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Summary 
F r e q u e n t l y  we expe r i ence  t h e  e x i s t a n c e  of a d h e s i v e  forces  b e t w e e n  

smal l  par t i c les .  I t  s eems  n a t u r a l  to  asc r ibe  th i s  a d h e s i o n  for  a large p a r t  to  
L o n d o n-v .  d. W a a l s forces.  To o b t a i n  genera l  i n f o r m a t i o n  conce rn -  
ing  t h e i r  o r d e r  of m a g n i t u d e  t h e  L o n d on-v .  d. W a a 1 s i n t e r a c t i o n  
b e t w e e n  t w o  sphe r i ca l  pa r t i c l e s  is c o m p u t e d  as a f u n c t i o n  of t h e  d i a m e t e r s  
a n d  t h e  d i s t a n c e  s e p a r a t i n g  t h e m .  A t a b l e  is c a l cu l a t ed  w h i c h  enab les  
n u m e r i c a l  a p p l i c a t i o n  of t h e  fo rmu lae  de r ived .  Bes ides  a p p r o x i m a t i o n s  
are  added ,  w h i c h  m a y  be used  w h e n  t h e  d i s t a n c e  b e t w e e n  t h e  pa r t i c les  is 
small .  I n  a s e p a r a t e  sec t ion  i t  is i n v e s t i g a t e d  h o w  t h e  r e su l t s  m u s t  be 
modif ied ,  w h e n  b o t h  pa r t i c l e s  are  i m m e r s e d  in a l iquid.  H e r e  we are led 
to  t h e  i m p o r t a n t  conc lus ion  t h a t  even  in t h a t  case  L o n d o n-v .  d. 
W a a 1 s forces  gene ra l ly  cause  an  a t t r a c t i o n .  

w 1. Introduction. Frequently we experience the existence of 
adhesive forces between small particles of any substance or between 
a particle and a surface. Of this the general occurrence of flocculation 
in colloidal systems is one of the most striking examples. 

It seems natural, to date, to attribute this adhesion mainly to 
L o n d o n-v. d. W a a 1 s forces and it may be of interest to possess 
formulae from which the magnitude and range of these forces can be 
estimated. It is the purpose of this paper to provide some data which 
may be used for such computations. To simplify the calculations we 
will consider spherical particles only; in practical problems the 
particles will mostly be of irregular shape ; in such cases the formulae 
derived below must be applied with caution, a question that  will be 
discussed more in detail in a subsequent paper 1). 

The energy of interaction between two particles containing q 
atoms per cm 3 is given by: 

E = - -J  dvl.[ dv2 q2x (1) 
VI V~ 

1 C 5 8 -  
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where dvl, dv2, Vl  and V2 designate volume elements and total  
volumes of the two particles respectively, r denotes the distance 
between dv 1 and dv 2 and ), is the L o n d o n-v d. W a a 1 s constant.  

For  spherical particles integral (1) has already been calculated by 
B r a d 1 e y 3). Since he was interested only in approximations valid 
for small distances he left his complete formulae in an unreduced 
form unsuited for numerical computations. Besides, one of B r a d- 
1 e y 's  formulae 3) is not symmetric  in rl and r2, the radii of the two 
particles, and cannot be correct for tha t  reason. I therefore preferred 
to recalculate integral (1) from the beginning. 

In w 2 this integral will be reduced to a form suited for direct 
integration and will then be integrated. The reader not  interested in 
this purely mathemat ical  question may  pass over to w 3, where the 
resulting formulae have been compiled together with approximations 
valid for small distances and with a numerical table. In w 4 it will be 
investigated, how the results must  be modified, when the particles 
are embedded in a fluid. A discussion of experimental  da ta  on the 
basis of these calculations will be given in a separate paper. 1) 

/z 

~ ~  "~  OP=R 
P 

Fig. 1. 

w 2. Integrat ions .  Consider (fig. 1) a sphere of radius R1 and centre 
0 and a point P outside at  a distance O P  = R .  The sphere around 0 
will cut out from a second sphere of radius r around P a surface A B C ,  

which is found to be : 
2~" Oo 

Surface ( A B C )  = f d~ f dO r 2 sin 0 (2) 
0 0 

0o being given by : 
R 2 = R 2 + r 2 -  2rR  cos 00 (3) 

The integration yields: 
r 

Surface ( A B C )  ---- 7: ~ {R~ - -  (R - -  r) 2} (4) 
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and the volume element indicated by the hatched part  in fig. 1 is 
obtained by multiplying this with dr. 

