liquid layer surrounding the particles to prevent the
agslomeration of the particles under the influence ol the Van
der Waals-London attraction. Introducing the Stern
correction, however, we take into account again that, 1u addi-
tion to the compression of the diffusc charge, the potential in
the diffuse layer is lowered by the addition of electrolyte,

There is yet another reason why the application of Stern’s
pictute of the double layer may be called a correction of our
theory in its rnost simple form in the direction of the ideas
usually adopted in colloid chemistry. In our simple theory we
used the total double layer potential <, as a parameter deter-
mining stability. In colloid chemical research, however, sta-
bility is generally connected with the zeta potzntial (Chapter
11, § 6), derived from clectrokinetic data, which nay be consi-
dered as a measure of the electric potential drop in the dif-
fuse part of the double layer. Obviously the Stern correction
inclines in the same direction, as it leads to the result that
our theory may be improved by simply using the potential &
in stead ol the double layer potential ¢, This refation to older
conceptions in colloid chemistry, it is true, is still rather
theoretical, as we liave seen in Chapter II. § 6, that our
knowledge of zeta-potentials is poor at pcesent, and the ex-
perimental determination of the potential drop in the diffuse
layer from electrophoretic data is still an incompletely solved
problem.

Finally the Stern-correction is essential to an understanding
of the differences betwesn clectrolytes of rhe sdame valency
type. Although with hydrophobic substances these differences
are not so outstanding as with hydrophilic colloids, they
nevertheless exist, manifesting themselves in differences of
flocculation wvalues. In all cases the flocculation wvalue is
smaller with larger ions and with strongly adsorbable iomns.
On the base of Stern's theory this is just what might be
expected, for large ions make the capacity of the Stern layer
small and the fall ot the poten:ial in this layer large, as a
result of which the potential in the diffuse double layer is
smaller than with small ions. In the same way strongly ad-
sorbed ions cause a large part of the total double layer

L H. Miller, Kolloidchem. Beikefte, 26 (1928) 274.
: E.J]. W. Verwey, Chem. Reviews, 16 (1935} 400.
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potential to occur within the Stecrn layer, and lecave only
a small part of &y as “effective” repulsive potential.

The quantitative effect of the use of Stern's concept of
the double Jayer is illustrated in Fig. 33. This figure, again,
contains a set of curves similar to those in Fig. 31, with the
only difference that they now represent the combination of
Ys; and loge, for which the maximum of the total potential
energy cutve (Vp -+ Vy4) exactly coincides with the lLorizontal

Pofenlial of | I
the Stera lgver —b——~ e | L .
¥ amy al /

51000
sagenfration of electrolyte in mitlimols/ fifer
Fig. 33. Flocculation values according to the Stern theory.

The curves marked v - 1, v..2, v =3 represent limits of
stability for combinations of the clectrolyte concentrations
{abscissa) and the potential of the Stern-layer i (ordinate).

The Van Der Waals constant 4 has been taken as 10712,
The curves marked 4, = 300, iy = 200 etc. give the value

of the potential i; as a hunciion of the electrolyte concen-
tration for the specified value of the total potential ;. The
intersection poinls of the two sets of curves determine the
concentration of electrolyte and the value of (4 in the limit
of stability.
line of zero energy. In addition, the graph contains a set ot
curves giving, according to the Stern-theory, the potential
¥s as a functiou of the concentration, for ¢, = 100 mV., ¢, =
200 mV., and ¢, = 300 mV., respectively. As in the foregoing,
'the adsorption potential of the ions has been taken equal
to zero.

The intersection points in both sets of curves will now
give the lonic concentrations corresponding to the flocculation
limit for the three values of the double layer potential given
above., The difference from the more simple theory is clearly
illustrated. The values of the electric potential s in the dif-
ferent cases are appreciably lower than the double layer po-
tential ¢,. In comparison to our simpler theory, working with

£ TN
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the Gouy-Chapman rpicture of the double layer, we ac-
cordingly. find much lower values of the flocculating concen-
trations. Consequently, we also find a smaller difference
t etween the flocculating values for ions of different valency,
although, for a given value of 4, the polyvalent ions give a
smaller value for the corresponding ¢s5. The difference between
the flocculating values of 1—1. 2—2, and 3—3 valent electro-
lvtes may be enlarged, and the flocculating concentrations
of the electrolytes increased, by choosing a smaller value ot
the Van Der Waals constant, &, In this way we could
again attain a better accordance with experimental values of
the flocculating concentrations and with the value predicted
by the guantum-mechanical theory for the attractive constant,
Considering the many wvariables involved in the theory of
Stern swe have not investigated quantitatively cases any
other than that used to illustrate the above.

In our opinion, however, further progress in our understanding
of the stability of hydrophobic colloids can only be expected
from a further development, experimental as well as theoretical,
of the principle underlying Stern's theory.

§ 6. Stability of emulsions

We shall finally consider briefly the case of emulsions .
We have seen that a double layer is also formed at the inter-
Tace of two liquids, and that every electrolyte can act as a
potentiad dotermining clectrolyte. Nevertheless in the presence
of normal electrolytes it is impossible to prepare stable emul-
sions. The explanation of this must be sought in the special
properties of the double layer at the interface of two liguids.
We have seen that this double layer consists of two diffuse
layers, and that the total potential drop is accordingly divided
into two parts, one on ecither side of the interface. In an
oil-in-water emulsion the potential drop in the aqueous phase
will then be neghgibly small, for iwo reasons. In the first
place the potential drop was found to occur mainly in the
phase with lowest dielectric constant and lowest ilonic con-
centration, i.e., In the oil phase. Moreover, the oil droplets
will generally be much sinaller than the walue 1/x in the oil
phase, which will probably be of the order of 107* cm, so
that a considerable interaction of double layers occurs within
the oil drop, and the double layer cannot develop completely,
owing to lack of space in the small droplets. As is illustrated
in Fig. 14, this leads to an additional decrease of the potential
drop in the aqueous phase. If <, (0) is small the double
layer charge will g fortiori be small, as o oo sinh (vey;(0)/2kT);

1 E.]. W. Verwey, Trans. Faraday Soc., 36 (1940) 192.
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which means that the double layer has an extremely small
capacity and accordingly an extremcly small free encrgy. There
will also be an cgually small repulsive potential betwezen the
oil droplets, not sufficicnt to prcvent the droplets trom ag-
glomerating and cventually coalescing.

The influcnce of the two kinds of emuisificrs mentioned in
§ 4, Chapter 1. should now be clear, as both have tiie effact
of giving to the liquid drops a double layer with the same
properties as the double layer around solid particles. and
of shifting the double layer potential drop again towards the
outer phase.

When a salt with a highly adsorbable ion is used as an
emulsificer. the double layer charge of the innzr layer is present
as a monomolecular layer of the active ions accumulated at
the interface. thus re-establishing the case that the charge
may be considered as a true surface charge. The double layer
potential occurs in the phase with the highest solving power
for the counter ions.

As to the emulsifying action of finely divided solids, Van
Der Minne! postulated that the emulsifying particles must
be wetted more readily by the dispersion medium than by
the dispersed phase; the particles trapped at the interface will
therefowe cover the outside of the liquid droplets. Further-
more, the colloidal solid alone must give a stable sol in the
dispersion medium. The larger part of the surface of the solid
particles in the emulsion is in contact with this dispersion
medium, and has a double layer of the same structure and
electrical properties, as in this sol: if a sufficient part of the
surface of the droplets is covered wirth thesz solid particles.
their douhle layer assumes the properties of a double [ayer of
a solid substance. and the drops undergo the same repulsion
as may be assumed for normal lyophobic colloids. It is note-
worthy in this respect that the emulsifying action of these
finely divided solids needs the presence of a small amount of
electrolyte. and optimal cmulsification occurs for -electrolyte
concentrations sontewhat below the flocculation ot this clectra-
lyte for the sol of the solid particles alone. This amount of
electrolyte reduces the thickness of the outer layer of their
double layer. and therefore reduces the utual repulsion
between these solid particles at the interface in such a way
that they can bc packed sufficiently densely on the surface of
the droplets, and the properties of the liquid-liguid interface
can be suppressed. The emulsifying action of finely dispersed
]sloh'ds, therefore, may also be easily understood along these
nes.

L J. € Van der Minne, Thesis, Utrecht, 1928, Cf also Hydrophobic
colloids, page 138, D. B. Centen's Uitg.Mij. N.V. Amsterdam 1938.

PART III

On the interaction of spherical colloidal particles

VIHI. INTRODUCTION

In Part T the principles were discussed on which the inter-
action of colloidal particles may be understood, and by wayt
of application the case of the interaction of two parallel flat
plates was dealt witl in Part II. Starting from this case it was
possible to form a picture of the kehaviour of colloidal particles
and to came to an understanding of such fundamental properties
as stahility, flocculation value and the rule of Schulze and
Hardy.

Newvertheless, in reality colloidal particles are uot infinitely
large flat plates, and it seems worth while to consider, as an
other extreme case, the intcraction of two spherical particles.
Tn the first place the picturc of two spherical particles will give
a very good approximation of reality, irrespective of the shape
of the parricles, when they are far apart. Moreover, in the
theory ol spherical particles the influence of the size of the
particles follows quite naturally. whereas in the theory of flat
surfaces it has to be introduced afterwards in a more or less
arbitrary way. Again, the border effects caused by the curvature
of the particles, which have been completely neglected in
Part 11 can now fully be taken into account. Finally, the inter-
action of spherical particles has already been treated of by
other authors, and although the general principles underlying
their work were erroneous, as will be expounded in the Ap-
pendix, details of their caleulations may be used in our work.

Tn a series of papers Levine and Dube?! treated of the
interaction of spherical particles as an independent problem.
They started from the distribution of field and charge around
one spherical particle. using the approximation for small
potentials. Introducing the changes in this distribution ac-
companying the interaction of two particles. thev derived —
unfortunately using a wrong method — equations for the
potential energy of interaction.

I & Levine. Proc. Roy. Soc., London, A 170 (1939) 145, 165.
S. Levine and G. P. Dube, Compt. rend., 208 (1939) (812
" " N Trans. Faraday Sec., 35 (1939) 1125, 114l
36 (1940) 215.
S. Levine, J. Chem. Phys., 7 (1939) 831.
S. Levine and G. P. Dube, Piil. Mag., (7). 29 (1940} 105.
" . ” J. Phys. Chem., 46 (1542} 239.
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On the other hand Derjaguin! showed that it is possible
to caleulate the interaction of sphericat particles by simple
integration, when the interaction of infinitely large flat surfaces
is known, and used this method in investigating the srability
of colluids. The method of Levine and Dube, when applied
I a more justifiable way. gives the most reliable results when
the thickness of the double layer is large as compared to the
dimensions of 1he particles, whereas Derjaguin's maethod
is more satisfactory with thin double layers and large particles.
Both methods supplement cach  another,  and togethzer  they
cnable us to survey the whole field of particle dimensions and
electrolyte concentrations which interests us,

In one respect Derjaguin's method is superior to Levine
and Dube’s. It is possible to apply the principle of Der-
jaguin’s method to the complete Gouy-Chapman
equation, whereas in Levine’s and Dube’s treatment it is
unavoidable to introduce the lincar approximation of Debye
and Hiickel The thcory for large spherical particles, sur-
rounded by a thin double layer may therefore be made almost
as exact as that of flat plates. but in the case of smali particles
with an extended double layer the situation is less favourable.

Nevertheless this does not constitute a serious defect in
the theory. As explained earlier (ct. Chapter 11, § 4), precisely
in the casc of small particles with an extended double layer,
the application of the lincar approximation may be allowed
and gives reliaple results, even for relatively high potentials.

Applying the same principles as used in Pact 11 we now have
to calculate the change in free cnergy accompanying the ap-
proach of two colioidal particles. To this end we shall first con-
sider the free energy of the double layer system for spherical
particles, and add to it the free energy of the London-Van
Der Waals attraction forces. From the curves of total free
energy so constructed we shall derive the criteria for the sta-
bility of colloids.

' B. Derjaguin, Kolioid-Z., 69 (1934) 155.

Acta Physicockhimica UJ.RS.5., 10 (1939) 333.
Trans. Faraday Soc.. 36 (1940) 203.

N

IX. THE POTENTIAL ENERGY OF INTERACTION FOR
LARGE PARTICLES WITH A RELATIVELY
THIN DOUBRLIY TLAYER

[ Introduction

In calculating the interaction of sphcripnl parcicles we con-
sider two spheres of radius . with a distance between their
ceatres (O, and O,) equal to R. The smallest distance betwzen
the surfaces is called Hy, so ‘

Hy = R — 2a. (50)

The extension of the double layer is of thz order of 1/«
In this Chapter we consider large particles with a th1.n double
layer, viz. the case that xa 3> 1. It is advantageous to introduce
the abbreviations

xa =7 and Rfa = s (51}

§ 2. The repulsion for large =a

Derjaguin?' introduced a metlhod by which it is possible
to calcujate the interaction of two spheres when the inter-
action of two infinitely large parallel planes of the same material
is known. This method only may be applied when the range
of the interaction i3 much smaller than the particle radius.
This condition is satisfied when xa is large. _ )

The repulsive energy between two spheres is considered to
be formed by the contributions of infinitesimal ’parallel rings,
each pair of rings contributing to the potential energy an
amount equal to

27h . 2fy — fo) dA, (52)

2fy  being the free energy per cm?® of two parallel plates at a
distance H, h being the distance of the ring considerad from
the axis of symmetry (c.f. Figure 34). . ' -
This implies the supposition that the interaction is not Iin-
fluenced by the adjacent elements having either a lawgge-r or a
smaller distance from each other, or in other words, it is sup-
posed that the lines of force remain parallel to the axis of sym-
metry 0,0, In reality the lines of force will be curved out-

1 B..Derjaguln, Kolloid-Z., 69 {1934) 155.
' Acta physicochimica URSS, 10 (1939) 333.
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wards, the more so the greater the distance from the line
0,0,. As the lines of force insert perpendicular to the surface
of the spheres, their curvature will be negligible as long as the

angle O,0,D is small.,

ah

Fig. 34. Illustrating the building up of the repulsion between two spheres
out of the repulsion between quasi-parallel layers.

The total repulsive energy is thien found by integrating (52)
over the whole surface of the spheres. As we started from
the assumption that the range of the repulsion is much smaller
than the dimensions of the spheres, the contributions of layers
far from the axis are unimportant, and it is immaterial what
upper limit of integration we take. The value oo is chosen
as it gives the most simple expression. This same assumption
ensures that the layers giving important contributions shall be
practically parallel, the curvature of the surface beginning to
ke felt only where the contribution to the repulsive energy is
negligible. :

Hence we find, for the repulsive energy Vi,

Ve = [ 27h.2(f, = f.,)dh. (53)
0

s ]i%,]__]i’ = a—1" a?— k% 2hdA is equal to a. dH1/'1—R¥/a?,
and may be approximated by 2.dH for small values of 2 (g is

theradius of the sphere). So the repulsive energy is found
to be

o0

Ve=27a | (fy— fo)dH. (54)
H,

Introducing provisionally* for fy — f.. the approximate
value for small potentials (cf eq. (44))

* At the end of this chapter we introduce, instead of {44), the exact equalion
for the repulsion between flat plates and carry cut the integration graphically.
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2n kT xHY _ £x¢:02( B 11:{) 5
2fy — Jo) = —n—x‘— zz(l—-tanhT) = ar 1 — tanh 5 (55)

équation (54) may be integrated, giving

(e ] 2
. wH «H Ea\f«' — xH,
Vi = ‘i@%}‘z [ (1 —tanh fz_) d ('iu) = ® In (1 4+ e )

2 2

Ve Il ) (56)
EG‘JJU‘Z | 2 .

