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THE LONDON—VAN DER WAALS ATTRACTION
BETWEEN SPHERICAL PARTICLES

by H. C. HAMAKER

Natuurkundig Laboratorium der N.V. Philips’ Gloeilampenfabrieken Eindhoven-Holland

Summary

Frequently we experience the existance of adhesive forces between
small particles, It seems natural to ascribe this adhesion for a large part to
London-v.d. Waals forces. To obtain general information concern-
ing their order of magnitude the London-v. d. Waals interaction
between two spherical particles is computed as a function of the diameters
and the distance separating them. A table is calculated which enables
numerical application of the formulae derived. Besides approximations
are added, which may be used when the distance between the particles is
small. In a separate section it is investigated how the results must be
modified, when both particles are immersed in a liquid. Here we are led
to the important conclusion that even in that case London-v. d.
W aals forces generally cause an attraction.

§ 1. Introduction. Frequently we experience the existence of
adhesive forces between small particles of any substance or between
a particle and a surface. Of this the general occurrence of flocculation
in colloidal systems is one of the most striking examples.

It seems natural, to date, to attribute this adhesion mainly to
London-v.d. Waals forcesand it may be of interest to possess
formulae from which the magnitude and range of these forces can be
estimated. It is the purpose of this paper to provide some data which
may be used for such computations. To simplify the calculations we
will consider spherical particles only; in practical problems the
particles will mostly be of irregular shape; in such cases the formulae
derived below must be applied with caution, a question that will be
discussed more in detail in a subsequent paper *).

The energy of interaction between two particles containing g
atoms per cm® is given by:

/' " 2
E =_/dv1 /d,vquf (1)
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where dv, dv,, V, and V, designate volume elements and total
volumes of the two particles respectively, » denotes the distance
between dv, and dv,and Aisthe London-vd. Waals constant.

For spherical particles integral (1) has already been calculated by
Bradley?. Since he wasinterested only in approximations valid
for small distances he left his complete formulae in an unreduced
form unsuited for numerical computations. Besides, one of B ra d-
ley’s formulae 3) is not symmetric in #, and 7,, the radii of the two
particles, and cannot be correct for that reason. I therefore preferred
to recalculate integral (1) from the beginning.

In § 2 this integral will be reduced to a form suited for direct
integration and will then be integrated. The reader not interested in
this purely mathematical question may pass over to § 3, where the
resultinig formulae have been compiled together with approximations
valid for small distances and with a numerical table. In § 4 it will be
investigated, how the results must be modified, when the particles
are embedded in a fluid. A discussion of experimental data on the
basis of these calculations will be given in a separate paper. 1)

r
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Fig. 1.

§ 2. Integrations. Consider (fig. 1) a sphere of radius R, and centre
O and a point P outside at a distance OP = R. The sphere around O
will cut out from a second sphere of radius » around P a surface 4 BC,
which is found to be: .
27 o
Surface (ABC) = fd¢ fd0 #?sin 0 (2)
¢ 0
6, being given by:
R? = R? 4 2 — 2¢R cos 0, (3)
The integration yields:

Surface (A4BC) = = 1% {R?— (R —1)3 (4)
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and the volume element indicated by the hatched part in fig. 1 is
obtained by multiplying this with dr.
The potential energy of an atom at P may now at once be written

down as
R4-R,

Epz—f%n%{R%—<R—r>2}dr )

R—R,

0102:0
Fig. 2.

With respect to a second sphere of radius R,, the centres being a
distance C apart, the same method may be applied and we obtain for
the total energy of interaction (compare fig. 2):

C+R,
E =prqn§{R§—(C—R)2}dR —
C-R,
C+R, R+R,
2923 2 2
- = [y c—rpar [ B=E=RE
C—R, R—R,

Carrying out the second integration we get:
C+R,

2 42
_—nq A 2 2 i 2R1 2R1
F=—¢c [{Rz =R |+ e
, ! I
B ik
which finally yields:
1 2RR
— 22 172
E= RQ)\é{C?'*(Rl—!—Rz)z_i—
2R\R, C?— (R + Rz)zl

T w—Ry T &R =Ry ©
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This formula expresses the energy E as a function of the radii R,
and R, and of the distance C between the centra. The equation
simplifies upon the introduction of another set of variables.

