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Generalized Cumulant Expansion Method*

Ryogo KUBO
Department of Physics, University of Tokyo
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The moment generating function of a set of stochastic variables defines
the cumulants or the semi-invariants and the cumulant function. It is
possible, simply by formal properties of exponential functions, to gener-
alize to a great extent the concepts of cumulants and cumulant {unction.
The stochastic variables to be considered need not be ordinary c-numbers
but they may be ¢-numbers such as used in quantum mechanics. The
exponential function which defines a moment generating function may
be any kind of generalized exponential, for example an ordered ex-
ponential with a certain prescription for ordering 'g-number variables.
The definition of average may be greatly generalized as far as the
condition is fulfilled that the average of unity is unity. After statements
of a few basic theorems these generalizations are discussed here with
certain examples of application. This generalized cumulant expansion
provides us with a point of view from which many existent methods in

quantum mechanics and statistical mechanics can be unified.

§1. Introduction

It is well known that the cumulants or the
semi-invariants of a distribution play very
important roles in probability theory.b If
they exist, they determine the nature of the
random variable which we are concerned
with. They are particularly useful for discus-
sion of such asymptotic properties of distri-
bution functions as the well-known example of
central limit theorem. In quantum-mechanics
and in statistical mechanics, similar concepts
seem to be very essential. This fact has
been noticed at least partially in many of the
existent work in the above mentioned fields,

* This work was first reported on February
5, 1961, at a meeting at the Institute of Solid State,
University of Tokyo, and later at the Annual
Meeting of the Physical Society of Japan, April
1961. Some part of the material was discussed at
the Summer School of Scottish Universities at
Newbattle Abbey, 1961, and is published in the
Proceedings.

but it seems that its significance has not been
fully recognized. The purpose of the present
paper is to show how the concept of cumulants
can be widely applied to various problem of
quantum-mechanics and statistical physics,
and that many known formal properties of
expansion series can be most clearly under-
stood from such a general point of view
which is developed in the following. The
author hopes in particular that this point of
view will be of some advantage in order to
clarify the stochastic nature of many-body
systems. He believes that any useful theory
of many-body systems has necessarily to
involve certain stochastic assumptions, which
are not always made clear. This will not be
discussed, however, in any detail in the
present paper, but a lecture of the author?
is quoted with this respect. More detailed
treatment will be given elsewhere.
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4 2. Moments and Cumulants

The moments and cumulants (semi-invariants) for a random variable X are defined by the
moment generating function®* M (€) and the cumulant function K(é):

{esEH= Z E—/xn

el n
=exp {2_‘.1 %xn}aexp K(¢) 2.1)
where the bracket (A) means the expectation of a random variable A. pg. is the n-th
moment and #» is the #-th cumulant. These definitions may easily be generalized to multi-
variant distributions. Let us suppose that we have N random variables Xi,--- Xy. For
these, the moments and cumulants are generally defined by the moment generating function

M, -, Ex)= <expszXf> >h 2( . );z(vl, v)

‘MN——-
— ’ Ej
=exp 2 n-=- IC(IJl,"'lJN)
vy i Y5l
=€exp [K(él, ) EN)] (22)
where >V means summation over vi,---and vy excluding vi=---=vxy=0.

ViV
The following notations are found to be useful:

#(’J)E#(yly STy VN)

=p(X"1- - - Xp'W)=(X"1- - - X#'¥) (2.3)
IC()))E/C(I)l, A} DN) )
=(X¥1- - - XvW)=( X1+ - - X5"¥ ), 2.4)

The suffix ¢ in (2.4) indicates that the cumulant x(») is a certain average of Xi,- - Xy, which
we call the cumulant average. (c might as well be interpreted as conmected in the sense of
the word used in well-known techniques of graphical representation. This will become
apparent later.) A cumulant average is not a simple average, but is defined by (2.2). For
instance, we have

<X1Xz>cE<X1X2>—<X1><X2> .

“Therefore (2.2) may be written as

{exp %ﬁjXﬁ:Z -3 e (X1 - Xyvn)
i= vy

vy=0J !JJ

—exp {2 S e XNVN>C}. @.5)

vi vy 9§ ’JJ

In the last expression the term with vi=---v;=:.-=vxy=0 is omitted from the sum. It is
sometimes very convenient to write

{exp %&Xﬁ:exp exp (X & X5)—1) (2.6)

where < % means that the exponential function in it is expanded and each product
is averaged by the cumulant average.