As Hy, = R — 2a, xH, may be replaced by #K — 2xa =

= 7 (s — 2), so that

Ve

eatd,

— tln(l Fe "6 (56)

2

In order to find out the minimum value of 7, for whlch (551)
may be applied with some accuracy, Wwe obsm_arve thatdmbttﬁ
deduction of (56) two approximations are _mtroduce , bo
of which tend to make the value of_ Vr too high. e

Firstly the upper limit of integration 1s put equgal to A _laog:
whereas the highest value having any physu:?d sense ‘shou ; e
H — 2a 4+ H, This gives an efror 1in the final expression tot

the repulsive energy equal to

h=

(= 8]
eatpy ’i‘fi) xH _
27a / (= fo) dH = —5% [ (1“taﬂh 5)43
20+ Hy : 20+ Hy
b2 sady? —1S$
:fi;’iln(ure*”(”ﬂ““)): e I

1 erifv that this error remains under one percent,
Wgznlsfiai t50>veq'(sy — 2) practically independent of the vf;lllu'?f
of 5, meaning that the expression (56) should not be used 1
’ E’l 2&?6 second place the surfaces bf_ the spheres are TI;lo't
parallel to each other, as was assumed in our deduction. 115
will certainly cause the repulsion to be smaller than it wouh
have been if the surfaces were exactly parallel. For eafih
ring the repulsive energy will be between 47 A ([n — fwa?l
as a minimum, and 27 a(fy — fo)df_as a maxmum v Ze.
Tn our calculation we used the upper limit (cf. equation 5_ .
The amount of the etrror introdug-ed by this a;_)promma;zncdnﬁ
is not so easy to establish. As a maximum value, using 47 |
instead of 2= a df, we found the error for = 10 to be about
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5%; for 7 = 5 about 10% and fior 7= 2 about 30%, but prob-

ably (see below) the actual errors are much smaller.

§ 3. Application of the complete Gouy-Chapman
equations :

If we wish to apply the complete Gouy-Chapman
cquations instead of the lincar approximation, we have only to
replace the value of (fy; — fo ) as it is given by equation (55)

by the more exact value following from table XI. where f(u,z) =
2

H H
%.2(/,,, — fo) may be read as a function of x—z (d = ?1 .
In doing this we lose the possibility of carrying out the integrat-
ion in a closed form, but a graphic integration, although some-
what laborious, leads to the desired purpose.
"Calling
) ‘
VR _ GuH) = G (r(s — 2), (58)

a

we find G by carrying out a graphic integration,! viz.-

G (xHy) = Zw/f(u,z)d%[:] (59)

H,

The function G as found by this integration is represented
for a2 number of values of z in figure 35 and in table XIV 2
The numbers given are correct to within a few percent of their
value. In figure 35 we have also inserted a few curves following
from the approximated equation (56). It will be seen that for
z = 2 the difference between the approximative and the exact
curve is not very great, but for z = 3 and higher values it be-
comes more and more important. The exact curves are always
lower than the approximative ones. They are flatter at great

! In many cases it is an advantage to use approximate equations for f (4, z),

which may be integrated exactly, and to make the necessary corrections for the
difference between the approximate and the true values of f(«, ¢) by graphic
integration. This restricts the graphic integration to a relatively small part of the
function and so increases the accuracy. For small interaction we used the
approximative equation (43)

Lo kT | ro16k2T22 —
fg) = vy e o o 2 2 a0
leading to the following approximative expression for G:
64T n kT | __,, »o6RIT2 '  —xH
Gopple) = v pre = 5 P LM = g0 r07ye

2 The potential i, is equal to 25.6 z millivolts.
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Fig. 35. The repulsive potential Vp

K 3 Tfs-2)

between two spherical particles,

when the exact expression for bigh potentials is applied.
Dotted lines = repulsive poteatial according to the approximated

a
equation (56). Ve= 732

<

TABLE X1V

p?
Values of G X 107 as a fanction of z and (s —2), G being — - Ve

= : .. ——
1(s—2) | | !

0 750 | 16.02 | 265
0.10 690 | 145 | 233
0.20 635 | 131 | 207
030 | 585 | 119 186l
050 | 49 | 978 ' 14.85
070 | 406 7.98 | 11.96
1.00 } 304 | 59U | 873
120 | 254 | 486 | 7.3
150 | 1915 | 367 | 529
2.00- 16 | 2.37 3.25

250 | 071 | 144 2.08
3.00 | 0.43 | 086

1.25“ 153 | 178 . 195 2,05

38.46 | Sl.4 78.7 108.1
33.00 | 425 | 573 | 669
28.6 356 | 5.0 | 51.1
24.92 | 30.5 370 | 409

19.36 | 23.0 | 269" 29.3
12.31 | 1793 | 207 \ 72
1106 | 12.72 | 145 ’ 15.44
892 | 1023 | 115 12.33
i 6.59\ 7.565 | 8.54 8.99
403 459 517 5.40

|

I 246 | 294 3.16 3.35
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d@stances and steeper at small distances. This is a result of the
difference between the exact and the approximated repulsion
curves for flat plates, the interaction energy being lower accor-
ding to the exact expression.

It may be remarked that for small interaction (large distan-
ces) the exact curves tend to come near to the approximative
%%rve.fqr z :h4, but }tlhal‘; they always remain under this curve

at 1s just what might be expected, as the exact e i :

; - 1 ' EXpress
G at large distances is* pression for

O

G:T.‘/ f(u’z)d(,cH) — ,E,,_'[(_Z*Z-,Z]672e—’7[5~—2)
. &

2
H,

¢

which for large z is nearly equal to

oekrTe
G = %417y —17(s—12)
2 10e '
}vhepeas the approximated value for z = 4 and small interact-
1on 18 ‘
&

Ga —_ H
pp. 2 ln (1 1€

.__1;(5_2) Ni?Tﬁ

S e —r(s—2)
) T 292 (4) = N
Before combining the repulsion curves found here with the
Lo n don-~ Va nder Waals attraction, we will first deal with
1the Interaction of the double layers for the case that xa is uot
arge.

*

CE. first footnote on page [40.

ey

X. THE POTENTIAL ENERGY OF INTERACTION,
WHEN #xa 1S SMALL (LINEAR APPROXIMATION)

§ 1. Principle of the method

Whereas, when xa is large, we have at our disposal a direct
transformation of .the energy of interaction of two plates into
that of two spheres, such a simple transformation does not
exist when xa is small. ITn that case we follow essentially the
same method which we used to calculate the interaction of
flat plates, viz. we first calculate the electric field in the dou-
ble layer around the particles, and after that the free energy
of the double layers. This method was used by L.evine and
Dube and we can use several parts of their calculations,
although our conclusions differ from, and are in part even op-
posite to theirs.

According to Chapter III of part I the free energy of any
given systemn of double layers may be written

" “;bo
F=— [ ds [ g diy (60)

aurface 0

in which ¢ is the specific charge of a surface element dS’, the
surface potential being 4,’. The integration has to be carried
out over the whole interface of the system.

It 1s difficult to work out this integral exactly, because g’ is
rather an intricate function of ¢,’. If, however, the problem
1s simplified by introducing the approximation of small po-
tentials, ¢’ is directly proportional to ¢, and the first integration
now leads to the simple result

Yo .
| gde = tg,4, (61)
0

As the potential of the surface is considered constant, the
second integration is now equally simple, and the whole inte-
gral (60) transforms into

F=—[45]qds =—1Q4 62

in which Q represents the total charge of the interface in the
configuration considered.
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Considering. two spherical particles, which approach each other
from an infinitely great distance to a distance (I) where the in-
teraction is sensible, the potential energy of interaction Vg,
which is equal to the change of the free energy, is given by

Vea=aAF = Qoo"!’o_Qi"rbo:#’u(Qoo—Q")’ (63)

in which Q. and Q, are the charges of one particle when the
particies are at infinitely great distauce and at a distance [ res-
pectively, the factor !/, of equation (62} being just cancelled
by the fact that we are considering two identical particles.

In the foregoing it has been tacitly assumed that during the
whole process the potential ¢, of the surface remains con-
stant, If we wish to assume that not the potential but the charge
of the particles remains constant, * we have to use another equat-
ion instead of (63), giving the change in free energy, which in
this case is equal to the chauge in electrical field energy. In
this case the potential energy of interaction is equal to

(Q being the charge of one particle, now supposed to be con-
stant, whereas the potential changes from ¢, te Yy

This expression (63) (or, if desired, (64)) forms the funda-
mental equation of our problem, and all we have to do is to
find the relation between the charge ( and the potential,, as
a function of the distance separating the particles.

§ 2. The distribution of the electric field and the relation
between charge and potential of two inferacting spherical
particles

We consider two identical spherical particles of radius a at
a distance R between their centres O, and O,, immersed In a
solution of a simple electrolyte. In the approximation used here,
the influence of the concentration and the valency of the clec-
trolyte is completely expressed by the corresponding thickness

*

~ As we pointed out in § 4 of Chapter I, the assumption of constant
potential is the most reasonable. We here introduce, as an lternative, the
assumption of constant total charge of the particles, mainly because it has becn
used cxtensively by Levine and Dube: but this asswnplion is rather artificial.
I the potential Is not constant <uring the Interaction, this means that equilibrium
is not established. In that case it would scem more reasonable to suppese that
the charge density at the surlace, and not the total charpe, s a constant. But
this would tuply that the potential has dilferent values at diiferent points of the
sutlace, which makes the solution ol cquatlon (65} st more  difficalt. As.
furthermore, as lar as the cnergy ol interaction Is concerned, the dilference berween
constant charge and constant potential is not very Important, (see i Table XV
to XX in this chapter) we felt confident in confining oursclves to the case ol
<onstant potentials, and leaving the other possibilitics practeally out of discussion,

e
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Let the poten-
tial at the surface of the particles be Ly, and that of th? hqpld.
far away [rom the particles, zero. 1f we use the approg1maﬂc;ln
for small potentials, the potential ¢ at every point 1];'.|1_ t (E
liquid has to satisfy the differential equation (cf. eq. (4) o

Chapter II Part I)

of the ionic atmosphere, i.e. by the value of 1/«

AL = x (65)

In the solution of this eguation we have to observe the

1 > oy
boundary conditions that the potential ¢ has the VaiLlL., E\fo_(t)n
e surface of the particles, and the vgllue zero in the In Lmed.

Furthermore the charge of the particles may be determine

by applying Gauss’s theorem

e a-b) |
— — 7'llk dm
Q= ,/ 47 (dﬁ #, = constant :

r=a

the integration being carried out over the whole surface =z,

of the first particle.
In this way a relation may be found between the charge Q

and the surface potential &, of the particles expressed in the
following equation

—r(§—2}

I

are parameters which may be calculated

in which » and 2
nwh I ) 2 and 3 are expressed by eq.

from equations (71) and (72}
(78). (See below).

ation (79 may by derived in the following way. .
]%ﬁi“sl‘glut{ion) of ycq. (631 cim be expressed as an infinite serics
the first throe tezms are glven in cquation {O0).

. from which

* The development may be understood as follows: The most gcner?)l SOlu'l;ll(;:.
of eq. {65). showing the required symmetry around the axis Q,()_. m:;yl hy‘(rr{) "
as an iolinite serics of spherical funceions, cach member beind multipied DY

cuitnble function of 7y

“ '

Moo P, (cos iy F(n).
0

<~

n <ot uv ! ;O spheric “tio e mbe of
] consequrnee o the orthogonm lity « the =1 heric al I‘llin( tions ¢« (h. I'.IIC :b ‘ :l
‘h.\S series separately hns to .\'dli\ly Cci. (( ')). ];\J' this condition the [unchion iy

. . d Al 5 T \ (r 5 ey und tht
are deline €]n(] may Cd i ¥ be determin d, A] art amn the syt wnet are d

{ h f } e Jee. This |
axis 2,0 the solution has o be svmmet ical or the two pa U(!(S. [hl'i S
<AL 12 . ]

10
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—xry —xr,
o [3_ e
b= s+ +

ra

—nr

1Yy e %02
. + cos :9._.(1 +4- ;:3) v } +

J ‘ 3 3 —xr,
+ ‘52' {(3c05219, — 1) (J + o ﬁz)i}" +

]
+ 2 {cosﬁl (J + ?rh) &

(66)

, . 3 3y e e

+ (Bcos? iy, — 1) I+H,_)+arj-_7 72 ]—!—
The significance of the symbols r. ry, ¥, and ¥

A, 2 and 1, are constants. which should be chos

the potential equal to L.bo at every point of the s

this cannot be done exactly, when the series {6

2 may be seen from figure 36,
en in such a way as to make
urface of both particles. Now

0} is broken off after the third

Fig. 36. Coordinates used in the caleulation of the field around
two spherical particles.

member, Levine and Dupe propose a variety of methods, suifable to satisfy
approximately the condition Lyrface = o+ We shall not discuss these methods
in detail, as this was done amply in Levip
we shall adhere to the “"Moment Method",
surface of each particle has no dipole or qua
to occur being the octopole. This conditio
the surface is developed after spherical func

€ and Dube's papers. For our use
reguiring that the potential on the
drupole moment, the lowest moment
n s fulliled when the potential on
tions, and the first two members of

obtained hy simply adding. to the solution originating in the first particle, a similar
series taking the centre of the second particle as origin.
Taking only the first three members of both series we arrive at eq. {66).
When the particles are far apart, the field around each i
term A exp (— =r)fr, and all following terms are zere.
drawn closer together, the two fields are superiinposed on
potential. So the charge
has to be diminished. which is expressed by a lowering of the constant A More-
over, when the particles come into each other's field, the fields lose t

heir spherical
symmetry, which is expressed by the correction terms with 2) and 2,
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) . ¢
the development made to disappear. Using again the propert:es of orthogonality
of the spherical functions, these conditions may be written as

w
f cos¥yop _ sindydd, =0 (67)
rl—B
g
and
W
[ Geosts —1)w _ sindydd, = 0. (68)
" -’l—ﬂ
0

- . e
Evidently, for reasons of symmetry, if these condltlon_s are sa_ns:zﬁ)ed for ry
they will hc:id as well for the 8s)l.u'face o(f[\ t_he O:heéept‘::;ﬁli (t?egva]._.lgs of 1, and
iti 67) and (68) are suflicient to _ ne t / _
4 Tt?li g;gﬂlﬂ:gsog th)ese coeflicients (see below) being a justification for breaking
2
ies. N
Oﬁ.’l"tl?:‘csg:sianl A may then be determined from the condition

n {69)

= -‘PU,

surface

i i f the
expressing that, If the potential has not got the value Y, in every point o

surface, at least the average value  is equal to Yo ) ,\h N
In order to obtain explicit expressions for 2, and iy we gge Jubstiture
thenvalue of  from equation {66) into the integrals (67) and (68), carry
the integration for r; = a.
With the aid of the expressions

. z 2 gt
2 -+ at — ,.22 y R + r?__ .
oS ﬂl — Rﬁz R‘&—‘——’ cQs 112 = 2Rr2 .

