Watson’s lemma for real variables

Let 0 < T < oo be a fixed real number. Assume f(t) is a bounded function in the
interval [0, 7], such that |f(t)] < e® as t — oo for some ¢ € R, and has asymptotic
series representation

f(t) ~ chtwﬂ”, with a > —1,8> 0 as t — 0%.
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Note: i) The conditions on f(t) are sufficient for the integral I(x) to exist. ii) The result
is independent of T'. iii) a = 0, 8 = 1, and  — —x corresponds to the example we
solved last lecture.

To prove the lemma, we will first show the preliminary result:

I(x) = /OTf(t)e_’”t dt ~ /OOO f(e ™ dt as o — oo

with an error exponentially small. In fact,

I(z) = /0 " et dt = /0 T pet dr— /T T FBet d.

Then, when approximating I(x) ~ [;° f(t)e™ dt, and considering that | f(¢)| < e as

x — 00, the error is given by
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which for all x > ¢ when x — o0, is small at all orders as long as T" > 0.
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Now we are ready to apply this to our function f(¢),
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We can now use the definition of asymptotic series with the error explicitly written:
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where, in this case
IRy (t)| = O HPNHDY as t — 0F,

that is, Ry(t) < CtotAW+) as ¢ — 0 for some real constant C' > 0. Replacing the
asymptotic expression for f(t) into the integral we find
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Introducing the change of variables u = xt in the first integral yields:
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and, as © — 00, the second integral will produce an error |[Ry(x)| given by:
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showing that the series we found is indeed an asymptotic series for I(x) given by:
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Extention of Watson’s lemma to complex variables

This theorem can be extended to the complex plane by just replacing x by z € C, i.e,
imposing the same conditions on f(¢)
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IMPORTANT: Saying that this is valid for |z| — oo is not sufficient, the theorem is
valid only when |arg(z)| < (7/2) — 3§ with 0 < § < (7/2).

Finally the requirement that o > —1 has to do with the integrability of the function
f(t) about t = 0. In fact, for any o > —1, the integral about 0 is finite:
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The first power that would violate this integrability condition is &« = —1 for which the
integral would yield Int¢; this is what is meant above by “The conditions on f(t) are
sufficient for the integral I(z) to exist.” Since e *|;—y = 1, any singularity that could
exist would have its order determined solely by the power law in the integral of f(¢).
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