The potential  energy of an atom at P may  now at once be writ ten 
down as 

R+R1 f q7 Ee -- ~ R {R~ - -  (R - -  r) 2} dr (S) 
R- -R  l 

o,o,=c 

\ 

Fig. 2. 

With respect to a second sphere of radius R2, the centres being a 
distance C apart,  the same method may  be applied and we obtain for 
the total energy of interaction (compare fig. 2) : 

C+Rs 

C 
C+R2 R + R t  

_--- -~q 'X f {R22--(C--R)2}dR f {R21--(R--r)2}drrs (6) 

C--R2 R--R1 

Carrying out the second integration we get: 
C+ R2 

- -  ~2q2X /'rR 2 { 2 R1 2 Rt 
E - -  C~-JR,' 2 - - ( C - - R )  2}dR. ~--2 (R+R1) a + ( R - R t )  a-k 

+ (R + R1) 2 (R - -  R1) (7) 

which finally yields: 

1 I 2R1R2 
E = - -  :~2q2X g (C 2 - - ~  ~_ R2)2 + 

2RxR 2 C 2 - -  (R l + R2)2| 
-I- C2 - (R , - -R2)  2 -I- In C 2  - (R, - -  R2)2 [" (8)  
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This formula expresses the energy E as a funct ion of the radii R 1 
and R 2 and of the distance C between the centra.  The equat ion 
simplifies upon the in t roduct ion  of another  set of variables. 

If we take  (fig. 2) 

C --  R 1 + R~ + d (9) 

d measures the shortest  distance between the two particles. Moreover 
we introduce:  

d _ d D2 R2 (1 O) 
x - -  2R 1 D1 y - -  D1 --  R1 .  

Here x gives the rat io of the shortest  distance d to the diameter  of 
sphere 1, or in o ther  words, the distance d when D1 is t aken  as un i ty  
of distance. Likewise y presents the d iameter  D 2 of sphere 2 expressed 
in D 1 . 

In t roducing  the new variables we obtain:  

1 { y y x 2 + x y + x  I 
E = - - A  ~ x 2 + x y + x  ~ + 2ln (11) x 2 - / x y + x + y  x 2 + x y + x + y J  

where A ~- ~:q2X. 
This equat ion will be used in w 3 for numerical  computat ions.  We 

see tha t  E is a funct ion of x and y only;  the physical importance of 
this will be explained later. 

w 3. Formulae and numerical data. In w 2 the following result has 
been reached:  The mutua l  energy of two spheres of diameters  D 1 and 
D 2, a distance d apar t  and containing q a toms per cm 3 which interact  
with an energy ~/r 6 is: 

E ---- - -  AEy(x) ~- - -  A ~--~ l Y + 
x 2 + xy + x 

x 2 + xy + x 
Y + 2 In ~ . (13) 

-+ x2 + xy + x + y x2 + xy + x + y 
where 

d D 2 
A = 7:2q2X x = D-~ y = ~ - .  (13a) 

When x ~ 1 (13) is approx imated  by  

1 , y (135)  4) 
E ~ - - - A  12 x(y + l )"  

In  the following we will suppose D 1 to measure the d iameter  of the 
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smallest of the two spheres; this assumption simplifies the discussion 
wi thout  impairing the general i ty of the conclusions, x and y now 
measure the distance and the diameter  of the largest sphere in terms 
of the diameter  of the smallest sphere; y will va ry  be tween  1 and oo. 