(70)

the integration over #, from 0 —» v may be replaced where necessary by an

i i y from K — a unto R 4 a. o
mt;gflt-gﬁlo; ?;;;Tthf; lgut (fementary calculation the first condition (67) may be

transformed into

—t{s— 2} I
e o *21} {(1 + f) +
o:;u‘-,+~-*7;;'{;+|+e s

9
1 2 1,9 }
ISR R HES R

7n

and the second condition (58) into

—1{s -2} o .2rl 3 3
e z~—3r_-_|:3_ {(l __,_*_)) + )
0= 34+ 5~ {7'1+3r F370 T Ty , 72)

9 9 JNE e )13 S
b (‘ +sj£'+(?"r)'-'+('sz>“3> + }"-’(‘ b e T e T/
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in which, for simplicity of notation the abbreviations introduced in eg. (5!)
have been used.

®ad = 1 Ria = s (51)

The equations (7f) and (72) enable us to calculate the values of 4 and 4,
ie., the form of the electric field, when the electrolytic concentration and the
radius and distance of the particies are given. It is clear that the coefficient A
does not figure in equations (71} and (72); for, as a result of the introduction
of the approximation for small potentials, the whole problem is linear in the
potential, and the form of the electric ficld is not influenced by the magnitude
of the potential, which determines the value of A.

The condition (69), that the average value of the potential on the surface
must be equal to , or

™

J:%f g,rl:ﬂsin#ldal = U, (73)
0

will give the required condition for the constant A. After introducing  from

equation {66) and carrying out the integration, using where necessary the
expressions (70) we find

—r —t{s-12)
< 4 - 2r
b= S r S0 - 2 )

74)
1 3 3
><(1+Al(1+;)+ag(1+§+(~3,—)2))} S

By the equations (71), (72) and (74). the field around the particles is com-
pletely detcrmined.

It follows immediately from equations {63} and (64) that, in order to evaluate
the free cncrgy of the double iayer system, it is necessary to express the charge
of the particles as a function of the potential ¢ and the geometric confliguration.

To this end the charge @ of one particle is expressed with the aid of Gausy’s

theorem, i.e.
T {ed
— = o 7 7
@ / (()l'j)‘fh :_ constan de 73)

7 AT

r 4

the integration being carried ont over the whole surface, oy, of the first particle
or, explicitly using the symmetry of the problem arcund the axis O O,

"

2 -1 .
QR =— ig‘ / (STM)U sin i, d ). {76)
- v/t

4]

through in the following way. «f is written as a function of r, # and r,
climinating #, with the aid of equation (70). Wc may then write

Tbe differentiation of 4 with respect to r|, kecping #, constant, is carried
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Wy b, o (a@) W, ey R
191 dl’l d:"g 791

— e ary A 2 r
an or, ary 172

ar
The integration of (76) is carried out in the usval way, using the expression
{70), the result being : .

0= As(l+ e i —d+af. @7
in which
—r{s—2) 1
)
d — J—
25T T4 1 79
and

From eq. (74) and {77). eq. (79) may easily be derived by elimination of the
constant A.

o= T : ae(l F o)t —3(+ o)

LY

§ 3. Potential energy of interaction of two spherical double
"~ layers.

Having thus obtained the necessary relation betweenfc.};lig,‘grrf
and potential, we can proceed to calculate the energy of 1

action. ) ‘ '
Assuming that the potential of the surlface remains constant,

the potential energy of interaction at the approaching of the
particles is given by equation (63)

Ve = 9 {Qu — Qa) (63)

"PO = const,

Using equation (79) to eliminate Q. we find that the potential
enerpy of interaction 1s given by

ST 50
— 2 B
VRHbO:const, = Yo ra s k
in which
R (51)
- —1{$— o
P —e (1)
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1f, on the other hand, the charge is supposed to remain con-
stant during the approach of the particles, the potential energy
of interaction is found to be (cf. equation (54)).

e*t(5~2)
VR Q = conat. = Q("’bn - "!jco) = 4‘025 a — — (82)
in which
|
72‘1?642)”+x : (83)
] - __(’{j 1._"8;2,)(1 4
257 7 4]

The guantity # occurring in these two cquations for Vi has
to be calculated according to (78) after the two cquations (71)
and (72) for », and 2, have been solved.

The potential cnergy of interaction is seen to be directly pro-
portional to the radius of the particle (not to the square of it,
as might be expectcd), to the square of the surface potential,
and further to depend only on two ratio's, viz. 5, the distance
of the particles divided by their radius, and 7, the ratio of the
radius of the particles to the thickness of the double layer.

In order to make practical use of the equations (803) and
(82), we constructed the tables XV to XX -or six different
values of 7. Tabulated arc the values of 2, and 2,, of 1 -+ «, of 5
and %, and finally the values of :TRz' from which the change
in free encrgy may casily be calculated Ffor different values of
the potential and the radius of the particles. Table XXI gives
approximate expressions which may be used when 7 is wvery
small.

The repulsion curves for constant potentials are shown in
figure 37.' The ordinatc scale is the same for all curves. The
abscissa, expressed as 7 (s — 2) has 2 common scale for all
curves, but of course diffcrent scales when the separation is ex-
pressed in s. We may remark that the quantity = (s -— 2) gives
the distance between the surfaces of the two particles ex-
pressed in the thickness 1/« of the double layer as unity.

It is clearly demonstrated in figure 37 rhat the repulsion

VA figure of the repulsicn curve f{or constant charge is not given, as we
shall confine the discussion of the stahility of colloids to the case of constant
potentials. Qur preference for constant potentlals has bcen explained in § 4,
Chapter Til. Moreover, the difference between the two cases is not very important
as may be gathered from Tables XV —XX.

§3 INTERACTION OF TW

is only important when the
a few times the thickness o

is practically independent o
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particles are closer together than

£ the double layer.
ched for immediate contact (s *_;_2)
f the value of xa. This is 1n striking

£ flat plates, where the limiting potential

The potential energy rea

contrast to the case ©

3 4T(-2

¢ i 20 Z 30 90 s for Ta0!
: 2 75 10 — 125 5 5 forT0d
T T sttt
(S I N
2"—'*2‘2“"2_5‘53“"”55—‘_73 3 3T sfert=d0
i 22 24 26 zaskor =50

i spherical particles at
1 i of repulsion between two Sp
Fig. 37. Potential encrgy o e ) b (R_Z{,)

surlace potcntial. . :
e i [aces of the particles n

measures the distance between the sur :
the thickness of the double Tayer I/% as a wnit.

lon: ickness
energy is found to be inversely proportional to the thickne
of the double layer. _ ‘ el
It may bLe secn from Figure 37 and f['rom)tth tablcfc?::finsxpo‘
1 [ two flat plates) always remd
that Vr (as in the casc © | ‘ _ _ el
sitive aRnd diminishes monotonously with growing s. This me
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that the force conmected with this potential energy is always
repulsive. The attraction at relatively great distances, found by
Levine and Dube, which they consider as an important
feature in the behaviour of colloids, is a result of their using
a fallacious expression for the potential -energy. This matter
is discussed in detail in the Appendix.

As B and » are always between 0.60 and 1.00, we may neglect
their influence on the repulsion in many cases where no great
precision is required, and we find a useful and simple ap-
proximate expression for Iz in

—1z(s—2)
Ve = cay? & (84)

N

Nevertheless, as in our case we want to combine the ex-
pression for the repulsion with that for the Londen-Van
Der Waals attraction, we shall work henceforth with the
more precise values of the Tables XV—XXI.

TABLE XV

REPULSION FOR 7 = 0.1

|
,‘ VR VR
P R T T B ’ g = comt |~ Q = const.
| | ] Ylea Yolra
[ 1
2 |0.0183910.00030} 0.8624 { 0.6200 | 0.8634 0.310 0.432
3 10.00988 | 0.00013|0.9514;0.755010.952] 0.228 0.287
4 10.00570 | 0.00006 1 0.9785 : 0.8282 | 0.9790 0.170 0.200
5 1 0.00360 | 0.00003 | 0.9886, 0.8727 | 0.9890 . 0.129 0.147
8 10.00127|0.00000|0.9971!0.9389 | 0.9973 | 0.064 0.068
12 | 0.00046 | 0.00000 {0.9992 | 0.9722 | 0.9992 | 0.030 0.031
17 | 0.0001{7 | 0.00000 | 0.9997 , 0.9880 { 0.9998 | 0.013 0.013
22 |0.00007 | 0.00000 | 0.9999 | 0.9944 | 0.9999 | 0.006 ‘ 0.006
40 | 0.00001 | 0.00000 | 1.0000 i 0.9995 | 1.0000 l} 0.001 | 0.001
70 {0.00000 { 0.00000 | 1.0000 | 0.9999 | 1.0000 ( 0.000 ’ 0.000
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TABLE XVI

REPLiLSlON FOR r = 03

I _ .
- ——— -— p—
: - :
o e - —— —

‘ i | ; VR‘J/O = const. VRQ ‘3’ fof\sl-
s | —h l A I P RO R
| [ A S
] sl 418
2 |0.0512910.00223 | 0.8306 0.6330'.0.8366 %3% { ggsl
2 | 0.04156 | 0.00173 | 0.6780( 0.6955108833 | - 078 L a0,
5% 1003380 | 0.00130 1 0.9102 0.746110.9148 0240 0294
3 |00251410.00088 3‘3332 8%%% 88332 0.122 0.134
01270 | 0.00038 | O. 8859, 0. - o
i e
7 |0.00243 | 0 00006 | 0. 973009968 T iF
100097 | 0.00000 | 0.9987 { 0.9886 " 0. | Qou
12 8.00009 0.00000 | 0.9999 0'9998:?'?)%3?) 818%3) |0
2% | 0,00000 | 0.00000 | 1.0000 | 1.0000 1. | -
. A\
TABLE XVII
REPULSION FOR r == 1.0
T R 1 ; VRJ) = const RQ"consl
S — A —l | 14« : B 2 - @02 [ —J/--CQE B
| ] D o
| '[" = ! -
' | .394
2 ‘io 11106‘0.02007%0,7682‘-0.6588‘0.78861 8%%? 3.354
51 10.00934|0.01714| 08018069761 0.6210 301 0.354
22 '0t08789‘|0‘01572;0.8253'0.7285‘0.8428 8'220 0314
S 006853001197 0.8698 0787108843 0220 0247
23 | 0.04645| 000778 | 0.9167 | 0.8545|0.9273 B ¢ 0.17)
0 0.00510 | 0.9464 | 0.9012 1 0.9539 ! : Y
30 S l 82.  0.060 0.0
35 001618 |0.00244  0.97410.9486 | 0.9782 0.060 0062
40 1000847 | 0.00121 |0.0871 09730 0.9893 0033 0.033
6.0 ,0'00072 0.00007 | 0.9904 | 0.9891 | 0.9906 0.003 0.003
9.0 }o'.ooooz‘o.ooooo 1‘1.0000 0,9999l1.oooo\ ‘
’ P—J—_’_’——’

— -

___-—J—J—d—“
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TABLE XV
REPULSION FOR : = 29
T T
Sl mh | =% | l+a| s y Yo~ conat | TRq ~ cona.
S N A N R A G T
2 lo12114]0.04973 10,75 ( Comm
04973 10.7522 | 0.6887 | 0.7779 0 |
%’?S 8.;1027 0.04522 | 0.7765 | 0.7162 | ©.8006 og?g l 8'389
210 0.00007 0.04094[0.7990 ' 0.7423 | 08215 0.289 0320
220 10.081770.03324 0.8386 10,7831 | 0.8573 0290 | g3y
2.30 1006623 0.02668J0.87l5'0.8292 0.8396 0.198 e
250 10.01266 (001676 10.9234 08936 | 0.9345 0122 | o2
270 10.02708 001046 |0.9506 09307 (0.9575 0085 | oon
3,00 10.01354 0.00507 09762 | 0.9679 | 0.9800 oo;r | oo
400 !8.00136 0.00000 { 0.9985 [0.9974 | |.0000 0005 | oot
50| 00005 |0.00000 | 1.0000 | 1.0000 | { 0000 0000 | 8'888
o e " |
N
TABLE XIX
REPULSION POR + = 10
| o T T T
S| =h | =k [t4a s |, | R'%"““": o < o
A S S R N I
2 101097 1007180 0.7583 0,713 ] ,
. 713307837
2.02 10,1041 [0.06788 (0.7717 |0.7281 |0 7056 gggz) 0377
2.05 100960 10.0621210.7910 | 0.7496 | 0.813¢ 0315 076
210 1008356 10053531 0.8201 |0.7824 | 0.5404 0.276 g
2.:%0 0.06236 | 0.03925 | 0.8684 0.8381 | 0 8344 0200 | g2
2301004622 [0.02840 09133 | 0.8394 | 0/9255 ois7 | ol
240 10:03339 002052109317 0.9139 | 0.9409 0115 | ol
210 8'01251‘0'00735 0.9755 1 0.9634 |0.979 0.044 | 8'“8
200 Ogggg; }8'88%? g.gggé,oggm 0.9957 0.0165 o'g?gg
000003 fo. 0.9985 [0.9993 00032 | 00032
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TABLE XX
REPULSION FOR r = 5.0

| ‘ | VR,,. B Vi

PR A e FE y | Ho= comst Q= comst

‘ I . Potea dyira

| |

| |
2 0.08746 10.07923 |0.7984 ' 0.7678 | 0.8203 0.384 0.410
2.02 10.08004 | 0.07247 | 0.8159 [ 0.7872 | 0.8363 0.353 0.375
2.05 10.06984 10.06317 | 0.8399 0.8139 |0.8582 0.309 | 0.326
2.10 10.05504 | 0.05273 | 0.8702 i 0.§489 | 0.885! 0.245 0.236
2,20 | 0D.03368 | 0.03017 | 0.9241 0.9100]0.9338 0.152 0.156
2.30 |0.01968 | 0.01796 10,9551 '0.9463 | 0.9611 | 0.092 0.093
2,40 10.01189 0.01054 ‘ 05737 0968409773 0.055 0.055
2.70 1 0.00239  0.00205 ‘- 0.9949 0.9939 0.9957 | C.0ll 0.011
3.00 |0.00048 | 0.00042 | 0.9990 0.9988 |0.9992 0.002 0.002
3.50 ;0.00033 | 0.00000 ! 0.9996 0.9997 | 0.9997 0.000 0.000
TABLE XXI

REPULSION FCR SMALL VALUES OF -
For small values of ¢ the following approximate equationsmay be used.