* Sometimes the function, C(s)=M(is), is more useful. C(s) is called the characteristic function.
of " X.
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Now an important property of cumulants is that a cumulant can be explicitly represented
only by the lower (not higher) moments and vice versa. General formulae for this relation
have been given in literatures. In particular, Meeron® gave the relationship,

n l A k;
M) =—TI 3 (S k—1)(—)™ - {-———“(m*)} : @.7)
P =177 i=1 k! TIm;!
L Tl ' J

N l

In Eq. (2.7), each term corresponds to a decomposition of #= >} v; objects into >} k; subsets
j=1 i=

which may be expressed schematically by !

A
(Xivre - X% - Xwvw) = I (Xymir - - - Xmise - .XN’”iN)"i
%=1

l
(g'i kimij=vj)
and
N
#(mi)=<j£llXj’”“> ,  (mi=0mis, miz- - M)

is the moment for a subset of the i-th kind. The cumulant «(v) is a linear combination of
the products of these subset moments, so that it is represented by lower order moments,
p(ms), with mi<v; (j=1,---N).

We shall not make much use of this explicit form of cumulants, but for convenience of
later reference let us note a few examples:

{XiDe={Xs)
{X#e=(X*>—(X5)?
X5 Xipe={ X Xi)—< X5 X1)
(X X XiDe={ X5 X X1y
— KX X X)X X X +{ XX Xi XD}
F 2 XN X Xa)
(XX X1 XD =L X X X1 Xy
— (XM X X1 Xon +{ XX X5 X1 Xy +{ Xi ) X5 X X ) +-{ X ) X X XD}
— KX XX X Xomy L X XD X Xom ) +{ X5 Xm X X XD}
22X X X1 Xy L X X X Xomp + XK X )X X X o)
X Xy Xy Xomp + L X5 Xa)d Xip{ Xon ) +{ X X)X Xiep{ XD}
— 6 XX Xip{ Xip{ Xm) (2.8)

The expression (2.7) becomes simpler if none of v;’s is greater than one. For example, for-
yr=--- =v,=1

the cumulant «{n} is defined for the set of the variables (Xi, Xz,---X»)={n}, which is.
represented in terms of lower order moments as

d=S0-D! (R g 2.9).

i=
2 {mg}={n}
=1

where p{m;} is the moment for a subset {m:} of the set {#} which consists of m; variables.
and contains any X; at most only once.

Generalizations of the concepts of moments and cumulants are discussed in the following,,
but before such generalizations a few basic theorems will be remarked.

§3. Some Basic Theorems
Theorem I: A cumulant,
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(XX - )=XiXi e

is zero if the elements Xi, Xj,---are divided into two or more groups which are statistically
independent.

Collorary: A cumulant is zero if one of the variables in it is independent of the others.
Conversely, a cumulant is not zero if and only if the variables in it are statistically con-
nected.

The proof is very simple. If the variables (Xi, X;---) are divided into two groups, i.e.

{(X}={X"}+{X""}

which are statistically independent, the moment generating function is factorized as

{exp X EX)={exp X §'X"{exp X §""X"") (3.1a)
because of the assumed independence. Thus the cumulant function takes the form
K{g =Ki{§'}HK{6'"} (3.1b)

50 that the powers of & and those of &/ will never mix. This implies that any cumulant,
in which the variables from the two groups appear, does vanish identically. The collorary
immediately follows from the theorem.

Theorem II: For a stochastic variable X(#), which is a function of a continuous parameter

£, we have
<exp S" X(t)f(t)dt>

—exp { ) nig dty--- S:dtn<X(t1)- X)) -f(m} (3.22)
=exp { g‘,l S:dtlg:dtr . 'S:n_]dtn< X(£)- - - Xt)DeE(t)- - .g(m} (3.2b)

where the cumulant averages are those defined by (2.4).
Collorary: Without losing generality, Egs. (3.2a,b) may be written as

<exp S:X(t) dt>

—exp { glﬁsbdzy .. detn Xt - -X(zn»c} (3.32)
ol -
=exp { n2=:1 Sadtls:dtz‘ .. Sa dtndX (1) - - X(t'n)>c} (3.3b)

by putting &(#)=1. Eq. (3.3a) may also be written as

<exp S:X(t)dt>=exp {<exp S:X(t)dt—1>c} 3.4)

symbolically with the convention introduced by (2.6).
For the proof of (3.3a), let us write

<exp SbX (t)dt> hm , exp i}le(tj)Btj>
@ Max §t—> i=

where 6¢;’s are small intervals which cover the whole interval of the integration, and #; are
chosen in each interval 6f;. Now the set of variables X(¢;)0t;(j=1,---N) replaces the set
of variables X;&j’s in Eq. (2.5). But the cumulants with any of v; larger than 1 vanish in
the limit of Max 6f—0. For instance
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lim % CX(E5)25ed2=1im 0(54) Sb<X(t)2>cdt:0 .