If we take (fig. 2)

C=Ri+Ry+d ©)

d measures the shortest distance between the two particles. Moreover
we introduce:
d d D, R,
“=3, "D, "D, "R 1o

Here x gives the ratio of the shortest distance 4 to the diameter of
sphere 1, or in other words, the distance 4 when D, is taken as unity
of distance. Likewise y presents the diameter D, of sphere 2 expressed
in D,.

Introducing the new variables we obtain:

1 y

E=—4 Té{xz—l—xy—l—x +
where A = %2\

This equation will be used in § 3 for numerical computations. We

see that F is a function of ¥ and y only; the physical importance of
this will be explained later.

+ 20 x2+xy+x} (11)

y XAy TE
x2t+xy+x+y 2txy+x-ty

§ 3. Formulae and numerical data. In § 2 the following result has
been reached: The mutual energy of two spheres of diameters D, and
D,, a distance d apart and containing ¢ atoms per cm?® which interact
with an energy A/#%is:

_ I I N 2
E=—AE,\x) = 1412{962—}—9@)4—96+

y _ ¥+ xy +x
+x2—|—xy+x—!—y+2lnx2—|—xy+x+y}' (13)
where

d D

— n2g2 _ = 2
A = g% x~D1 y D, (13a)

When x < 1 (13) is approximated by

E——al Y (130) 9

12 %y +1)°

In the following we will suppose D, to measure the diameter of the
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smallest of the two spheres; this assumption simplifies the discussion
without impairing the generality of the conclusions. x and y now
measure the distance and the diameter of the largest sphere in terms
of the diameter of the smallest sphere ; ¥ will vary between 1 and co.

The constant A will be different from case to case, so that we
cannot fix one single value. Within what limits 4 is likely to lie will
be discussed in § 4.

Once A is known, a numerical table, representing the function
E (x) for different values of y and x will furnish all data needed for
practical applications.

For two spheres of equal size we have y = 1 and

1 I 1 22 4 2%
By _ﬁ{x2+2x termr i T e m T 1} (14)
when x <€ 1

E(x) = 2—‘11; approximately. (14a)

o

Fig. 3.

Likewise y = oo represents the case of a sphere and an infinite
mass bounded by a flat surface (fig. 3). We have:

' 1 1 1 x

and

E (%) = when x < 1. (15a)

R
12x
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Values of E| and E_ together with a few intermediate cases have
been compiled in table I. As we should expect the values of E,, E;
and E, lie between those of E; and E . In most practical discussions
we may often content ourselves by considering only the latter two,
being the extremes.

Sometimes we have to consider forces instead of energies. These
are derived from the above formulae by differentiation with respect
to d. Since we have

we get from (13)

_8E A EMx) A
F=fr=— g =— 5B (16)

F,(x) depending on x and y only.
For two equal spheres (y = 1) we obtain by differentiation of (14):

L2k +1) x+41 2 1

and approximately when x <€ 1:

11

Fy(x) = (17a)

%
Likewise when ¥ = oo (sphere and flat surface):
1 j2 1 2 1
Fools) Tz'{}“?"“x + 1 (x+1)2} (18)
and when x < 1
11
Foo#) = —15 2+ (18a)

Numerical values of the functions F(x) and F,(x) have been in-
corporated in table I column 7 and 8.

It will be observed that, given a value of A, the energy E (formula
13) depends on the ratios ¥ = d/D; and y = Dy/D, only. If we
increase d, Dy and D, in the same ratio, the energy remains unaltered
This, however, does no longer hold for the forces; here D, enters
explicity in the formulae as is seen from (16).

In some experiments the adhesion is studied between two polished
surfaces and we will here add the formulae relating to this case. The
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London-v.d. Waals potential of a single atom at a distance »

from a flat surface is known to be 8):

gra 1

6
From this the energy per cm? of two flat surfaces a distance 4

apart is easily derived to be:

g w4
9 (20)

6 #IY T T2 T

E = —

d

The force per cm? found by differentiation is:

A1
= en B (21) %)

s

.

——
\[ e

dz
Fig. 4.