When 7 (5 -— 2) < 1
s+ 3s ) L St 3
ME s e e T 3 2T T R L 653
s54 554 5554 | ottt 25
y=1+n= S rasttd T @25 683
s Sps 4S5 ts St Ay R PTPY
T S S 250 f s F b5t F 5§ 3541 T T (L ash )

VR"‘ILO 7T const. e—r(_;—Z) VRQ =% ronst, e ls=2)
;'7 - o= s ﬂ = ;-‘(1.’}‘2 = ,_S -
ra gt Lo
When (s —2) 3> |
|
‘ T
- —r{s=-2) B -
o= s Ay 9 ©
Y = | + n= i
1
A= ; e
| + 3 {l — 1}
¥
_R“.[’D :*-¢on-31. o 7—-1 o V'R : const, . i
ra\pOQ Se'(}lz]ﬁ-l‘l ”“‘-.[102 521(3_2)
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§ 4. Conve'rgencg and accuracy of the method used

In order to get an impression of the convergency of the method and of the
accuracy attained by it, we made comparations in a lower approximation by
putting Z,, or A and %, equal to zero. The potential energy is again given by
the expressions (30) and (82). but the values of « and g were altercd.

In Table XXII we find a compavison of the values of 4 in different approximations
for a few important cases. It will be scen that for small values of r the correction
for the sccond approximation is much smaller than that for the first, so that
breaking off the serics for & at its third term scems justificd. But when r=3 or
still more pronounced when = 5, the sccond correction is nearly as large as the
first, and there is no reason to expect that the contributions of the following
terms will be much smaller. We conclude therefore that it is advisable to look
for another method of approaching the problem for cases where r > 3. The in-
fluence of the distance separating the particles on the absolute value of the cor-
rection is lorge, but the convergency is hardly influenced by it.

Fortunately for larde values of r we can approach the problem from the other
angle, viz. siarting from the interaction of flat surfaces.

TABLE XXII

VALUES OF £ IN DIFFERENT APPROXIMATIONS

*

The accurate value of g for this case may be calculated from pure electro-
statics and proves to be 2 — 2 In 2 = 0.6137.

# lst approx. | g 2nd approx, | ! } Estimated
S .3"]: . ﬂ ‘—ﬂq ﬂc—“ﬂ.
[ 2;=2=0 2, =0 ' 4 pREQ | ! o # accuracy
N B ! L N I
2 0.6666 0.6207 06144* | 0.0459 | 0.0063 < 19,
very | (D f e e 2 A A
large se’t=2 se’ts=d) . ce’l7D 1 g 7(s=2) ! 9se’(s2 9se’+ D
|
2 0.822 0.695 0.659 0.127 | 0036 2 Y,
3 0.949 0912 ! 0.90) 0037 | 0011 -
4 0.985 0.974 0973 0011 | 0001 o1,
2 0.891 0.753 l 0.689 0.138 } 0.064 0,
250 0.965 0915 0.894 0050 | 002l 2
300 ‘ 0.9889 09732 | 09678 00157 | 00054 0.5 .
2 0.923 0797 | 0713 | 0.126 0.084 20
2.30 } 0.971 0.919 0.889 0052 0.030 o .
300 | 09972 0.9921 0.9916 0.005] = 0.0005 0.1 .
\ | | I
21 0952 0.855 0.768 | 0097 | 0087 ?
220 | 0984 0.945 0910 0.039 0.035 ?
2.70 . 0.9989 0.9963 0.9939 0.0026 | 0.0024 ?
| i
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§ 5 small and large values

) the cquations for _ :
Comparison of i pulsion for intermediate

of xa and evaluation of the re
values of »a.

d for establishing the accuracy of
small ¢, and large xa) and (80)
1 z2) we analysed both formula-
alues of Vp for a serles

As an alternative m_etho
the equations (56) (valid for
(valid for small ¢, an;i sma
tions graphically. In figure 38 the v

Vs
(a%

”’T

100
——-T

o
-
SH—

or the rcpulsion eguations g56)
The horizontal lincs
the dotted lines

Fig. 38. Showing thc regions of validity f
and (80), and the transition berween them.
represent cg. (56), the curved ones cq. (80).
form the estimated transition.

ainst the logarithm of za.
results for Jarge za, apd
methods tend to give

of values of 7(s — 2) are plotted ag
Since the first method gives the best
the second for small za, avd as both
results which are too high, wec may d’ra\\{ Mf enon
hetween the two expressions in the intermecdiate region
too high.

‘)OItTIilgS:: 38 cle;rly shows that Fhe secgnd method m
be used up to 7 =1, (for weal interaction ceven up to 3

the connection

ay safely
r = 10),
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and the first (Derjaguin’s) method down to 7 = 10, whereas
in the middle region we can connect the two graphically
without becoming too much arbitrary. To give an impression of
the correction involved, we drew in Fig. 39 the repulsion curves

'

eayy

0+

B

0.2 R

of 2 3
S

- -\*\E“:‘.‘;ﬁ- —_ -
0 ~ %J

2 24 248 Ja—w5

Fig. 39. Repulsion curves for 7 = 3

-~ — — — equation {56)
........... equation (80)
e — Best curve, from Figure 38.

for 7 = 3 according to equations (56) and (80), and interpola-
ted from Fig. 38. Altogether we get a fairly accurate knowledge
of the repulsion curves for any value of 7 and s.

Derjaguin combined the two equations {56) *) and (80) into one equation,
valid for any s and 7; but this can only be done with loss of precision in the
whole Reld. In his case it was mevertheless of advantage to use the combined
equation from which he deduced a criterion of stability of colloids, assuming that
the attraction between two particles acted only when the particles were in direct
contact. .

In the following sections, however, we shall introduce the farther-reaching
London-~¥an Der Waals attraction, when it will he most important to have
at our disposal an accurate repulsion curve, the advantage of a simpler equation
being far less than in Derjaguin’s casc,

We now possess a goad system of equations for the repulsion
wlhen the surface poteutial is low. But iu the case of large

-

He used equation (56) only in the first approximation, i.e. with « 0,
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potentials we found a satisfactory solution only for large valuei
of xa, whereas the problem for small values of xa has not ye
beilll c:sgrlr\;gﬁiing the repulsion as found _in this chapt-er‘WLth thi
London-Van der Waals attraction, the most 1mp‘0ftan
cases will prove to be those of elther large potential a;lc. aljfgi
xa, or small potential combined with a sm_all value o ,cc;, : or
which satisfactory solutions are LOW available. Nevertheless
we shall be compelled in a few cases to use 4 repulsion equf:lﬁ
tion for small xa and large p_otentlals. In these cascs. v{;e w1e
simply use equation (80). This seems very 1mpruder}t, L_1ttw_
shall show that in the cases concerned the uncertainty intro
duced by this neglection is unimportant.



XI. THE ATTRACTIVE FORCE AND THE TOTAL
POTENTIAL ENERGY OF INTERACTION

As in part IT, we shall assume also in this part that the attrac-
tion between colloidal particles is entirely based upon the
London-Vander Waals forces. Hamaker! showed how
the London-Van der Waals interaction between two
spherical particles may be found from the interaction between
the elements of these spheres. His expression for the energy of
attraction (V/a) runs, using our symbols,

. A 2 2 s2—4
Va= =G (aigta et L e

For t.he value of A, the reader is referred to p. 103 and 104.
It is worth while to consider how [/, behaves when the par-

ticles are very close together. Putting s =2 + 1:, in which H

is the shortest distance betwecn the two spheres, and assuming
that H <€ @, V2 may be approximated by

Vo= A2 L A4 1 (86)

’ 12 " H 12s—2
So the free energy of attraction decays very slowly, viz. recipro-
cqlly with the distance, and cven slower than it does in the case
OJIf flat plates, whete it goes reciprocally with the square of the
distance. (eq. 48c of Part II). At larger separations of the two
spheres the decay is of course faster, as for very great distances
the aﬁtraction must die out as 1/H", but necvertheless the decay
remains slower than 1/H? until s exceeds 2.4, as may be read
from a double logarithmic plot of eq. (85).

This slow decay must be explained by the fact that, for
H = 0, only small parts of the spheres are very close together.
A small change of the distance betwecn the spheres has a great
effect only on the elements immediately surrounding the place
of contact, whereas, for the greater part of the matter comtri-
buting to the attraction, the relative change of the distances
and, with that, the change in attractive energy, arc only small.

Combining the values of repulsive and attractive poteniial
encrgy, as they were found in this and the preceding two
Chapters, we find the total potential encrgy of interaction,

1 H. C. Bamaker, Physica, 4 (1937) 1058.
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called V. On the whole it has the same characteristics as thosg
found in the case of flat plates (cf. Chapter VII, of Part 11);
although of course there are differences 1n detail. The. <:urveIs1
of free energy against the distance separating the part1clis a
show a negative value at large separations, because the Lon-

1
don-Van der Waals energy has a smaller slope (m ;E)

than the repulsive force (¢ exp (— 7s)). At very sm‘a_ll dis-
tances the London-Van der Waals epergy 1s agaisi most
important, the energy reaching large negative values. At inter-
mediate distances, i.e. when 7(s— 2) 1s of the order of umt’y,
there- may be a maximum of energy, if the conditions of g,
« and A are well chosen. The great rxu‘mb?r of parameters that
can be varied makes it difficult to give a general survey of
their influence on the interaction. We t_herefore show iny a
few examples of curves of total potential energy, 1n figures

40 and 41

Potential energy
of interaction

1128
2

k=3x10°

~10KT
-05»10“’2’{

—20kT |

k=10 Zor 1arger

Fig, 40. Showing the influence of the concentration of clectrolyte ()
on the total potential encrgy of interaction.
kT _
= 10%cm: A 10 ergs: Ly 1 0= 25.6 mV.
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Fotentral
erergy

o
wnteraction

(oo

fergs) 1x10"

20kT |-

051072
kT

\fy=32mb
Y= 256 mV

Wo= 102 mV
1T~ 1

—1AT & k M
Y= 12.8mV
Yp= O m¥

~10kT |
-a5x107%

-20kT

~1xt™?

Fig. 41. Showing the influence of the surface potential (fs,) on the total
potential energy of interaction.

a=10%cm: A = 10" ergs: = = 10° em™L.

In Figure 40, the radius of the particles, the attraction con-
stant, and the potential <, are all kept constant, (values a =

-\b
1075 cm, A = 10712 ergs, i, = 256 mV (’%,f’ = 1) respecti-

vely). The different curves belong to different values of =,

so this set of curves shows what happens when the concentra-

tion of the electrolyte is modified, all other factors being kept
constant, *

* In the curve for » —» O we find a distinct difference between the flat plates
{cf. page 114, 115) and the spheres. .

In the case of flat plates we found by decreasing » (i. e. decreasing the con-
centrations of electrolyte) a continuous Icrease of the breadth of the potential
barrier, but at the same time a décrease of its heighr.

Now we find for spheres the same increase in breadth, but no decrease in height.

This is a direct result of the divergence of the lines of force in the case of
spherical particles, )

[nfinitely large fat plates need orly an infinitesimal small charge density to maintain
a certain potential, because the lines of force do not diverge and the field strength,
although very smali, has the same value until the infinite (x — 0 means that we
have only to reckon with the surface charge, whereas the diffused charge is in

X1
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ial 4
In Figure 41, x Is kept constant, but now the potential ¥
s been varied. _ ) . _ or.
haIn both figures the ordinate 1s expressed in frgs, Sv)ntk‘; ﬁlr.; ﬁl o
native scale in multiples of LT (41 x 10 . eilrsgs R
comes of interest as soon as Wwe have to disc
Hoids. , . ..
Ofltcomay be seen from figures 40 ;—md 41 a_Lni 1z\t pr?viiugieg a
seneral rule, that the maximum, if any, 18 em\ray]nl S pared ot ‘
?)b t 7 (s - 2) oo 1, shifting to somewhat smalier d%k X
dvi?e;ln the maximum is high, and to somewhat gregter 1sltari$;cls
zvhen r is small. In the case of ﬂglt pla}tes an analog_ou: rxudew !
found to exist, the maximum being 51tu_ated at aho_u L ir;
(Cf. Figures 2428 and the discussion on this poln
Chapter VII).
;)-_'I—-I-‘l_f‘lunflte). Spheres, however, need a finite charge to ffazc}zfthexs‘.f\: Ogotentlal,
Leiause the feld strength around ;.lhe spherﬁafgegay;ieasbrgrughtc)rtogEther, .there ,
: i ractically no ¢ :
prg:titc‘;l?y ilci‘ti;agzznonfg elfergy. But it costs guite an amount of energy to push

gether. . .
tWlot fihiliég‘: :E:frii t;:e dealing here with a case \:\I;here spl:ﬁrlclalttgfrlt:éltelfofc(l)rg]f
" i lates, because fhe la
i of real colicids than do ﬂa_t p . ‘ : od of
; bei::éhlfsszires that the double layer thickness is sm;all in comparison wi
?)};Etricle size, which for = —> 0 is certainly not fulfilled.



XIL STABILITY OF COLLOIDS
§ 1. RKinetics of coagulation

From the curves representing the tot
interaction, mentioned in the preceding
to derive a criterion for the stability of
ready be done in a qualitative w
only expect stability if the cyr
must be of the order of kT to

By a theory first developed by

ever, to obtain a more quantitative formulation of this criterion
of stability. In this theory, the probability of aggregation of col-
loidal particles  is treated as a  diffusion problem, just

as in the well known theory of rapid coagulation by Von
Smoluchowskij2

al potential energy of
section, it is possible
colloids. This may al-
ay. by remarking that we can
ves show a maximum, which
prevent flocculation.

Fuchs! it js possible, how-

One might proceed in a simpler way to calculate the probability of agglomeration
ina particle encounter and ideotify this quantity with the probability that a
particle moving in the direction of a second particle carrics a certain amount of
kinetic enerdy and is therefore able to pass a potential barrier, But the amount

of kinetic energy of the particle with respect to the second particle ar a certain
moment persists only during a

needed to cover a distance of
This may easily be seen in the followj
tnitial velocity vy, and calculate the retardation of this partic}

friction in the liquid. Applying the Stokes equation, and considering that the
frictional force 6 ™1 av is the product of the mass m

and the acceleration (— dv/ar),
we have
6 a
dv 6 Tn av T m
o == T, or V=y5e
Hence, if its original velocity is given by
pET - ) e, or o ‘/2/;1',/).
mn

we derive that the particle for purely mechanical reasons

out of consideration) has completely lost its velocity
distance s:

(lcaving thermal motion
alter travelling over a

s=v / . m PR ]/27) kT m I lﬁi)/ziﬁ
0. d 63’11(] = ()J;/ w - 3y L S
0

= -
N. Fuchs. /. Dhrvsif. 89 (1934) 736.