The constant  A will be different from case to case, so tha t  we 
cannot  fix one single value. Within what  limits A is likely to lie will 
be discussed in w 4. 

Once A is known, a numerical  table,  represent ing the function 
Ey(x) for different values of y and x will furnish all da ta  needed for 
pract ical  applications. 

For  two spheres of equal  size we have y = 1 and 

1 ~ {  I 1 x 2 + 2 x  } (14) 
E.1(x)----- x 2 + 2 x  + x 2 + 2 x +  1 + 2 ln x2 + 2x + 1 

when x ,~ 1 

1 
E l(x) ----- ~ approximately .  

Fig. 3. 

(14 ) 

Likewise y = oo represents the case of a sphere and an infinite 
mass  bounded  by  a flat surface (fig. 3). We have:  

E (x) = + x +----7 + 2 n 

and 
1 

Eoo(x) --  12x when x ~ 1. (15a) 
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Values of E1 and Eoo together with a few intermediate cases have 
been compiled in table I. As we should expect the values of E2, E5 
and El0 lie between those of E1 and Eoo. In most practical discussions 
we may  often content  ourselves by considering onty the lat ter  two, 
being the extremes. 

Sometimes we have to consider forces instead of energies. These 
are derived from the above formulae by differentiation.with respect 
to d. Since we have 

ad ~d ~x D t ~x 

we get from (13) 

~E A ~Ey(x) A 
F ~-- - ~ d - -  O l ~x - -  -ff~i Fy(x) (16) 

1 1 
Foo(x) = 12 x 2'  (18a) 

Numerical  values of the functions Ft(x ) and Foo(x) have been in- 
corporated in table I column 7 and 8. 

I t  will be observed that ,  given a value of A, the energy E (formula 
13) depends on the ratios x-----d/D t and y-----D2/D t only. If we 
increase d, D t a n d  D 2 in the same ratio, the energy remains.unaltered 
This, however, does no longer hold for the forces; here D 1 enters 
explicity in the formulae as is seen from (16). 

In some experiments the adhesion is studied between two polished 
surfaces and we will here add the formulae relating to this case. The 

Fy(x) depending on x and y only. 
For  two equal spheres (y ---- ! ) we obtain by differentiation of (14) : 

1 ~ 2 ( x +  1) x +  1 2 1 } 
Fl(x)  = 6 [ ~ + - 2 x  (x 2 + 2x) 2 x + 1- (x + 1) 3 (17) 

J 

and approximately when x ~ 1 : 

1 1 
Ft(x)  - -  24 x 2" (17a) 

Likewise when y = oo (sphere and flat  surface) : 

Foo(x )  = x 2 x + : (x + 1) 2 (18) 

and when x ~ 1 
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L o n d o n-v. d. W a a 1 s po ten t ia l  of a single a t o m  at  a dis tance r 
f rom a flat  surface is known to be 5)~: 

E ,  - -  q~X 1 (19) 
6 ~,3" 

F r o m  this the  energy  per  cm 2 of two flat  surfaces a dis tance d 
a p a r t  is easily der ived to be: 

oo 
f r~qX 1 ~q2X A 1 

E -= 2 j  ~ -  ~g q dr - -  12d 2 - -  12re d 2" (20) 

The  force per  cm 2 found b y  different ia t ion is: 

A 1 
F - -  6r= d 3 " (21 ) ") 

Fig. 4. 

S t r ic t ly  equat ions  15, 18, 20 and  21 relate  to infinite masses  
bounded  b y  a f lat  surface. In  p rac t ice ,  however ,  t hey  m a y  also be 
appl ied to p la tes  of finite thickness.  Fo r  instance in the  case depic ted  
in fig. 4, the  correct  value of the  energy is: 

E = - -  A {Eoo(xl) - -  Eoo(x2) } (22) 

where  xl  = dt/D and x 2 -- d2/D. But  if the sphere is close enough to 
the  surface we have  x 2 >~ x 1 and  consequent ly  Eoo(%) ~ Eoo(xl), 
since E~(x) is a funct ion which rap id ly  decreases wi th  increasing x. 
I f  the  sphere  is fu r the r  away,  this reasoning does not  hold, bu t  then  
Eo~(xl) and  Eoo(x2) become u n m e a s u r a b l y  s m a l l t h a t  so  the case is 
not  of a n y  prac t ica l  interest .  