Strictly equations 15, 18, 20 and 21 relate to infinite masses
bounded by a flat surface. In practice, however, they may also be
applied to plates of finite thickness. For instance in the case depicted
in fig. 4, the correct value of the energy is:

where x, = d,/D and %, = d,/D. But if the sphere is close enough to
the surface we have x, > x; and consequently E_ (1) <€ E (#;),
since E.(x) is a function which rapidly decreases with increasing x.
If the sphere is further away, this reasoning does not hold, but then
E_,(x,) and E_,(%,) become unmeasurably small‘that so the case is
not of any practical interest.
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In the following table the result of numerical calculations based on
the formulae given above have been compiled. For values of x
smaller than those given in table I the approximate formulae may be
used to within a few percents.

TABLE I

B | Ext) | E® | Eul® | o) |—Fi() |—Foo
.
0.001 14,07 x 10t [|5.46 % 10! |6.84x 10' |7.47 X 10* 18.23x 10! 14,15 10* [8.62% 10*
0.002 {2.00x 10 |2.69x 10t [3.38x 10! [3.69x 10" |4.07x 10t |1.03x 10* |2.08 x 104
0.005 ]7.63 1.04 % 10t j1.31x 10 {1.45x 10! 1,59 10t |1.63x 10% |3.30x 103
0.01 |3.58 4.92 6.28 6.90 7.65 4.00% 10? 18,17 x 102
0.02 [1.60 2,25 2.92 3.24 3.59 9.62x 10t |2.00x 102
0.05 [4.91x 1077.46 % 107{9.62x 107(1.10 1.24 1.37x 10t |3.03x 10t
0.1 1.74 % 10712.75 X 10713.88 X 1074{4.42 % 1071|5.09 X 10712.83 6.88
0.2 4.97x 1078.74 % 1072[1.34 x 1071 1.57 X 10™111.88 X 1071|4.98 x 101)1.45
0.5 5.73x 107%/1.27 x 107%2.34 X 1072/2.99 X 1072(3.91 x 107%|3.17 x 1072{1.48 x 101
1 6.58 X 1074(1.86 X 107314.41 X 1073/6.29 x 107%9.48 X 1073|2.32x 1073{2.08 x 1072
2 4.17 x 1075 1.72X 1074(5.67 X 10749.67 X 1074/1.68 X 1073(9.64 x 107%)2.32x 103

As we see from these data E; and E differ by not more than a
factor 2 or 3 when x < 0.2. At higher distances the differences are
greater but the total energy of interaction is then already so small
that the case is of little interest 7).

In practical cases the energy will therefore mainly be fixed by the
size of the smallest of the two particles, the size of the second
particle having comparatively little influence.

It will further be noted that the energy (formula 11) is a function
of x and y only; that means if we make both particles ¢ times as
large and put them ¢ times as far apart the energy retains the same
value. This result can be understood in a simple way which leads toa
fundamental generalisation.

Consider (fig. 54) two particles and two elements of volume dv,
and dv, one in each particle. If the particles contain ¢ atoms per'cm?®
which interact with an energy /" the contribution to the total
energy by the atoms in dv, and dv, will be
__ Agdvigdv,
=

dE (4)
If we now increase all geometrical dimensions in the ratio ¢ the

contribution by the corresponding volume elements dv; and dv} in

the new configuration (fig. 5B) will be

__Agdvigdu, Ag?cPdvcPdv, dE

b ()" eyt T (5)
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Since each elementary part of the energy has changed in the ratio
1/c*—® the same will hold for the total energy.

Therefore, if we increase the size of the particles in the ratio ¢ and
put them ¢ times as far apart the energy of interaction varies as
1/c*=®; the energy remains constant when # = 6, increases when
#n < 6 and decreases when # > 6.

Fig. 5.

D{ =cDy, d' = cd, dV{ = 3dV, etc.

This illustrates why the force of gravity which is negligibly small
when acting between atoms or colloidal particles predominates
when the particles attain the size of celestial bodies.

It is easily deduced that when the energy varies with the geo-
metrical dimensions as 1/¢"® the forces will very as 1/c*~5. Accord-
ingly the force represented by formula (16) is not a function of x and
y only; the diameter D, enters explicitly in the expression.

§ 4. The constant A. 1f two particles are embedded in a fluid and
the London-van der Waals force between particlesand fluid is
greater than between the particles themselves, it might be thought
that the resultant action will be a repulsion rather than an attraction
As has been pointed out to the author by Dr. J.H. de Boer, this
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conclusion does not hold. Owing to a peculiar property of the L o n-
don-van der Waals forces, the resultant force is generally at-
tractive even when the particles are surrounded by fluid. This is a
matter of considerable interest which warrants a detailed discussion.