Therefore Eq. (2.5) reduces to (3.3a) in this particular case. Eg. (3.2a) is equivalent to

(3.32) since X(¢) in the latter may be replaced by X(#)é(). Egs. (3.2b) and (3.3b) follow from

Eqgs. (3.2a) and (3.3a) by restricting the integration domain to 1/z! of the domain (a, b)".
Eqg. (3.3) may be generalized to

<exp S" S X0 dt>

—exp { i;;l'— g:dt1~ . Sidzfn 2B - ~Xjn<tn)>c} (3.5)
and .

<exp SS X(s, t)dsdt >

—exp { 5 —andel . -gdsn Sdtl . -Sdt,KX(sltx) o X(sntn>c} 3.6)

and to variables depending on more parameters.

In the above expressions the averages denoted by < Y are the -cumulant averages and
so may be expressed in terms of lower order moments as given by Eq. (2.9). More
important is to notice that the variables in each cumulant average must be statistically
connected or linked. Otherwise it vanishes by TarEoreEm I. This is the most general logical
ground to introduce the concept of linked or commected clusters or diagrams as used in
various methods in quantum-mechanical or statistical-mechanical theories.

§4. Rearrangement of Cumulant Expansion. Cluster Expansion
It is sometimes necessary to rearrange the cumulant series K(1, &, -+) in another form,

Vi
K&, 52.---):2'11%x(v):; K. 4.1y

K2 4.
There are a great variety of the principles for such rearrangement. The general purpose
is to improve the convergence of the series in order to secure a better approximation by
retaining only the lower order terms in the new series, 2; Ki. The choice of the rearrange-

ment principle depends on the nature of the particular problem. The improvement of
convergence must be, in principle, proved mathematically, but such a mathematical proof
is rather seldom to be given. Mostly it is just anticipated by a physical intuition.

Here we discuss only an example of rearrangement procedure of the cumulant series in a
formal way without examining convergence. This is a kind of “ cluster *’ expansion as we
shall see immediately. Namely, we first collect all the terms in the cumulant series which
contain a particular variable X;. We call this Ki(X;). This is given by

Mi(Xs)={exp &:Xs)=exp Ki(Xi) . (4.2)
Therefore the first term in K-—; K, may be chosen as
K= Ki(X;) . 4.3)

In Eq. (4.2) the notation Mi(X;) is introduced for the moment generating function of the
single variable X;.
The next term K: will be of the form

Kzz(Z KZ(Xi, Xj) (4-4)‘

%, 3)
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where Ka(X:, X;) is the collection of all the terms in the cumulant series that contain two
variables X; and X;. It is easy to see that

__MxX, X5)

exp KX, Xj)_m

(4.5)
because
M:(Xs, X;)=<{exp (§:Xi+&§;Xi))
= exp {K«(X:)+K:i(X;)+ KXz, X5)} .

We may proceed in this way to obtain an expansion of the form
N
K= 2=]Z(n) » Kn({n}w) 4.6)

by introducing the functions K.({n}») for the collection of all the terms involving the
cumulants which contain any of the variables

{n}NE(Xip Xiz’ M) ‘X’Ln) (4'7)

at least once. {n}y denotes a set of # variables selected from N variables Xi,---, X». The
expression (4.6) is simply a rearrangement, so that there is no danger in the convergence
problem as far as N is finite and the convergence of the moments is assured. There occurs
the question of convergence when we go to the limit of N—oo.