. von SIIIOIU(IIQ\VSki, Dhysik. 7.0 17 (1916) 557, 585,
7. physite, Chem., 92 (1917) 129.
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b ~

i = -4 4d=5,
in which @ = the density of the particle substance. With 27 =4 X 1074,
and » = 0.0/ we find

s=07.10% 1 pa cm,

N\, "s
=107 distance s is only 7 X 107 cm,
i ,for p = 10 and @ = 1075 cm, the _ _ o
.wthhf mre?ezz Tha;n ?he/ extension of the potential barner.. For S{n?ll((:;iz;:it(l:ciisﬁgy
ii-'et”ancae will be still smaller. Hence a comparatively rapld‘parélcfe_ﬂt;lon © eoerey
IE)S/ZT) wilt lose this extreme velocity as a result of the liquid fricti

i few Angstrom units. _ _ b
dls’i"ahr::eprixfb:biliety of gassing the potential ban;ilerhwiil_ Ll;s:reéo:_glzeOdfe[tﬁ:n;;ftic'e)g
i i the kinetic energy
han the height of the barrier an ' : icles
:}g;eefa;fx‘zlrsitt \:ill be neécessary to treat the encounter of two particles
problem of diffusion in a field of force.

If one of the particles of the suspension 115 CODSld}frei% filgedz;
it may be asked how many other particles ree}ﬁsion n o
B omer SUPPOSiti'OH istf mrgilteic:lhttcrri:erg’heccéoncentration
O rfae e (f' ced A%rticle is zero. On
of particles at the surface of the ixe Ip('rtide s zero. Do
the other hand, far away from this centra pdltchd o
of particles per unit of volume remains ynlm e P
> * to n,. The movement of th_c particles v :
il?iléalcmftml “one is trcated as a lefusmn_ ;I)E(l)blﬁqm g:etr;kelg
ion the il'}'t}?racltiog thtwcc?ﬁtthei 23:’1?;];;;:‘6‘ ydifFerential
Into account. i1s Jeads to a r: ( W
iz[qtuation, but it has been showx} by VQF S‘mo(lsluccctht?};v‘s/ery
et only GDfUI;imI{):lorfalllt te'rrr?rp;f)c]:fsdc\vlhc:}Lrlwlcaconcentration

sinni or the rlocculatio SS.
ieilz]:‘n”t’f%roughout the whole‘sy§tem, except aht thetgu(r:garfseidgf
the central particle, where it is zero. v];]leh zéveﬁ‘fter o
only the stationary state. Awlnch 1s establis (el) Zhat ooy
short time, and is characterized by the factsc,1 %) e 3 ery

int the concentration remains constant, an ( per uns
g?nt]imc a constant number (G) of particles passes thropg evony
sphere surrounding the central particle, fm_allly bfllggl,ngnutrl:berl
and fixing themselves to. the central pfafrt-l'c c. undér number
G is built up by two inFIuc_nces; the di l:j%llorll der the inc
fluence of concentration ;zmdlcn_wts. and the displace
by the interaction of two particles.

So G may be put equal to

on n r)_V)
IR - p OR/'

I icle;
in which R is the distance from thc centrc of the fixed pa]rtéin-"-
D the diffusion constant: n the number of particles in :

G = 47 R? (D (87)

article ishes, but
* Of course during Rocculation the torl number of pdrtul'ts 'dimci?;tr:' o
o H . HE s BN ) .
for the evaluatlon of the distribution of the particles around the
¢ walu:
Ny may be treated as a constant,
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p the friction constant (v 67 % a), and } the energy of in-
reraction of two particles at a distance R.

This equation must be selved with the boundary conditions
n =190 when R == 2a

expressing the fact that the iminimal distance hetween the
centres of two particles is twice their radius

and n == n, when K = co.

According to a well-known theorem of Einstein, D isequal
to kT/e. If, however, the ceutral particle is no longer considered
fixed, but also free to move, diffusion of two particles against
eachh other is accelerated by a factor two, or D' = 20, On
the other hand, the relative displacement of the particles under
the influence of the interaction force is doubled as well,
or ¢ = p/2. So the Brownian movement of the central par-
ticle is fully taken into account by replacing, in eq. (87), D
by 2D, and p by KT/2D.

With Veo = 0. the solution of the modified (87) then runs

R
) Ge VT 1 dR
—VIT e / o VIKT T

n = npe 8r {88)
[=e)
To satisfy the condition for R = 22, G must have the value
7 /_),
G= TPm_ (9)
e dR
e
2a

This &, representing the number of collisions against one
particle during one second, is a direct measure of the floc-
culation welocity. The value of G when IV = 0, i.e, when
there is no interaction between the particles, except a very
steep attraction when the particles touch each other, isequal to

Gv:o = 87 alln,,
and gives a measure for rapid coagulation.

The interaction I diminishes the velocity of coagulation
by a factor

W= oa [enrdE oy = [fomrds g
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Now the time of coagulation of a rapidly coalgulatmg sol is
given by Von Smoluchowsli's theory as

P S (91)

which equation has been fully copfirmed by G:-X'Pfrtlgl}g;t
(Kruytand Van Arkel?Westgren andRe‘ltts ot ] l‘\c.—

If we put D equal to kT [67va, the tume of coagulation be
comes equal to :

f= 92)
- 4kTﬂ0 !
which, for water as a dispersion medium and T = 2987, 13
210" 1 d (at a given tem-
equal to £ o no*‘, and is seen to depend (

perature and for a given dispersion medium) solely on the
concentration of particles.
Even tfor the most concentrated solst‘ the value olf o scircekl)z
surpasses 10'4, so that the shortest time Fof c}ciagu atlonomomon
ith i £ 1073 sec. For the more ¢ .
reckoned with is of the order o :
exaraples investigated by the above authors the time of rapid
coagulation is of the order of 10 sec. . ; e
Now a colloid may be termed stable when it ?qest ot t}me
i - th, which means tna
culate, say, in a week or a montn. me 2 m
i than 108 sec. Consequently
flocculation should be longer . d
ct)lE-e ratio W between rapid and stow coagulation \mlld k;grqe
to surpass 10° for diluted and 10° for very concentrate 5
ive them a reasonable stability.
tOOgtllr task is, therefore, to get & survey of the dgpendenii fr)‘f
W on the several variahles influencing the stabﬂity, alsJE fhz
are, radius of the particles, concentratlfon )and vfa ency Ct) the
ot ‘ alue of »), surface potenti
electrolyte (expressed by the v !
o ang the value of the London-Van Der Waals con

stant A.

i lish a critericn af stability. The
i 4 Leed this same theory to estab _ :
d‘l?el;llcaegg;gveen his theory and the theary exp_oundgd here is ffounc:‘mr;heufggg
lfel:e total energy curve ¥ (R} Whereas Derjaguin used for t: pnﬁm(i
obt E t(;\e same expression as we did with this difference. that he co
abou

Tt et B R oo e e e, Fiing e 10

lc?ctﬁbéc;c:::;tclersl. but a)sf well coliis.iolns-bet\\"een secondary particles, giving rise to

complexes of mote et 1 B an Brkel. Rec. frav. chin, 39 (1920) €36
3 4AO (\;\Jf)gl)tglrf)equl and J. Reitstdtter, Z. physik. Chear., 92 (1918) 750:
4 {3'. ggfiaﬁﬁiﬁ.,Tz‘fm(f]s?zf%f)}rsajg(;y Soe.. 36 {1940) 203.
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lgimself to the linear approximation, he com
er Waals attraction, retaining only an
particies make materia] contact.

By his method Derj i
determined by the qu;rjx?iltgyum found that the stabil
" x[ll.’boz

2T
t having to be larger than 10
the ing to be n 10, whereas we shall find a considerable i ‘
on—Van Der Waals constant and of the concemrate;:n gf"ellglc‘f:ocleyt(;r
The quantity W has to be calcyl
T a considerable number of cases

X1

p.letel'y neglected the London—Van
infinitely strong attraction when the

ity of a colloid js practically

fo ated by graphic integration
- In Figure 42 we give an

ordinate
of vV

ordinate

of £xpWV/kT)
SP

Fig. 42. Curves of potential energy of interaction

exp VIRT
$2

(V) and of the quantity

@ =10"%cm; » =106 em~1, 4 — 10712 ergs ;

Ly = 1,1 X 256 mV = 28,2 mV,

By graphic integration it is found that

0

V/kT
wr/:z/ 6(2 ds = 5.4 % 104
2

Hence thi is j
o JOSTS example is just under the threshold of stability where

The: potential has to be risen to 285 mV to reach W = 105
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example of the interaction curve and the curve of
exp (V/RT)/s® (cf. eq. 90) to match it. Integrating the second
curve, one soon becomes convinced that the most important
factor governing the value of W is the maximum of the V ()
curve, the detailed form of this curve being of little or no
importance. This is easily understond by remarking that V
enters into W as an exponential, in which a change of about
159% in V changes the integrand by a factor 10 (supposing
Viasx to be about 15 RT). This change of 150 in V is ac-
complished by a change of less than 7.5 % in ¢, as V isformed
by the difference between the London-Van Der Waals
attraction and the repulsion, which in the linear approximation
is proportional to .

If,-however, we use the non-approximated repulsion equation for higher potentials,
the influence of W, proves to be of less primary importance.

Broadly speaking it may be said that V... has to be of the
order of 15 kT if W is to exceed 107, and about 25 kT if W is
to exceed 10% thereby ensuring a stability sufficient for all
practical purposes.

§ 2. Aopplication to the stability of colloids ahd related pro-
blems.

On the basis of a sufficient number of calculations of W,
we constructed a series of curves giving the values of poten-
tial and concentration of 1 — 1 valent electrolyte (for a given
London-Van der Waals constant), for which the stabi-
lity-ratio W just reaches the value 105, or in other words just
sufficient to make a diluted sol passably stable. The figures
43 and 44 show for two values of A, (10—' and 2 - 1073,
x — ¢, curves separating stability- from instability-regions.

In the construction of these figures we have chosen the
repulsion curves as described on page 158, ie. we used the
complete Gouy-Chapman equations for large values of
xa, whereas, for small values of xa, the method of chapter X
using the linear approximation has been applied. For particles
with a radius of 1076 c¢m or larger we get very satisfactory
results, as in these cases the potential is small when xa is small,
so that the approximative method may be safely applied. For a
particle radius of 1077 cm. however, the situation is less fa-
vourable, as in this case, small values of xa are combined
with large values of the potential. So for this very small
particle radius the results are far from accurate. The dotted
curves in figures 43 and 44 are drawn in such a way that the
real curve would certainly be situated above the dotted one.
Consequently the dotted curves represent the stability of a =



170 STABILITY OF COLLOIDS

0 X
107" too favourably, which still enh

lowing below, ances our argument fol-

10
o2 En my) 2210y, 2. 10°

T

,f/ flal plates -

Fig. 43 4 i
ig. 43 and 44. Curves separating regions of stability from redions of

instabiliry the CUrves uniti i e abilit

! A nlflng points whe th iJi b
’ - € st

ratio W= JO’. M()I'lOVcllCnt EIQC[!O]V[’E» i

S I] . - a

" cide with those for ¢ = co
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value of the potential ¢, for their stability, and it is uncertain
whether these high values are ever attained. This low stability
of small particles is brought about by the low absolute value
of the repulsive potential energy. Aczording to the expressions
{56) and (80) the repulsive potential cnergy is proportional to
the radius of the particle, and, as explained above, sufficient
stability is not possible while the total potential energy remains
under a value of about 15 kT.

Even il we neglect the London—Van Der Waals attraction completely,
and take for the recpulsive potential encrgy the wvalue it has when § = 2, the
stability-ratio W' cannot excced

Vi . Ve

e 5 EaPR

W2 et / P s (93)
-

So for W o be 10°, Vi has to be cqual to™ 135 &7 =2 555 3 1078 crgs.
Now for very small #a, Vi = 0.307 J'(?-J,hz {c.f. Table X XII, linear approximation)
or

555 » 1078 —~ 176 x 1077 az’, (54)

which mcans that, for @ = 1077, the nccessary 2z is certainly larger than 5.6,
for @ = 1075, 2 > 1.77 and for @ =- 107", z > 0.56, etc.

LY

The low stability of small particles found here is well in
accord with the practice of colloid chemistry, as hydrophobic
sols of such small particle dimensions do not scem to exist, and
the preparation of amicronic sols (@ <7 10°% cm) is known to
be extremely intricate.

On the other hand, the curves for @ = 10 ' practically coin-
*, and the curves for a = 107% lie
very close to this limit. This is explained by tlie fact that, for
a particle radius larger than 107 ¢m, all enecrgies involved are
inuch larger than &7, so that it does not make much differcnce
whether the height of the maximum has to be w» 25 kT, v 15kT
or 0 BT.

At first sight it may sesm strange that the curves for flat
plates and for very large spherical particies do not coincide. One
should bear in mind, howszver, that if two spherical particles
are brought to the same distance where for flat plates V =
dV

qd = 0. only two points of the surfaces are at this favourable

* The curves for @ == O were obtained by determining the values of » and

iy for which the function (c[. Table XJV and eq. (86))
v G A

za w125 — )

has the maximum value, which is cqual to zcro.
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distance, all other point being at greater distances from each
other, where the total potential energy is negative. Consequent-
ly the potential energy for these spherical particles is on the
average still distinctly negative. Either the potential has to be
increased or the concentration diminished in order to reach
stability.

The curves for a = 1076 which may be considered as re-
presentative for the particle dimensions usually found in col-
loid chemistry, show a very satisfactory course. For low con-
centrations of electrolyte (2 o» 10° — 10%), the potential must
have at least a minimum value of about 50 millivolts* in order
to ensure reasonable stability, whereas for higher concentrations
of electrolyte (x > 10% ¢, must be larger. This increase of
Uy occurs the sooner, the higher the value of A, just as in
the case of flat plates. The very steep upward turn of the
curves indicates that in this region the stability is very sen-
sitive to small changes in the concentration of electrolyte.
This explains why it was possiblz to determine flocculation
values with fairly great accuracy, and why this quantity played
such a preponderant part in the experiments on stability.

Further inspection of the curves reveals that, although
stability generally increases with Increasing dimensions of the
particles, there are somé exceptions to this rule. These will
be explained on pages 177 and 178, in reference to Figure 49.

All the curves clearly have a positive slope, meaning that at
a constant potential stability always decreases with increasing
concentrations of electrolyte.

The experimental fact that scveral colloids lose their stability
on extremely prolonged dialysis should evidently not be ascribed
to the extreme expansion of the double layer by loss of elec-
trolyte, but to a decrease in the surface potential as a result
of the removal of potential determining ions. The lack of
stability of suspensions in w-=akly dissociating liquids may also
be explained by a lack of sufficient potential determining ions
to give the particles the nccessary value of .