V A N  D E R  W A A L S  A T T R A C T I O N  B E T W E E N  S P H E R I C A L  P A R T I C L E S  1 0 6 5  

In the following table the result of numerical calculations based on 
the formulae given above have been compiled. For values of x 
smaller than those given in table I the approximate formulae may be 
used to within a few percents. 

TABLE I 

x 
0.001 
0.002 
0.005 
0.01 
0.02 
0.05 
0.1 
0.2 
o.s 

2 

E1 (x) E2 (x) E 5 (x) El0 (x) Eoo (x) - -  F 1 (x) - -  Foo  (x) 

4 . 0 7 x l 0  t 5.46X 101 6.84X 101 7.47X 101 8.23X 101 4.15X 104 8.62X104 
2.00X101 2 .69 •  101 3.38X101 3.69X101 4.07X101 1.03X104 2 . 0 8 X 1 0 '  
7.63 1.04X 101 1 . 3 I x  101 1.45X 101 1.59X 101 1.63X 10 a 3.30X 103 
3.58 4.92 6.28 6.90 7.65 4.00X 10 a 8.17X 102 
1.60 2.25 2.92 3.24 3.59 9.62X 10 x 2.00X 102 

14.91X10 --I 7 .46•  10 - 1 9 . 6 2 X 1 0  -1 1.10 1.24 1.37X101 3.03X101 
1 .74x  10 -1 2.75X 10 --1 3 : 8 8 x  10001 4.42X 10 -1 5.09X 10 -1 2.83 6.88 
4.97X 10-2i8.74X 10 -2 1 .34x  10 -1 1.57X 10 -1 1.88X 1000 1 4 . 9 8 x  10 -1 1.45 
5 .73x  10 -2 1.27X 10 -2 2 . 3 4 x  10 -2 2.99X 10 .-2 3.91X 10 -2  3 . 1 7 x  1000 2 1.48X 10 -1 
6.58X 1000 4 1.86•  10 -2 4.41 x 1000 2 6 . 2 9 x  10 --'~ 9 .48x  10 .-2 2.32X 10 --2 2.08X 10 -2 
4 .17x  10 -5 1.72•  10 -4 5.67X 1000 4 9.67X 10 "-4 1.68X 1000 2 9.64X 10 --5 2.32X 10 -2 

As we see from these data E 1 and Eoo differ by not more than a 
factor 2 or 3 when x < 0.2. At higher distances the differences are 
greater but the total energy of interaction is then already so small 
that  the case is of little interest 7). 

In practical cases the energy will therefore mainly be fixed by the 
size of the smallest of the two particles, the size of the second 
particle having comparatively little influence. 

It will further be noted that  the energy (formula 11) is a function 
of x and y only; that  means if we make  both particles c times as 
large and put them c times as far apart the energy retains the same 
value. This result can be understood in a simple way which leads to a 
fundamental  generalisation. 

Consider (fig: 5A) two particles and two elements of volume dv 1 

and dv2 one in each particle. If the particles contain q atoms percm 3 
which interact with an energy X/r ~ the  Contribution to the total 
energy by the atoms in dv 1 and dv 2 will be 

dE  - -  ~ q dvi q dv2 
r~ (4) 

If we now increase all geometrical dimensions in the ratio c the 
contribution by the corresponding volume elements dv~ and dv~ in  
the new configuration (fig. 5B) will be 

dE '  ~ q dv~ q dv~ ~ q2 c 3 dVl c s d v  2 _ _  d E  
- ( r ' )"  - c" r" c . - 6 "  (5)  
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Since each elementary part  of the energy has changed in the ratio 
t /c  ~-6 the same will hold for the total  energy. 