° o
)
o
° o
,/
“ o
7 )
S o ° T
°o ) o
o
o .
Fig. 6.

Consider (fig. 6) two particles S and T consisting of two different
solid substances 1 and 2 and embedded in a fluid 0. In evaluating the
energy variations in this system we have to take into account not
only the two solid particles, which we may designate as S; and T,
but also particles of the same size but consisting of the fluid 0; these
will be described as particles S, and T,

Further we denote as:

E, = the energy of interaction between the solid particles S; and 7.

E, = the energy of interaction between a solid particle S; with a
fluid particle T,

E,, = the energy of interaction between a fluid particle S; and a
solid particle 7.

Ey = the energy of interaction between two fluid particles Syand T,

These energies will be functions of the distance between the
particles.

Now, if E, represents the energy of a solid particle S, in the liquid
at infinity, this particle when brought in the neighbourhood of the
particle T, will possess an energy E, + E,, — E,. But, while bringing
S, towards T,, we have at the same time to remove a particle S,
towards infinity. To this will correspond a change in energy from
Ey + Ey— Ey, to E, when E, is the energy of the particle S, at
infinity. Since £ and E, are constants the energy changes attendant
to variations in the distance between the particle S; and T, will be:

E=E,—E,—(Epx—Ex) =E;+ Epw—E;q;—Ey (23)
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This expression is as yet entirely independent of the nature of the
forces of interaction. It is, however, inherent to our argument that
the energy of interaction of one particle with the fluid shall be un-
affected by the presence or absence of the other particle. This is a
serious limitation, which will be violated as soon as the interaction
between particles and fluid is accompanied by an orientation of the
fluid molecules; for the degree of orientation with respect to T, will
certainly be influenced by the presence of the particle S, §)

In such cases we may generally consider the total energy to be
made up of two parts: 1. a part independent of the orientation of the
fluid molecules and 2. an additional amount due to this orientation.
Whenever the latter part is only a small fraction of the total, we are
still entitled to assume that conclusions drawn from equation (23)
will in the main be correct. The use of (23) must be restricted to such
cases.

Letusnow apply (23) toLondon-vander Wa als forces. In § 2
and 3 the energy between two spherical particles in vacuo was
expressed as:

E=—AE,(x (24)
where E,(x) is a function of the geometrical data (diameters and
distance) only and

A = g% (23)
¢ being thenumber of atoms per cm®and A the London-van der
Waals constant.

If the two particles are composed of two different substances | and
2 we have obviously to take:

A = 7% 1M, (26)

And if these two particles are embedded in a fluid O (23) proves that
(24) is still valid provided we assign to 4 the value

A = 7 {71902 + Gohoo — God1hor — Jod2hoz} (27)
the ¢’sbeing atomdensitiesandthe A’'sLondon-vander Waals
constants for the pairs of atoms indicated by the suffix.

Now x is approximately expressed by ?)
%N T,
where «, and «, are the polarisabilities, I, and I,certain characteristic
potentials of the atoms.

(28)

Ay =
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Inserting (28) in (27) and writing for the sake of simplicity:

aodolo = po @il =y etc. (29)
we get

32| wipe | wd wew uouz}
4= 2{11+I+2—Io ILn+1, ILi+1I, 30
For two particles of the same substance we have p, = p,, I; = I,
and

A= 3_”2{}i_,_ _P‘_2°___~__2p'°”1 }:
2 21, " 21, ILy+1,
ﬁ {Io Iy (po— )% + (o It — Mlo)z} (31)
2 o Ii(Io + 1) ’

Since I, and I, are essentially positive, A will be positive, which
means that the force is always an attraction 19),

If the particles do not consist of the same material, this need no
10nger be true. Putting for instance in (30) Io=1I, = I, and
to = % (1 + o) we obtain a negative value. « ~ » = & e

Above the particles and the fluid were taken to contain each but
one kind of atoms. If they consist of more than one component, the
results can be generalised ; for particles of the same composition 4 is
essentially positive. The proof which requires a somewhat tedious
mathematical argument is given separately in an appendix.