The influence of the valency of the electrolyte is shown in
Fig. 45. The lines for 2—2 and 3—3 valent eclectrolyte do not
extend becyond potentials of 5 % 25.6 and 3.33 X 25.6 millivolts
respectively, because the highest available value of z is 10,

*

In experiments with the Agl-sol this critical potential was found to be of
the order of 100 millivolts: that is to say that, to ensure stability, the con-
centration of the potential determining ions has to about 107 times larger than
the concentration in the zero-point of charge. Cf. § 6, Chapter II. As regards the
order of magnitude, both wvalues ar in good accord. although the expcrimental
value is somewhat higher than expected from the theory. This again forms an
argument for the application of the Stern correction, which combines a high
value of the total potential drop with a lower value in the diffuse double layer.
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§ 2

. - at
4 being 25.6 z/v. Nevertheless it 18 clear from this flgtgzzctiluy
a turther increase of the poter}txal & 4\vou1d héx.\‘r'e pr(shabiliry
no influence on the concentration limit of stabuity (st

— 105
meant here in the sense that W = 10%).

¥, in millivolls
250

- ——
R A 10 7
conc in ™ liter

Fig. 45. Shbowing the influence of the valency of theW/ele;cuioolggte on the
- stability, when the stability 1s fairly large (W = .

) oo i ‘ .
Taking as an example a potential o'f 75 millivolts, Welis[i?tsthio
the electrolyte concentrations permissible as uppert
ensure a reasonable stability are,
for a 10—, 6.5, 0.2 and 0.02 millimols/liter
and for a = 1075 13 . 1 and 0.12 " "

otential of 100 millivolts these concentratlons

I

are

For a p .
for @ = 10— 20 , 0.45 and 0.05 millimols/liter
I and for @ = 1075, 26 . 1.3 and 0.15 . "

Although these concentrations are rather low, \E]et?};easglgwﬁ

2 coonsiderable spreading 1n the direction o1 T ing

Schulze and Hardy. In the approme:,mve_ tlsﬁgﬁ vorkne

| with the equations for small values of ¥, In L ich the 0

fluence of the valeney s expressed, ORly L8 Sres ‘should be

icxfmtrl?etm;rsop%frtilorll‘ lfr/,1?1,/g. deviating considcrablydfgl:réhye
proportions demanded by the rule of Schulze an

L
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As the ap imati ials i
Pproximation of small potentials is th i
expounded in Part 1) it may be expected that S e, o sl particles

(e 1077 ¢ . R

be interes?i]rz;g ﬂtlg ?oco};(u lfzoer_eHar_dy spll'eadmg 1s smaller chan normal. It shouid
- xperimental evidence in this di : E .

might A . 15 arrection, The eff

{hegse t?\fo e?!arged by c<hoosing a sol with a small surface potential, Howiviit

o mumj”equlremegfs (small particles and small surface potential) are more or,
= ally contradictory, so it is not s

should not vet have been fouud. trange that the effect alluded to here

lilNeveiftl']clcss, ‘the concentrati_o_ns mentioned above are the
J{Ij“tsl or a .falrly great stability, whereas the Schulzc-
Lf‘oﬁ rtIc]i); ;ule 15 usually determined by flocculation experiments.
A eason we constructc_d another set of curves, in which

) . le., for rather rapid flocculation (Figure 46). Com-
pariig with Figure 45, all stability limits bave sﬁifted tolhiﬁl{::lr

concentratious and lower potentials. |
. . entials. But the dgen
both figures is the same. general aspect of
'.’3 womliive s
i -1
250 S—

i = oo
flat plates
B s

150)—— .

100)--

oL

a 5
T2
10 ——

coe in ’"”"/;,‘fef

Fig. 46, The same as Fig. 45 for small stability (W = 1Q).

IOfXGgam, taking a potential of 100 millivolts and a radius of
we find the flocculation values at 47, 2.6, and 0.3 milli
mols/liter. These flocculation values do not <.ii'ffer ver " [j—
from those found in Part 1T and based on the modelyofmit‘llm
plates. For larger particles the flocculation valyes are shiftag
to sonmwha_t smaller concentrations. We returm fo the inflye CC
ot the pacticle radius further on in chis section e
For the construction of Figure 46 the valuc. W = 10 ;
chosen, because for still smaller values of the stability I;‘;flg

B _ (as was
or sols with very small particles
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W it is difficult to find the exact values of x and ¥, as the
maximum of the energy curve becomes flatter and shifts to
larger values of s, where calculations are less certain.

This is illustrated in Figure 47, where we have plotted the
stability ratic W for an arbitrary case against the concentration
of the electrolyte. Whereas in the middle part these curves are
very steep! (stability increases with a factor 2 for a change in
concentration of 15 or 209), the lower part of the curves is
much less steep, W being in that part not very sensitive to
the concentraticn. An analogous effect is shown in figure 48,
in which W is plotted against ,. From thesc figures it will be
clear that the choice of W = 10 is a reasonable one.?

;’;, toWalG for c =0
o W:fQ”sfor =0 a=10 sgm } |
105 N | Jaazerg 1 | .
Ya3x25676 8mv | |
e I N do b
o N
\ | -1 | I 1
fald Ae— ,_L... e _;,,,,,, } SO I
R
2 —
0 T i :_«T
! \ |
0 I TR T § N RGP R S V———) o K-
] | {
1 ——— _!’%- e — i,
) ' \
1w | ! | }
o1 02 ¢ 060871 2 4 6 81w 20 40 60 8010

conc m ™ POV ter

Fig. 47. Stability ratio W as a function of the concentration of electralyte
tor 1—1 and 2—2 valent electrolytes.

These curves, especially those of Figure 47, are another
remarkable confirmation of the facts of colloid chemistry. Tt
is well known that flocculation values can be detcrmined
with fairly great accuracy, once the stability criterien bhas been
chosen. Usually this critcrion is chosen in such a way that a
practically complete flocculation has to result in times varying
from a feow iminutes to 24 hours. This would correspond to

V' If we had chosen a larger valuc of @ the curves would have been siill
steeper, because the energy V' is proportional to the radius of the particle, and
enters into W exponentially. '

2 It ruay scem strange at frst sight that W can be smaller than I, as is showu
tn the figurcs. ‘I'his means. however, that the floceelation is more rapid than when
no forees act between the particies. W 2 1 mcons that the stability is diminished
by attractive forces, viz. the london ~Van der Waals forces, which act
practically unhampered by the repulsion for farge concentrations of eiccirolyte or
for small surface potentials {Tig. 47 resp. fFig. 18).
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a value of W somewhere between 5 and 1000, where W
changes very rapidly with the concentration. To cite only
one example we mention the coagulation of silveriodide sol,
investigated by Kruyt and Troelstra!, where W is found
to change from about 60 to about 7 when the concentration
of Ba(NO,), is increased from 2.0 to 2.5 millimols/liter. This
is about twice as stecp as the curve in Fig. 47, but the radius
of the silveriodide particles was also 2 or 3 times as large as
the case for which Fig. 47 is constructed. The concordance
may be called good.

Y
10
w ] \
| =10 " _ | i
10— Am2xl0 oot ]
k=5x10% | E
10° |— { ¢ = 23 2 MillimoYfy e ‘
1-1 electrolyte ‘
107 |— K=7.5X706A _ ! -
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Fig. 48. Stability ratio W as a function of the surface potential.

On the other hand it is very difficult to establish the limit
of really rapid coagulation (W = 1 or even < 1), and this
may now be explained by the flatness of the W — x curves
for small values of W.

The influence of the particle radius on stability is a rather
complex one. Incidentally this problem has alrecady becn dealt
with above, for instance where we discussed the instability
ot sols with small patticles. It is interesting to consider it herc
in some other respects. The conclusions arrived at will be
partially the same as those found more qualitatively on the

! H. R. Kruyt and S. A. Troelstra. Kolloidchem. Beihefte, 54 (1943) 225.

§ 2
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£ w more'
basis of the model of the flat plates. bughtgiil f;i}rotjdes,
ig sly from the present theory for spheric R
llbgia?ouygh as a rule we find increasing §tab1{1ty wive neres
sing dimensions, there are exceptions to ‘;\1;;5 rutiea;artides L
;11e11tloned in connexiof with Fl,g', 44. eg R b
npared to the dimensions of the_ oubl Jy_ , stade
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lrt'ltznt?o\:élg before, the repulsion 1n these casez rrelac{}eznmder
iy (ffaﬂg‘e 0(E thge ?/f)dj)f ]glrclc)l t&n stt}']miiﬁt?r nis %ractically de-
W aals force (range , B

termined by the height of the repulsion curve only. Now the
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Fig. 49. Stability ratio W as a function of the particle radius.
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Monovalent electroiyte.

i 1 c.t.
repulsion is proportional to the radius of the particles (

i : radius.
equations 56 and 80), and stabxhty11rtlcnz,sas(:?nzﬁrfththtisemaease
(When the concentration of electrolyte ) ) ghbourhood

connugs P KO e it particles. Bt 18 Chne seabilty with

the flocculation limit we ma : ey
?&fcreasing radius, because then the. Lortladn(t) r};art D
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stable under the same conditions under which smaller particles
are perfectly stable .

Now this dependence of the stability on particle dimensions
may be very important for the course of the flocculation process.
Suppose we start with particles somewhat smaller than 1078,
potential and concentration being those mentioned in Figure 49,
then we have a slowly coagulating sol. But when the particle
dimensions are douhled by coagulation, stability is increased
by a factor 15, thereby considerably slowing down the coagul-
ation process, which mayv eventually be completely stopped.
This slowing down is often found during coagulation experi-
ments %3 and may accordingly be explained by the increase
in the average particle dimeusions. It should be pointed out,
of course, that this does not give a quantitative picture of the
retarded coagulation, because even when we start with a
monodispersed sol the coagulation process makes it polydis-
persed, and, moreover, the complexes formed differ from massive
spherical particles of the same weight. Nevertheless it will be
felt that the explanation given here of the retarded flocculation
is essentially right. )

Another application of the curves of energy of interaction
may be found in the theory of the electrodeposition of fine
suspensions mentioned in the introduction on page 16. In the
theory of electrodeposition given by [fHamaker and Verwey?
it is assumed that the electric field, transporting the particles
by electrophoresis to the object to be coated, is of sufficient
strength to pull the particles together against the repulsion
caused by the potential barrier between then.

To give a provisional quantitative test of this theory, we con-
sider the case of two spherical particles with a radius of 1 1,
a surface potential of 102, mV (z = 4), a dielectric constant
of 26 (acetone), an amount of monovalent clectrelyte resulting
m a value of x of 10% and a London-Van Der Waals
constant of 2.107'%2, The relevant part of the interaction
cutrve” is given in Fig. 50.

I' It seems surprising that this cfect, which is to be expected on general

grounds, is so very eritical to the concenteation, as a change (ron 26.6 to 25.3
willimots/liter causcs the cffcet to disappear. In all probability, therefore, an ex-
perimental confirmation will he very difficult to obtain.

* H. R Kruyt and A E. Van Arkcl, Ree frav. chin., 39 (1920) 656:

40 (1921) 169,

¥ G H. Jonker, (On the ApBrsol). Thevis, Utrecht (1943).

1 H.C.Hamaker and E.]. W. Verwecy, fraus. Faraday Soc., 36 {1940) 180.
As the repulsive cnergy is proporticnal to + (of. note | or page 140), and

Table XIV heing calenlated for a value of ¢ . 7855, we have to divide the
values of 7 by 78.55/26.

5
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The {orce exerted on the partiqles by t‘he electric field may
be estimated by the clectrophoresis eguation
g = Sk (95)
47 4
1, E the field strength and

where 4, is the surface pgtentla
» the viscosity of the liguid.
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Fig. 50. A potential curve typical for a SuSpensmnz uie 100, ¢ = 26

sition, {a = 1074 Ly, = 100 mV, ‘
i'lepi 2 10"3§ with three Dstraight lines illustrating the fotrhc:
exerted. on the particles for three different field ;frf:nngt o
A feld strength of 1250 V/iem wou%cl be just sufficie
pull the particles past the energy barrier.

o n
In this equation, account is taken of‘tl'ie for;: ti.\éer;[z;lcrfic
the particle by the motion of the double ?ye,r 10n O
field., and we can calculate the resultan; ir::e on B e
(forée exerted directly on the charge © 1t e )pb ml::u]ating
force exerted by the motion of the d_oublc ayer\ z 7 s ann
the force necessary to give the; partlcle_ the vr;ocl 5{)6 quua] »
by Stokes’s law 6wnav. This force is found to

1/(15'4"05‘1 1

g ield
or. in the case considered abovc._4.4_.10 v jdyncist(forornh:rlgcr
stéength of 1 Vjem. 1f this force Is cither Lq}Llla qtc;zpest e
than, the repulsive force corrcspc_)ndmg to the hticleg D
of the repulsion curve. it is pQSSLbl(_E for tvg% pzrlz e e o
forced together. The straight lines in Fig. > tﬁe e
three different field strendths, one too sina t e e
great enough (1250 V/jem), and the third greater
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sary to allow passing of the barrier and formation of a strongly
coherent precipitate.

In Hamaker's experiments the field strengths applied are
of the order of 100 V/cm.

On page 17 we described how, as an intermediate stage before
the final deposition of the particles, a concentrated suspension
is supposed to be formed in the immediate neighbourhood ot
the electrode. This point of view accords very well with the
results of our theory. The applied field strength (e.g., 100 V/cm)
is generally too low to pull the particles past the potential
barrier, but great enough to bring about the high concentration
around the electrode. Now in this concentrated suspension the
electric resistance will be much greater than in the bulk of the
liquid, as is proved by Hamaker’s ! experiments. Consequently,
in this layer the potential gradient will become greater. As soon
as, through this mechanism, the critical field strength (in the
example of Fig. 50 1250 V/cm) is surpassed, the final deposition
will take place. The layer formed by clectrodeposition may be
expected to be very closely packed, because (1) the deposit is
formed out of the concentrated suspension around the electrode
and (2) contacts between the particles are only possible in the
direction of the lines of force, whercas, in a direction parallel
to the surface of the electrode, the double layers retain their
activity, thereby allowing the particles to reach the most fa-
vourable packing. Hence, even in quantitative respects the
accord between theory and experiments is satisfactory.

We should not forget, however, that we made a rather daring
approximation in copsidering only the interaction of two par-
ticles in those concentrated suspensions. Eq. 95, too, will lose
its quantitative validity when the concentration of particles
becomes very high.

We did not intend to go very deeply into this subject, but
we wished to show how, here too, theory is confirmed by expe-

r_ime.nt, and that here, again, there is scope for a further quan-
titative test of the theory.