Therefore, if we increase the size of the particles in the ratio c and 
put  them c times as far apart  the energy of interaction varies as 
1/c~--~; the energy remains constant when n = 6, increases when 
n < 6 and decreases when n > 6. 

Og2 

/ 

av/ 

Fig. 5. 

D~ = cD l, d I = cd, dV~ = cadV1 etc. 

This illustrates why the force of gravity which is negligibly small 
when acting between atoms or colloidal particles predominates 
when the particles at tain the size of celestial bodies. 

I t  is easily deduced that  when the energy varies with the geo- 
metrical dimensions as 1/c ~--6 the forces will very as 1/c '~s .  Accord- 
ingly the force represented by formula (16) is not a function of x and 
y only; the diameter D 1 enters explicitly in the expression. 

w 4. The constant  A .  If two particles are embedded in a fluid and 
the L o n d o n - v a n  d e r  W a a l s  force between particlesand fluid is 
greater than between the particles themselves, it might be thought 
that  the resultant action will be a repulsion rather than an at tract ion 
As has been pointed out to the author by Dr. J. H. d e B o e r, this 
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conclusion does not  hold. Owing to a peculiar  p roper ty  of the L o n- 
d o n-v a n d e r W a a 1 s forces, the resul tant  force is generally at- 
t rac t ive  even when the particles are surrounded b y  fluid. This is a 
ma t t e r  of considerable interest  which warrants  a detai led discussion. 

o O 

O 

S o o T 
o 

0 

0 

Fig. 6. 

O 

O 

Consider (fig. 6) two particles S and T consisting of two different 
solid substances 1 and 2 and embedded  in a fluid 0. In  evaluat ing the 
energy var ia t ions in this sys tem we have to take into account  not  
only the two solid particles, which we m a y  designate as S I and T2, 
bu t  also particles of the same size bu t  consisting of the fluid 0; these 
will be described as particles So and T O . 

F u r the r  we denote  as: 
E12 =: the energy of in teract ion between the solid particles S l and/ '2 .  
El0 = the energy of in teract ion between a solid part icle Sl with a 

fluid part icle To. 
E2o ---- the energy of interact ion between a fluid part icle So and a 

solid part icle T2. 
Eoo --  the energy of in teract ion between two fluid particles So and To. 

These energies will be functions of the distance between the 
particles. 

Now, if E1 represents  the energy of a solid particle St in the liquid 
at  infinity,  this particle when brought  in the neighbourhood of the 
part icle T 2 will possess an energy E,  + E12 - -  Elo. But ,  while bringing 
$1 towards T2, we have at  the same time to remove a particle S O 
towards infinity. To this will correspond a change in energy from 
Eo -~- E 2 0 -  Eoo to E o when Eo is the energy of the part icle S o at 
infinity. Since E 1 and Eo are constants  the energy changes a t t endan t  
to variat ions in the distance between the particle St and T 2 will be: 

E ----- E12 - -  Elo - -  (E2o - -  Eoo) = E12 § E0o - -  Elo - -  E2o (23) 
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This expression is as ye t  ent i re ly  independent  of the na ture  of the 
forces of interaction.  I t  is, however,  inherent  to  our  a rgument  tha t  
the energy of in terac t ion  of one part icle with the fluid shall be un- 
affected by  the presence or absence of the o ther  particle.  This is a 
serious l imitat ion,  which will be viola ted as soon as the in terac t ion  
between particles and fluid is accompanied by  an or ienta t ion of the 
fluid molecules;  for  the degree of or ienta t ion with respect  to T 2 will 
cer ta in ly  be influenced by  the presence of the part icle $1 s) 

In  such cases we m a y  generally consider the to ta l  energy to be 
made  up of two par ts :  1. a par t  independent  of the or ienta t ion of the 
fluid molecules and 2. an addi t ional  amount  due to this orientat ion.  
Wheneve r  the l a t t e r  par t  is only a small f ract ion of the total ,  we are 
still ent i t led to assume tha t  conclusions drawn from equat ion  (23) 
will in the main  be correct.  The  use of (23) mus t  be restr icted to such 
cases. 