Recapitulating we have:

The London-vander Waals forces between two particlesof the
same material embedded in a fluid is always atiractive, provided theve is
no marked ovientation of the fluid molecules. If the particles are of
different composition, the resultant force may be a repulsion.

The actual value of the constant 4 will vary from case to case.
Calculating ¢, the atom densities, for some substances, we find

q 1 q ‘ q

Ag 59x 107
Au 60 102

AgJ 30% 102
As,S, 42x 102

Si0, 80 x 102
Fe,0, 97 x 102

which shows that ¢ will be of the order 50 x 1C2!. For the alkalihali-
desthe value of the Lond on-vander Wa als constant has been
computed by M ay er ). Heobtains a maximum value A a= 400 X
107 erg cm® for two iodine ions. On the average, however, 2 is less
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and of the order 100 X 1070 erg cm®; 1 X 107 erg cm® is definitely
a low value. Values of the same order of magnitude have recently
been published by London 3.

Using these data to calculate 4 = n%%. we get:

A =3 x 1072 erg as a very high value
A = 0.7 X 1072 erg as an average value
and A = 0.7 x 107!* erg as an abnormally low value.

When the particles are embedded in a fluid, 4 will be of the same
order, though somewhat smaller, being now the difference between
positive and negative terms.

Generalising, 4 may be assumed to vary between 10~ and 10—
erg as extreme limits and to lie between 10~ and 10— erg in most
cases. On this basis the magnitude of London-v. d. Waals
forces in colloidal systems will be discussed in a subsequent paper.?)

APPENDIX.

General proof that the forces between two particles of the same
composition are always attractive.

First suppose the surrounding fluid to be composed of only one
kind of atoms and let the particles contain # different kinds of atoms
with atom densities ¢, ¢,. . . . ¢,. To find 4, every component of the
first particles must be combined with every component of the second
particle according to equation (30) and these expressions must be
summed. We then get:

n

4 — 3n? gk Zl { Mg L + _y'i _ Yo “‘k%* Ko K } (32)

2 I+ 1, 2, IL,+1, I,+1
or .
3m? o Hr Flo___ X Yk }
A= 5 {Zk pY I, . T, + T 2%@021‘. T (33)
After introducing a new set of variables
Bo = —nyo Br = Br =
equation (33) can be written:
24 P o B | 8 e
32 { o, T2 2’“ 2T L7\ 20, 2]1 21,
2808, | 2BoBy 288, |, 28:8s L 2B @n}
R (34
tigrntnrnttran T ian ot g BY
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All the I's are essentially positive. A will therefore always be
positive, if it can be provex that for positive I's the expression (34) is
a positive quadratic form in the p’s.

Splitting off a square in the usual way, we find:

24 1 2, | 21, 2, , |’
37?2‘—E{Bo+mﬁﬁ—j—éﬁz+~~-IO+IMF3n}+

0

. Bt (15———1g)2¥%_ & (Io———1>>2 I <15-—-1;)2 N

24\ + 1) " 2L\ + 1, 2I, \I,+1,
4 281 B2 <Io—I1> (Io*“I2>_L 281 85 (IO_II) Io—I3> +
To+ I o+ Iy Ao+ 1) " T+ I3\l + 1)) I+ I
28,1 B, (Io—In~1) <IO—In)
e . {35
LERRRRI iy iV ey AV Ay AR
as is easily verified.
Writing :
o Lo — 1
LR Ay

the last equation reduces to:

24 1 o, ¥ i Ya
TS o ot T T
2¥1 Y2 2v1Ys 2Y0 1 Y
= 2% (36
tryLtnen Tt w0
where
Qﬁ?’o‘FI_—‘O_FIl@l—f‘m@er +IWO+Ian' (37)

By (36) expression (34) is written as the sum of a positive term
Q?/21, and an expression of the same nature as (34) but with one
variable less. Consequently, if (34) is a positive quadratic form for »
variables, the same is true for # - 1 variables and since it has been
demonstrated for # = 1 (see page 012) (34) is a positive quadratic
function of the £’s for any number of variables.

If the fluid consists of more than one component, 4 will be the
sum of a number of expressions (32), one for each component. Since
these are separately positive, the same will hold true for their sum.

Received October 20th 1937, Eindhoven, 7th September 1937.
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