§ 3. Introduction cf the Stern correction

We have hitherto reasoned as if the potential ¢ were con-
stant during all changes in the electrolyte concentration. This
would be right if we could describe the double Jayer completely
by the theoty of Gouy-Chapman. But as we have scen
(§ 5 of Chapter VII). espccially for larger concentrations some
correction has to be made in respect of the dimensions and the
specific adsorption of the ions, and a possible form of this cor-

U H. C. Hamaker, Trans. Faraday Soc., 36 {1940) 279.
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tern.
rection (for a flat double layer) has be_c—:nliprto_pischl EgeSStern
Tt has been expounded there that the applica 1?fective" Stern
correction results in a decrease o_f thg ,1,3 Fec e reoms
sotential with increasing concentration O eecl ythé It soems
[;o tollow from electrophoresis measurements t1lat e e
tential decreases faster by the addition of"p.o yvaIl ectro-
hrter P() with monovalent electrolytes. This woulc rgs?
I"LYt::illt gigaterrspreading of the flocculation values for lifferent
Va}ltllr?"(tit letLeeCtSrcél-gtrer?—correction is necessary for the unc{crstan?mg
of t};e differences betwcen clectrolytes of .om;,) \rr? <13£1cy yp
(lyotropic influence) was already cxplained in ¥a ‘

§ 4. Repeptization phenomena

] e.g..
It is well known that many flocculated COHOldalblsyszz?;S a(ga%n
different sulpbides) may be made to fo§m -St?7t§ sols agaly
simply by washing out the flocculating electroly I vte
A' ici the concentration O \
is pot sufficient to decreasc [ ot
just below the flocculation value, but 1t must be‘diirt(; wed to
a very low value by carefully washing out the psecipits
eptization occurs. ‘ € is
reEfl?e repcptization cannot be cxplained by thc‘z nthcor?ic?; -
resented here, for in a floccu\nrc«:i system 't'h—lm]r ! ﬁegq_
Eonsidered to be in direct contact with an infinitely atrg ont{ct
tive value of the potential engrgy, Vix}nceI‘Eormdel:g q(;cs[to
-Van derx aals gy 8
(s = 2) the London Ty e of
i t for a complete D _
oo, It is clear, therefore, tha i
colloidal behaviour yet another sort of forces haT to b:ic o
deted, viz. therepulsive force appearing when the electro oo
of t\izo atoms interpenetrate each other -(Bordn—r-epr\rzﬁnimmﬁ
By introducing this sort of forces. the _mfmxt{gl}f eeap1ue L
of energy is replaced by a minimum with a lmt}f Vflocéulating
by creating the possibility tl;la’c‘d byblrelmovrlrgsgeri D oome
i ouble laye
clectrolyte, the repulsion b_y the d y become
great enough to cause this minimum %orl?pletdy to djsapp
‘ jzati ay tollow. )
so that spontaneous tepeptization m _ oin
gOIr \villpbe clear from the theory dcvc!opcd in rlhe fzn;\g thi
chapters why there is such a great difference &cther e
F]otccula‘t'ing and thé repeptization conccntrnnonls_. _to;l; ‘floccu-
gure 51.3n which the potential curves for the umT[ o
Jation and the limit of repeptization }ﬂrehS]‘(C}tCth(Lthe]r(;'l\'imum
ati t § i ainly by the height 0 aximu
lation valuc 1s determined matnly > hel r
.Z‘tt above the axis, whereas for repeptization the vertical di

- ] i i Jsion
t H. C. Hamaker, Rec. trav. chim., 56 (1937) 3, introduced this repulst
explicitly.
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tance between the minimum B and the maximum A has to be

smaller than a few times 27. The state R is only reached for

a wvery much higher repulsion than the state F. So the eicctrolyte

must be washed out to a very large extent.

The fact that the degree of repeptization often depends very
much on the previous history of the system, especially on the
time the system has been in the flocculated state, is easily ex-

plained by secondary changes such as recrystallization of the
precipitate.

Born-
potantial|repvlsion
energy

distance batwgen
ra the particlas

Fig. 51. Mllustrating the large difference in concentration of electrolyte
for flacculation (curve F) and repeptization {curve R).

Anocther factor, probably important for the understanding of
repeptization, is the roughness of the surface of the particles.
Real colloidal particles never have absolutely flat surfaces;
neither are they ever exactly sphericai. So, when the particles
are in contact, they touch only in a few protruding points and
only at these points does the potential energy reach the large
negative values mentioned above. For repeptization it is neces-
sary only to overcome the attraction at these points, which will

evidently be less difficult than tearing loose perfectly regular
particles.

§ 5. The minimum in the potential curves for great distances

Ag in Part II, we have hitherto neglected the influence of
the secondary minimuin in the potential curves situated at com-
paratively large values of s, where the London-Van der
Waals force again surpasses the repulsion. As already pointed
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out in Part II, this secondary minimum, if deep ci.nqughl, rr;ii
lead to a coagulation, distingui.shcd from the c_oalgu :};.[l)(l)n 1Ir(13 the
deep primary minioum by hcing more reversible. ' le' ‘ \trion
<ible flocculation may simply be described by the appiica o
of Boltzman n’s theorem, Iecause the sccondarl); *(l;{nln'l?ﬁu l£
contrary to the deep !T_lilfinl;um_ at 5§ = 2. can be rcached withot
i otential barer. ' _
RurTT)Zuﬁgr?lgb-e? c[;f particles found in ‘the'immedlate neighbour-
hood of a certain specified particle is given by

[ ng4r R*dR e” V¥l = [ nga® .4 ste Vi ds {96)
n, being the number of par_tides per unit volulme o{ Itlltieﬂs:s;
pension. The exact limits of integration are not mr;]por ant, nee
on account of the exponential in the integrand the major cthe
tribution to the integral is found for values of s, very near
ini of V. .
mlg:f:'nztlm::ondition of stability we may demani thai}::) the 1r11te§tr;§
(96) be smaller than 1/10. The integral can be evalu
8?5%?11}11)@;}1 found that for small particles (a < 10°° c{nl)l tth;z
pew condition of stability (9_6) does not m.terfere_ wé;e th
stability conditions found earlier. 1f the maxmilum lmt’ Ishe
tential curve is high enough to prevent ’Eoccu]a;osn), S
secondary minimum is 50 shallow that the mtegrzzr ("1 ) ?hi
has a small value and consequently it does not diminis
;tability of the sol. R
bt%bc;]rlt{aroger particles, however, flocculation in ;helsecorll-dfgg
minimum may appear at a low concentration o electro ?1 :
when the maximum is still hig_h enough to prevent ftloc
‘on in the deep, primary minimum. ' )
Cuﬁn%rtg:re 52, forpefample. we give the potential curxélea 1;Eotr
a = 107%, A = 5 x 10715 from which it can be compute ht alc,i
on account of the secondary minimum, the stability hm1t's ou f
lie at about x = 10% ie. at an electrolyte concentration c]Jm
about 1 millimol/liter. In tbat case the depth of the minimu
i T’ . -
]SI%bo?t fskfar as experim-enta_l evidence goes, thelc hmltth:tf
stability of coarse suspensions 1S not very dLEferenE ro.rT hat
of fine sols i.e. about 20—100 millimo!l of a monovalent € e§ ‘
lyte and not a much lower wvalue as would be sfuggejfsjftet v
the above considerations. It is true that the retardation effec sorri
the London force (c.f p. 104) m_ake the secondar_\lr mlném&;e
less pronounced, hut it will not disappear co.mplet.? yhin e
offect of retardation will be only to shift the.h.mxt 0 (’lc e rac :
of the particles for which the secondary minimum ‘cetermine
the stability to higher values.
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stilt)ﬂl'i’ tlllAfreffore, necessary to consider other aspects of the

conceln z;ati loc;ulailon Vialue is generally determined as the
on of electrolyte in which conglomerati

: | erations of

pé;?c{es bare _formed which cannot be divided into single

pa ic ies y simple shaking of the sediment. Now by shaking

much larger forces are exerted on large particles than on small

g(r)llc;:lse. MorczOVf—:r the influence of gravity on larger particles be-
4Ctios clgmpmable to and flnally surpasses the forces of inter-
action. As the secondary minimum is in any case rather shallow
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Fig. 52. Secondary minima i
@ = 10*}’, n)ﬁinf% o 1t(})1_e)3?nergy curves for coarse particles

the , i i
the Zgngtr}zit:;c:ft:g two ‘pa{ndes will be easily broken and it is
not 5o st bgen bat this influence of' the secondary minimum
has hever beer o Eeryed. Or rather it has not been observed
p:“‘ﬁdcg. (Aq s(}), of suspensions with more or less sphertical
influenclé ojf th(gup?ésteltilgicﬂpa;'ng[cs arc clonhgntcd whereby the
i e ' al minimum is en anced against the
“;L\C](:znc‘;ify c?lfm;]:irliwty and' strcaming of the liquid (shaking) the
o um manilesis itsell (sce page 124, 125).
nother experiment where the secondary minimum plays
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probably a role is the determination of adherence of quartz
particles to 2 plane quartz Or glass wall®.

Von Buzagh let a dilute suspension settle on a glass
plate. After reversing the glass plate under the liguid he ab-
corved that a smaller or larger part of the particles fell from
the glass plate but another part adhered to it. The percentage
of adhering particles was strongly increased by increasing the
concentration of electrolyte.

That this adherence may be accounted for by the szcondary
minimum may be concluded from the fact that the particles
while adhering to the glass wall still show a lateral Brownian
motion and that the adherence is most pronounced for particles

with a diameter of about 3 u. the smaller ones falling down

because the potential minimum is not deep >nough compared
to BT, the larger ones because they are too heavy.
More quantitative conclusions as to the importance of this

. secondary minimum can only be obtained on the basis of a more

detailed knowledge of the attractive potential function for
larger particle distances. The calculation of this potential func-
tion is now made possible by the Casimir-Polder theory
(cf. p. 105) for larse distance Van Der Waals-London
attractive forces including retardation. The sonsiderations in
Chapter VII, § 4, and the remarks given above, may suffice to
show that the réle of the secondary minimum is an essential
feature in our theory of the interaction of colloid particles and
deserves a more detailed examination. Further theoretical and

experimental work on this subject is in progress.

{ A. von Buzagh, Kolloid-Z., 47 (1929) 370; 51 (1930) 105.



APPENDIX

XU THEORETICAL WORK ON THE STABILITY OF
LYOPHOBIC COLLOIDS BY PREVIOUS AUTHORS

& | Imtro:fuction

The first attempts at a theoretical treatment of the problem
of lyophebic colloid stability were those by Gyemant!, O. K.
Ricc?and W.C. M. Lewis? It is remarkable that this worl,
carried out almost twenty ycars ago by three authors. ob-
viously independently of each other, shows a common funda-
mental mistale. The rather complicated and sometimes not quite
consistent calculations of these authars are all based on the
same principle. All of them thought that they were computing
the stability of a lyophobic colloid with respect to coagulation.

Actually they calculated the stability with

respect  to
“coarsening”

{increase of the particle size), i.e. they tried to
determine the degrec of dispersion asa function of the properties
of the system. Proof that such calculations must fail is that the
condition of equilibritvm sought does not cxist: colloid chemical
experience has shown long before (sce. for instance, the intro-
duction of the well known hook "Colloids™, by FI. R. Kruyt)
that a lyophobic colloid is never stable in the thermodynamic
sense, and that coarsening must always occur (though often
extremely slowly). This means that therc is no defipite degree
of dispersion which is more stable than otliers. The degree of
dispersion depends solely on the method of preparation and the
further treatment. The authors menconed tried to show that
under certain conditions the free energy of the double laver is
stifficient to outweigh the free surfacc energy of the uncharged
interface (interfacial tension). They failed to recognize that
acrually the latter is always predominant, so that the mosc stable
state is that with the smallest total interfacial surface.

It is nevertheless intercsting to observe that these authors
were partially on the right track in that they considered the
free energy of the electric double layer as the “stabilizing”
factor (more than the electric repulsion of the particle charges).

The same applies to the paper by March?: this author con-

' A, Gyemant, Grundzige der Kolloidphysik. Braunschweig. Sammlung
Viewes (1925): Z. Physik, 36 (1926) 457
O. K. Rice, J. Phys. Chem., 30 (1926) 189, 1660.
W. C. M. Lewis, Traus. Faraday Sec,, 28 (1932) 597.
A. March, Koliid-Z., 45 (1928) 97.
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sidered the free energy of the entire colloid SYSte?,tlfenddocuble
to the correct conclusion th}ilt the free e:&ratriy{eso i

the separate p -
Jayer and the entropy of oS A o e
teract the tendency :
much too small to coun rease The
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authors. The paper by Langmulf approac ”If the Do el
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separately.

& 2. Force methods

. . . e
It will be convenient first to consider tho_se aut_hor; &Eeﬂio
mann, Low Beer and ZOc:huerE, D-er;;tl_gnglglct;ee}l (the
: mui camined the force actin :
Langmuir?® who cxamine _ acti he
pacrticles. Their attempts to arrive at expressions forqgil;ﬁiqlly
pulsive force hetween two (flat) doublle layers arepi.i.nts, CFor
differing only on minot ts.
correct and led to results di i ot e e
i i i t methods to calculate e
a discussion of the differen _ f_
we refer the reader to Chapter V. § 3, where this part ©

the work of Derjaguin and Langmuiris fairly extensiviely

i P.Bergmann. P. Léw-Beer and H. Zocher Z. physik. Chen., A 181

%93D8)c 3?::;guin, Trans. Faraday Sec., 36 (1940) 203.

I, Langmuir, f. chem. phys., 6 (1938) 893.

]
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discussed. The method applied by Bergmann cs. is quite
comparable to that of Derjaguin.

As Langmuir’s paper will be considered separately and
the paper by Bergmann cs. runs on somewhat different
lines (explanation of the formation of “Schiller layers” in sols
of blade-shaped particles), we shall here summarize only
briefly the way in which the force equation is involved im
Derjaguin’s theory of stability. A drawback of this work
is that the double layer repulsion is only considered in the
linear approximation (ve ¢, <€ RT), excluding all possibility
of understanding some of the essential features of stability,
such as the Schulze-Hardy rule in the coagulation by
electrolytes. Moreover, instead of wusing the concept of the
relatively far-reaching London forces, Derjaguin intro-
duces the attraction by applying the substitute of extremely
steeply decaying attractive forces which are active only when
the particles are in immediate contact. It has been shown in
our work that a farther reaching attraction is an equally im-
portant condition for quantitative agreement between theory
and experiment. Hence Derjaguin’s considerations, though
essentially correct, cannot give a satisfactory explanation of
the phenomena observed, such as the wvalues of flocculating
concentrations and of the ecssential electric surface potentials
as found experimentally.

§ 3. Energy methods

The most detailed theoretical considerations (especially the
work of Levine and Dubel) followed a different line of
thought. They were based on the direct evaluation of the po-

" tential energy. Evidently this mode of treatment entailed serious
difficulties.

Although treating of different cases, the paper by Corkill
and Rosenhead? and the papers by Levine and Levine
and Dube, on closer examination, appear to show a strong
resemblance. Corkill and Rosenhead consider the double
layer interaction for two flat plates, starting from the complete
differential equation based on the Gouy-Chapman picture
of the double layer. Levine and Dube chicfly consider the
case of two spherical particles. using the lincar approximation
of Debye and Hickel. C. and R. find an attraction both for
the case that the surface charge and the surface. potential are
kept constant in varying the plate distance; in order to obtain a

1 S. Levine and G. P. Dube, Trans. Faraday Soc., 36 (1940) 215, and

elsewhere.
2 A.]. Corkill and L. Rosenhead, Proc. Roy. Soc., A 172 (1939)410.
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+ § Levine and G. P. Dube. Trans. IFaraday Soc., 36 (1940) 215, and

elsewhere.
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(t)c; ttlhe ions carrying_ the diffuse charge, and (2) chemical effects
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which can be transformed into

E=p, [f] st 00 a5 (97
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quite superfluous and the correspending contriburion should
be omitted.