Le t  Usnow apply  (23) to L o n d o n - v a n  d e r  W a a 1 s forces. In w 2 
and 3 the energy between two spherical particles in vacuo was 
expressed as: 

E = - -  A E y ( x )  (24) 

where E y ( x )  is a funct ion of the. geometr ical  da ta  (diameters and 
distance) only and 

A --~ zc2q2X (25) 

q being the number  of a toms per cm 3 and k the L o n d o n-v a n d e r 
W a  a l s  constant .  

If the two particles are composed of two different  substances 1 and 
2 we have  obviously to take:  

A = x2q lq2~ .12  (26) 

And if these two particles are embedded  in a fluid 0 (23) proves tha t  
(24) is still val id provided we assign to A the value 

A = ~2 {qlq2X12 + q02X00 - -  qoqiXot - -  q0q2X02} (27) 

the q ' sbe inga tomdens i t i e s  a n d t h e  X's L o n d o n - v a n  d e r  W a a 1 s 
constants  for the pairs of a toms indicated by  the suffix. 

Now X is approx imate ly  expressed b y  9) 

3 Ik I~ (28) 
Xkz ~ ~ k  ~1 Ik + I~ 

where ~k and ~ are the polarisabilities, Ik and I~ cer ta in  character is t ic  
potent ia ls  of the atoms. 
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Insert ing (28) in (27) and writing for the sake of simplicity: 

eoqoIo ----- ~o alqlIl = ~l etc. (29) 
we get 

1 (30) 
A = ~ -  [ /~  q5)2 + 2Io Zo + I ,  Io~.-)2 j 

For  two particles of the same substance we have ~Xl = ~2, I l  -= I2 
and 

A + 
21o Io + I t  J 

3~ 2 { I o I ,  (IXo--tx# + (fZo I ,  - -  ~,Io) 2} 
- -  2 ,--/0~ 11(1 o + II ) . (31)  

Since Io and Ia are essentially positive, A will be positive, which 
means tha t  the force is always an a t t ract ion 10). 

If  the particles do not  consist of the same material,  this need no 
longer be true. Put t ing  for instance in (30) I o =  I1 = Iz and 
~o = �89 (~1 + ~z2) we obtain a negative value. , "~- :, ~ :, , ,  

Above the particles and the fluid were taken to contain each bu t  
one kind of atoms. If  they  consist of more than  one component,  the 
results can be generalised; for particles of the same composition A is 
essentially positive. The proof which requires a somewhat tedious 
mathemat ica l  argument  is given separately in an appendix. 

Recapitulat ing we have : 
The L o n d o n-v a n d e r W a a l s/orces between two particles o/the 

same material embedded in a fluid is always attractive, provided there is 
no marked orientation o/ the fluid molecules. I /  the particles are o/ 
different composition, the resultant ]orce may be a repulsion. 

The actual  value of the constant  A will vary  from case to case. 
Calculating q, the a tom densities, for some substances, we find 

q q q 

A g  59 X 1021 A g J  30 x 1021 SiOt  80 x 10 zl 
A u  60X 1021 As2S , 42X 1021 F % O  3 97 • 1021 

which shows tha t  q will be of the order 50 • 1C m. For  the alkalihali- 
des the value of the L o n d o n-v a n d e r W a a 1 s constant  has been 
computed by M a y e r 11). He obtains a max imum value ), ~ 400 • 
10 -~~ erg cm 6 for two iodine ions. On the average, however, X" is less 
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and  of the  order  100 x 10 -60 erg cm 6; I x 10 -60 erg cm 6 is defini tely 

a low value.  Values of the same order  of magn i tude  have  recent ly  
been  publ ished b y  L o n d o n ~2). 

