Asymptotic solutions of differential equations: WKBJ

I - Solutions for equations with a leading small parameter

As was discussed before, equations that have a small parameter, and are such that lead to singular perturbations, can be treated with matched asymptotics. However, matched asymptotics fails when the solutions have a fast oscillatory nature. In these cases the appropriate tool to find asymptotic solutions is the Liouville Green method (also known as WKBJ approximation):

Consider

$$
\epsilon^{2} \frac{d^{2} y}{d x^{2}}=q(x) y, \quad q(x) \neq 0
$$

The basic idea of the method is to propose a solution of the form

$$
y \sim e^{s(x) / \delta(\epsilon)}, \quad \delta(\epsilon) \rightarrow 0
$$

where $s(x)$ is a slowly varying function of x. The solution $y(x)$ may nonetheless have a fast variation because is the exponential of $s(x)$.

After substituting the proposed solution into the original equation it is found that:

$$
\epsilon^{2}\left(\frac{s^{\prime \prime}}{\delta}+\frac{s^{\prime 2}}{\delta^{2}}\right)-q(x)=0
$$

where the primes mean derivative respect to x.
The dependence of δ on ϵ is found by balancing different terms of the equation. It is in general assumed that the dependence is a single power law (i.e. $\delta=\epsilon^{\alpha}$), so that a perturbation scheme is feasible. In this case we balance the term with the square of the first derivative with the term $q(x)$. Other balances are, of course, possible but are not very useful (Note: balancing the second derivative with the square of the first derivative leads to $\delta=\epsilon^{0}=1$ leaves the equation unchanged, and leads to the original problem of a singular perturbation, and balancing the second derivative with $q(x)$ would leave as dominant term $s^{\prime 2}$ by itself, which is of not use at all).

This means that δ is chosen so that the coefficients of the term with the square of the first derivative and then one in front of $q(x)$ are of the same order, that is:

$$
\frac{\epsilon^{2}}{\delta^{2}}=1,
$$

which yields $\delta=\epsilon$. Leading to:

$$
s^{\prime 2}-q(x)=-\epsilon s^{\prime \prime}, \quad(*)
$$

and indicating a clear path towards a controlled perturbation scheme.

Writing:

$$
s(x)=\sum_{n=0}^{\infty} \epsilon^{n} s_{n}(x) \text { as } \epsilon \rightarrow 0,
$$

substituting this expression into $\left({ }^{*}\right)$:

$$
\left(s_{0}^{\prime}+\epsilon s_{1}^{\prime}+\cdots\right)^{2}-q(x)=\epsilon\left(s_{0}^{\prime \prime}+\epsilon s_{1}^{\prime \prime}+\cdots\right),
$$

and collecting terms of the same order in ϵ, the following set of equations are found:

$$
\begin{aligned}
&\left(s_{0}^{\prime}\right)^{2}=q(x) \\
& 2 s_{0}^{\prime} s_{1}^{\prime}=-s_{0}^{\prime \prime} \\
& \cdots \\
& 2 s_{0}^{\prime} s_{n}^{\prime}+\sum_{k=1}^{n-1} s_{k}^{\prime} s_{n-k}^{\prime}=-s_{n-1}^{\prime \prime} \text { for } n \geq 2 .
\end{aligned}
$$

This system of equations can be solved order by order. The first two terms of $s(x)$ are:

$$
\begin{aligned}
s_{0} & = \pm \int q(x)^{1 / 2} d x, \\
\text { and } s_{1}^{\prime}=-\frac{s_{0}^{\prime \prime}}{2 s_{0}^{\prime}} \Longrightarrow s_{1} & =-\frac{1}{4} \log |q(x)| .
\end{aligned}
$$

Finally, replacing these results into $y(x)$ yields the asymptotic solution:

$$
y(x) \sim|q(x)|^{-\frac{1}{4}}\left(A \exp \left[\frac{1}{\epsilon} \int q(x)^{1 / 2} d x\right]+B \exp \left[-\frac{1}{\epsilon} \int q(x)^{1 / 2} d x\right]\right) .
$$

It is important to note that depending on the sign of $q(x)$ the solutions will be either exponential or oscillatory.