The difficulties of these authors were probably caused by
the circumstance that, for a pure dielectricum, the field energy
has the properties of a free energy: it includes the entropy
terms associated with the thermal motion of the water mole-
cules, wvibrations of ions and watermmolecules with respect to
cach other, ctc., because we are working with the model of a
continuum where all these effects are accounted lor in the
diclectric constant. With respect to the frec mobile ioalc
charges, however, the field encrgy has the properties of an in-
ternal energy. as it gives us the work to be done for fixed
positions of the ions. In the charging process considered in
Chapter 11I we would have found E instcad of F, (as mav be
verified) if we had included the work of charging the diffusc
space charge. We saw there. however, that this energy quantity
is not available as a work qoantity, but inanifests itself as an
anmount of hear flowing out of che systeo. B oand F, are always
positive (work must be supplicd in building up the charges):
we saw above that the former cousists of two parts which must
obvicusly have opposite signs (because of the opposite charges
in both layers). Accordingly, I 1s always smaller than F.. the
difference corresponding to the amount of heat lost in the
isothermal charging process considered in Chapter III.

Foliowing the example of Derjaguin and L.and D. in their discussion referred
to above, some of the principal points may be illustrated quantitatively with the
ald of the simple [ormulae valid for the approximation for small potentials in the
case of two parallel planes. For the free energy we have, in this case,

a
2a 02

e = / ;bﬂ'du“ = Iy = T, . coth xd (98}

7

¢
and it will be seen that this quantity increases with decrcasing value of ¢/, cor-
responding to a réepulsion between the two plates (for the case that » is kept
constant during variations of the plate distance).
The ficld energy is most easily found by converting eq. (97), according to well
known methods in the theory of eleclricity (simplifying simultaneously for the case

of two flat plates), inta

d .
I3 2 d'ﬁb 2
E = + / (HT) d (99)
0
With
dy oy, S 2 ) dne sioh #id —x)
I "0 cosh xd T T 2 sinh xd
this leads directly to the result:
vt Py
£~ " (coth wd e - .,-——) {100)
Py sinh? xd
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This quantity has the property of decreasing with decreasing plate distance, which
would correspond to an affraction between the plates!

The entirely different behaviour of the two quantities is also shown by the
graphic representation (Fig. 53, (F¢), and £, in which the index o denotes’that
both quantities refer to the case where the charge is kept constant).

nd

KEu
a8

Fig. 53. Energies of interaction of two flat double layers as a function
of the distance.

E = total energy
F = free energy
Fe=

electric part of the free energy.
The indices

¢ and i refer to the cases that the charge resp.
the potential

of the plates is kept constant.

That this difference between F. and £ is actually accounted for by the thermal

motion of the ions may be shown by deriving E from Fe with the aid of the
Gibbs—Helmholtz equation

dF.
17 (101)

in which, consequently upon what we stated above, the dielectric constant &
(although a function of 7) must be treated in the differentiation of Fe as a
constant (£ is already free energy with respect to the medium). Hence, in Fe
only the quantity x, governing the diffuseness of the space charge due to the
thermal motion of the ions, must be treated as a function of 7, and that only
insofar as it contains T explicitly. Accordingly we may write

8~2e2v2n\l/, b

E=F.--T
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in which & is a constant. Inserting (98) into (101) we find:

bd
02 coth »d U0 (P com _v__,)}
g2 {50_9(.‘ T3 (T coth 5]

2
£

\ xd
d fa(coth »d >H*";f>}
. VEYA {coth * T - ( 27‘[/2 + 2T1/2 . sinh? »d

2 xd
= _;T {coth %@ — Goh? xd |’

j.e., we a am W jvergent re Yy ctually
g i n the result (l O)‘ sho ing that the di g

i.e., fi d ° (4] t sults ma a

be linked togethel in tlllS way.
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finaly ebvenha rzzgcl)l:r)lleotfe tiuep;r)c:gzslsion, as work must be suptpuli;i
e e away this double layer charge, apd it explains a o
o aWayh CR. find an attraction in this case,has_ tery_
o tmll? ; vilith.aA positive quantity reduced by t eklu;1 er
are Woli 1,nge en more oL 1ess immaterial th_at they sl'flouh ave
e ht 1Satldgljitional mistake of using E ipstead O d'tffeerence
lzas?)gnfiisg electric part of the free energy, as the di
T

1t ing - positive.
is only a quantitative one, both guantities being - pos

These state nents may also be illustr ated quau itative w h ald [s) he si ple
€ 1Ny lth tne f t sim
B 0
equation (o) a a n the linear app oX » y
q S T ﬂ ¢ p] es 1 h [ matior e must now lllir()dllce
as a Constant detefﬂnnulg the ploperttes Of the System Hence the equatmu for f
1S obtamed flOIIl (IOD) bS the S\letltUthn

= %_8.‘1’)_0 tanh »d
45

with the result: 02 xd (102)
F = %_Eijlég (tanh # — oo »d

lndepe“dentl OE GJlletth we deri ed 100 direc ly from 99) Of l“d“ ectl, via

v ( ) 1 tly ( .
the G bbS ’_y I[Chlll OltZ equgt o f om e [ICC cnergy (98) EXPIESSQC‘ into
L \ n tl)

he potential Ly we find, for the free clectric energy.
\ the p Yo ( . s (‘03)
Fe = *EY0  tanh =0
¢ 8

13
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which differs, however, from the quantity (F¢)s considered above in that it is
only part of the total free energy. and cannot be considered separately, as it is
impossible to change the free energy for constant surface potential (L, without
changing the chemical free energy *. The total free energy, £, includes the chemical
free cnergy term — ol (see Chapter III) and therefore reads:

N xr\\boz
F=—uy, + (F:)le - tanh =d (104
The wvarious guantities discussed here are found in Fig. 53, in which the index
.l indicates that we arc now considering their propertics for Py independent of
the plate distance. Curve £. eq. (102), would give the polential curve due to the
interaction if we should follow the treatment of CR. and L.D.: this curve cor-
responds to an attraction. The dotted curve, (FJ.\P is the corresponding free
electric energy according to eq. (103). The total potential energy curve found by

adding the chemical free epergy {eq. (104}) is represented by F, again showing a
repulsion,

We have rather extensively discussed the principal points ex-
plaining the deviating results of C.R. and L.ID., but the (at
first sight) rather impressive work, of Levine especially,
proves that a correct trcatment of these double layer problems
1s not so obvious.

One might finally ask why the use of field energy instead of
[rec encrgy should lead to an attraction instcad of a repulsion
hetween the plates. This may be understood by the lollowing
consideration, neglecting the re-arrangement of the charges in
the interaction (this neglection gives no qualitative deviations).
If we do not account for the entropy cffects in the inter-
penetration of the diffuse charge layers, the predominating
elfect is that the diffuse charge of onc plate enters intoc the
potential field of the other one; the corresponding electric
result would be an atrraction, because the charge and the po-
tential have opposite signs. In recality., however, also the en-
iropy cflfects must be taken into consideration, with the resule
that the change in free energy in the interpenetration of the
double layers 1s zero. o that case there remains to be con-
sidleved the effect of the cnrcoomstines that the surfacees o ge
ol one plate comes o the Lield of the orher. We have seen
that as a result of this interaction there will be cither an

increase in the surface potential or a decrease in the charge,
dependent on the supposition of cither constant charge or
constant potential. In the first case there is an incrcase in
elcctric energy; in the sccond mainly an incrcase in chemical
energy, both leading to a repulsion.

»

For the same reason_it is impossible to find £ from eq. (103}, because
variation of /" by varying 7 for constant by would always be accompanied by

a transport of ions from one phase to another, so that it is impossible to consider
purely electric effects in this way.
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4 that of two
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z han the surface charge ! pales, B
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. e. Consequently thc D e €C : Y arges
pﬁten“alt Ofth;h:neizzncclutweighs the negative contributicn of the di
charges to

i Ision.
and the attraction will thercfore change into a repu

§ 4. Langmuir’s method
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motion. Tf this is the case free energy will be gained if the
system separates into two layers, a concentrated sol (coacervate
or coagel) and a liquid almost devoid of colloid matter. In
order to prove this, L. makes use of the Debye-Hirc kel
theory for the 0sSmotic pressure of strong electrolytes. nore
especially of the equation:
elx
p = kTE”i_E;E”J”EQn (105)
and applies this relation to the colloid solution as a whole, Le.
to all charge-bearing particles including the colloid-ions. In
this equation, the first term represents the osmotic pressure
of all dispersed particles if they were uncharged (ideal gas
term), the second term gives the decrease. in osmotic pressure
due to the fact that each ion or sof particle is captured by its
(onic atmosphere. Thus, L. tries to prove that, under certain
conditions, the second term outweighs the first and changes
the properties of the system.
we consider a pyre sol, ie., a colioid containing only little
electrolyte in the sol medium, the system is built up of colloid-
ions and an equivalent amount of counter-ions only. and it
Is treated as a simple “electrolyte” in which one of the ionic
species carries g very high charge (v > o). Introducing two
constants C; and C, eq. (105) may be written in the form
(after substitution of %)

p=Cn(L+ 2o} Cantetay 4t C -~ Cyn'h, Y

’UI Uy ;

(in which n = MY = muy = the equivalent concentration),
This relation shows that the Osmotic pressure according to
eq. (105), initially Increasing with increasing sol concentration.
wil] finally reach a4 maximum and decrease again beyond it
he maximum 1s teached for 4 concentration which is the
smaller, the higher the charge of the particles. In the concen-
tration regjon considered, therefore, L. stif] assumes that the
charge on the particles is constant. For very large concen-
trations, however, the charge will havye to diminish again in
order to maintain the value of the surface potential on the
particles, This problem is treated in mnore detaj] in the last
section of L.’g paper for the mode] of two flat plates, and he
there gives the expression  for the repulsive force already
mentioned in Chapter V of the present work. L. assumes that

that corresponding to tle maximum, and the result will he
that, in the second term, v is diminished; the influence of
this term is decrcased, and OSmotic pressure will accordingly

| 7
§ 4 LANGMUIR'S METHOD 19
i Te as a
INCrease OnNce  more. Conseq_ueqtly, OSmOfth p;gssrzsented 2
ll' 1ct(ion of n will show qualitatively the orr\r;v glsjsotherm
fTLi“ 54. This very much resembles a-Van .Dl‘er ra;te Jsotherm
fgl ation of state), and the system will sepa
equ , |
: . (105) 1s
la);ﬁ?rsother electrolytes are addqd to the s_;(;stc;r?ib]iqmgy h)old,
lightly more complicated; but 51.m11a_r consi er tions may bold,
Shgwir{g that the salt concentration influences th
S - - :
centration at which p reaches a maximum Lin both  the
L. believes that, in this way, he can eprtamed e
h ﬁomena observed in pure sols and those o
phe

i i agulation
addition of electrolytes (coacervation of proteins, coag
of lyophobic sols).
P

4 i ion (#
Fig. 54. Osmotic pressure {#) as a [unction of the solconcgntrat (n)
R according to Langmuir's theory.

is - i her in-
Although it may be admitted that this Fhegryf;;nsrtatit
genious, very serious objections must be raised ag

2 i gmuir’s

We observe that the important n’2 tiermarlnrgu]'_;l? rlot.1c s

theory originates from the fact that _t1leS) jount. o7 herey

necessary to liberate all ions (or partlclfe1 o e entration)
sphere, besides being proportional to n (the .

v e b1 lndUnt
i £ e tnis a
IS moreover proportlonal .tO. ey n oo, bectaus
of energy increases if the ionic sph-er-e concentrates around each
(=4

ion (particle).

i i ‘in the use
It is important to stress here the danger mg?h;(}al(i U]%)-ebye—
[ the linear approximation characteristic e
H kel theory. Indeed, when applied to the c:o1c deectio”
fltzctqffs theory 'would show that the th1ckn}esso(c)>t 'Cc)fe JJouble
]ﬁy-e'r is Inversely proportional to the sqlilnr\;eicr OF the so
o, Th?:i S éavl;r( :Ezogéctgolyte concentration
this thickness is determine
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in the sol medium, far from any particle, and is, theréfore,
independent of the sol concentration (in dilute sols). This dif-
ference is caused by the different treatment. According to the
picture presented by the D.H. theory, the double layer sur-
rounding a sol particle would contain both other sol particles
and counter-ions. Hence at a point where the potential is &
it would contain a surplus fraction w,el&T of the latter, and
of the former a deficiency of w,el/RT. Both together would
determine the thickness of the double layer (or rather, be-
cause v, 3> v,, only the colloid ions: indeed » is proportional

to 1'n {v;, 4+ v,)). According to the picture of the double
layer theory. each colloid particle moves in the sol surrounded
by its sphere of counter-ions. For dilute sols, the latter picture,
definitely agrees better with reality. As pointed out before,
the use of the D.H. approximation for the ions in the fielld
of the double layer is already precarious. Hence we need not
he surprised if we obtain crroncous con¢lusions when we apply
this approximation to the colloid ions themselves, where the
charge, and therefore wveld /BT is still much larger. (For the
modest particle charge o, = 10, the use of the approximation
is equivalent to the fact that, for a point in the neighbourhood
of a particle, where for instance ¢ - 25 mV, onc does not set
the concentration of the colloid ions proportional to 71 ie.
practically zero, as in the double layer theory, but proportional
to — 99

The conclusion is that equation (11} is inadequate for cal-
culating the osmotic pressure of a sol. [t is more likely that
this pressure will, for a diluted sol. approach the valuep = FTn
(ol particle plus counter-ions one kinetic unit). Besides, there
are other objections to the use of equation (11), for example
the fact that the potential due to the ionic atmosphere at a
considered (colloid) ion under consideration is really proport-
ional to

34$£ (e = radius of particles). |
mstead of to 2, and therefore becomes independent of the sol
concentration for xa <€ 1 (soon reached for the colloid ion).
The above considerations are. however. sufficient to prove
that LLangmuir’s theory of the attraction force between
the particles is untenable.

To conclude these considerations we will mention one more
point raised by L. This author criticises Hamaker for using
cnergy  diagrams in the problem of the stability of colloids
without taking account of thermal moticn. As we have adopted
the same method, this criticism would apply equally to
our own worle. It may be said in reply that, in our theory,

LANGMUIR'S METHOD 199

§ 4

the thermal motion of the 10ns {by . tertn)
]1};12 certainly ‘been taken Into account by tal‘é}ng ;?ewd}fgﬁer
double layer as a starting point. The ques 1or1the b
the thermal motion of the particles can c?lusthO  stability
of a sol was already investlgate_d by Marc fﬁ\cient rived at
the conclusion that this factor is utter‘ly m}slu clen ;ntroduce¥d
add that the thermal energy of the particles has

into our theory by the application of Fuchs's theory of
slow coagulation (Chapter XII).

far the most important term)
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