Using these da t a  to calculate  A = rc2q2Z we get :  

A = 3 • 10 - ' 2  erg as a ve ry  high value 

A = 0.7 • 10 -12 erg as an average  value 

and  A ~ 0.7 • 10 - ' 4  erg as an a b n o r m a l l y  low value. 

When  the  part icles  are embedded  in a fluid, A will be of the same 
order,  t hough  s om ewha t  smaller ,  being now the difference be tween  
posi t ive  and negat ive  terms.  

Generalising, A m a y  be assumed  to v a r y  be tween  10 - ' 4  and  10 -11 
erg as ex t r eme  l imits  and  to lie be tween  10 -13 and  10 -12 erg in mos t  
cases. On this basis the magn i tude  of L o n d o n - v .  d. W a a l s  
forces in colloidal sys tems  will be discussed in a subsequent  p a p e r ) )  

APPENDIX. 

General proo/ that the /orces between two particles o/ the same 

composition are always attractive. 
Firs t  suppose the sur rounding  fluid to be composed  of only  one 

k ind  of a t o m s  and  let the part icles  conta in  n different  k inds  of a t o m s  

wi th  a t o m  densit ies ql, q2 . . . .  qn. To find A, every  c o m p o n e n t  of the 
first  par t ic les  m u s t  be combined  with  every  c o m p o n e n t  of the second 
part icle  according to  equa t ion  (30) and  these expressions mus t  be 
summed.  We then  get" 

o r  

3=2 n n { P'# F' 
: Zk Z '  

A ~ ,  ~ i k + i  l 

A = ~ -  k Xt ~k 
1 I k + I I  

~o ~ ~o ~ ~o ~*, i (32) 
- - + 2 Z o  _to+& _roq--7,1 

-F n2 'u'2 2nFo~  '~' Fk } (33) 
2Io I o + I~ " 

After  in t roducing  a new set of var iab les  

~o = - - n ~ o  [31 = FI [3k = Fk 
equa t ion  (33) can be wr i t t en :  

2A = ~ -~ 2 Z~ Y., ] ;  ~ 7, J = 21o -- 2• 3= 2 2 I k - -  0 k+, . . . .  

2[3 o [31 213o [32. 
+ Io + I--~ + Io +---I2 

[3~- + 
+ 2i~ 

2131132 ' 2[31133 213"--1 [3•t (34) 
+ .... + / , + I 2  ~ 21~73 + .... + t . _ ~ Z j "  
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All the [ 's  are essentially positive. A will therefore always be 
positive, if it ca:: be proved, that  for positive I's the expression (34) is 
a positive quadratic I o ~  in the  i s .  

Splitting off a square in the usual way, we find: 

2A I { 2/o 2Io 2I .  } 2 
3= 2 -  2Io ~~ 4- I ~  ~14- io 4-12~2 4- . . . .  Io 4- I~ ~" 4- 

~ (Io--I:12 ~ (Io--I2i  2 ~ (Io--I .12 
+ ~77 \Io+• + 227 \ ~ :  + . . . .  + ) 2 ]  \ ~ :  + 

2~,~2 ( Io-- I ,~(Io--121 2}:}a ( i o - - I : I I o - - I 3~  
4- io 4- i2 \ i  0 4- i i /  \ i ~ /  @ io 4- is \ i  0 4- i i /  io 4- is / -i- 

- -  I._,~ ( I o -  I .  1 (35) 
. . . .  I._1 4- I .  I._1/ kl 0 4- I . / "  

§ 

as is easily verified. 
Writing: 

]k 

Yk = ~k ~o 4- Ik 

the last equation reduces to: 

2A : 92 + y~ ~ § + y~ 
3 ~  - 2Zo • +  G . . . .  ~ +  

2y: Y2 2Y1Ya 4- . . . .  4- 
4-I 1 q- I 2 4- I :4 - Ia  

where 

2y._1 y,, (36) 
I.-1 4- I,~ 

2/o 2/o 2Io 
Q ~ o + i o + i : [ 1 + I o + i - ~ 2 +  . . . .  + i 0 4 - i ~  ~ .  (37) 

By (36) expression (34) is written as the sum of a positive term 
02/2Io and an expression of the same nature as (34) but  with one 
variable less. Consequently, if (34) is a positive quadratic form for n 
variables, the same is true for n 4- 1 variables and since it has been 
demonstrated for ~ ----- 1 (see page 012) (34) is a positive quadratic 
function of the ~'s for any number of variables. 

If the fluid consists of more than one component, A will be tile 
sum of a number of expressions (32), one for each component. Since 
these are separately positive, the same will hold true for their sum. 

Received October 20th 1937. Eindhoven, 7th September 1937.  



1072 V A N  D E R  W A A L S  A T T R A C T I O N  B E T V ~ I ~ [  ICAL P A R T I C L E S  

R E F E R E N ~  

I) H . C .  IK a m a k e r ,  L o n d o n - v  a n d e r " ~ P ~  forc:es i 1 collo d a l  s~ , s tems,  t o  ap-  
p e a r  s h o r t l y  in  Ree.  T r a y .  Chim.  des  P a y s - B a ~  

2) R . S .  B r a d l e y ,  Phi l .  Mag.  13 ,  853, 1932. 
3) T h e  l a s t  f o r m u l a  on  p a g e  856. 
4) W r i t i n g  (13b) in  t e r m s  of d, D1, D~ etc .  a n d  di f ferent ia t ing;  w i t h  ::espect t o  d, we  f ind  

a force  : 
~q~l D1D2 1 

F - -  12 D~ 4- D.~ d ~ ' (13c) 

Th i s  is 1 3 r a d l e y ' s  f ina l  r e s u l t  (l.c.p. 856 fo rm.  4). B l : a d I e y  b a s e d  his 
c a l c u l a t i o n s  o n  a force  k/rn to  w h i c h  c o r r e s p o n d s  a n  ( n e r g y  k/(n--1)r(n-1). T o  

o b t a i n  the  a b o v e  exp re s s ion  w e : h a v e  t he r e fo re  in  B r a d 1 e y ' s  e q u a t i o n  to  r ep l ace  
) , / n - -  ! , b y  k a n d  to  t a k e  n = 7. 

5) M. P o l a n y i  a n d  F.  L o n d o n ,  N a t u r w i s s e n s c h a f l e n  IB, 1099 1930. 
6) Th i s  f o r m u l a  has  in  a s l i g h t l y  d i f f e ren t  -way been  derive~, b y  J .  H .  d e B o e r .  See 

T r a n s .  F a r a d a y  Soc.  g 2 ,  21 (1936). 

7) C o m p a r e  the  p a p e r  a n n o u n c e d  in  n o t e  1. 
8) Bes ides  L o n d o n - v  a n d e r W a a 1 s forces  are  d u e  to  ;. p o l a r i s a t i o r  of t he  a t o m .  I f  

t he  forces  a re  s t r o n g  the  po l a r i z a t i on  w i t h  r e spec t  to  on,~ pa r t io l e  wi?I in f luence  the  
p o l a r i s a b i l i t y  w i t h  r e s p e c t  to  t he  s econd  pa r t i c l e .  I n  th i s  respecL e q u a t i o n  (25) m u s t  

be  cons ide r ed  as a f i r s t  a p p r o x i m a t i o n .  

9) F .  L o n d o n,  Z. p h y s i k .  Chem.  B 1 1 , 2 4 6  (1936). 
10) C o m p a r e  T r a n s .  F a r a d a y  Soc. 32 ,  118 (1936), w h e r e  J .  I ~ . d e B o e : d i scusses  t h e  

a n a l o g o u s  q u e s t i o n  for  t w o  a t o m s  i m m e r s e d  in  a l iquid .  

11) J . E .  M a y e r ,  J .  c h e m .  P h y s i c s I ,  278, 1933. 
12) F .  L o n d o n,  T r a n s .  F a r a d a y  Soc. 33 ,  19, 1937. 