The same principle of rearrangement applies to more general cases where we have a
hierarchy of functions Un({n}») which are functions of # variables,

{n}N:(Xily Xiz, Tty an) (4"8)
selected from a given set of N variables
{N}:(X17 XZ:' ° 'XN> . (4.9)

Since U.({n}~) is defined for any set of variables {#} in {N}, we may define its moment
generating function M.({n}») by

M({n}y) =<{exp U.({n}»)) . (4.10)

Then the functions Kx({n}x) may be introduced exactly in the same way as before and the
cumulant function K{N}) defined by

M({ND=<exp UN})y=exp K{N}) (4.11)

is expanded in the form

K(N)=2 5 i Kolfnla) - ®12)

For the explicit from of K.({n}») we have the following theorem:
Theorem III: In the cluster expansion (4.12) of a cumulant function K({r}), the cluster
cumulant function K.({n}») for a set of n variables, (4.8), is given explicitly by

Eulln}n)=3} (=) S, log Milll}x) (*13)

or

_ Mu(n}x) 0 Mao({n—2}x)-------- I M(i, j)
exp Kx({n}x)= I My—i(n—1}x) I Mas(in—3}x)- - - 1L Mi(3)

(4.14a)

if » is even and
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I Mu—2({n—2}x)- - - I Mi()

exp Bllr) =Mal)0) T 3™ (1)) -1 MG, 5)

(4.14b)

if # is odd. In the above expression, (4.13), {{}» is a set of [/ variables selected from the set
{n}x.

Eq. (4.13) is proved by mathematical induction. Let us consider a set of variables, {#+1}x.
Our definition of Kx’s is such that

n+1
log Musi(n+1kw)= 3 Sitmi,, 1 Km(lrm})
= 3% Sty Konllmh) + Knsa(fn+11), (4.15)
Eq. (4.13) is now inserted into (4.15) to give

Kuni({n+1}x)= —mi:lZ{m}nHl%(—)"‘" Zqym log Mu({l}w)
+log Mut1({n+1}w) . (4.16)

On the right hand side, each term, log Mi({{}»), appears repeatedly in the sum. Its coefficient
is found to be

1_<n—i+1>+<n—é+l>+'“ +(_)n_l<n;l_—ll—1)

_—_(1_1)71.—I+1_(_.)n—l+1:(__)n—l

which verifies Eq. (4.13).
Egs. (4.3), (4.5) and (4.6) correspond to the simplest example for which the functions
U({n}x) are

U({n}x) =, g;b }&Xi .

Corresponding to Theorem I, vwe have the following theorem:
Theorem IV: If the set {#)~ is divided into independent sets {#’}» and {#’’}», namely if

my={nty+{n"}tx

and

Ma({n}w)=Muw({n'}x) X Mu({n'"}x) 4.17)
then

K.({ntw)=Kuw s +0n""})=0, (4.18)
and more generally

Knrsm({m’ o+ {m }urr) =0 (4.19)

if neither of {m’} and {m’’} is empty.
The proof of this theorem is almost evident, because we have

M({n}x)=Mu({n'}x) X Muw({n'"}x)
=exp [3 Siw - S 7 Kl lm' b+ m 1)
—exp [3 S Kl 1] exp [ 3 S o Kl )] (4.20)

We may call a set of variables {n}, (4.8), a connected set if (4.17) does not hold for any
separation of it. If a certain choice of {n’} and {#’’} makes (4.17) valid, then it is called an
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unconnected set. A cluster cumulant function K.({n}r) defined by Eq. (4.13) for a connected
set or cluster {#}» may be called a (connected) cluster cumulant function. Theorem IV
shows that the cluster expansion (4.12) consists only of connected cluster cumulant functions,
the unconnected ones being automatically dropped out.

§5. Generalized Exponential Functions

The concepts of moment generating functions and cumulant functions as introduced in
§ 2 will be generalized in the following. The generalization may be made in two directions.
The first is generalization of the definition of exponential functions and the second is
generalization of the definition of average.

Let us begin with the first problem. An exponential function exp x, is defined by a power
series,

er= i L X" (5.1)

n=0 7!

This definition gives the relation,

eTHy— i L(,H_y)n (5.2a)

n=0 7!
=y L sl . (5.2b)

p! q! ’

=e®-ev, (5.2c)

Now let x and ¥y be g-number variables rather than c-numbers. Then x and y are not in
general commutable, so that some prescription is needed in defining a mixed product of x
and y. For example, a totally symmetrized product of x and y may be defined by

Pyal — p ! q! P 1q

{x?y%}s Y >ip P(x? y9) (5.3)
where the operation P means permutation of the order of x and y in all possible ways. The
total number of such permutations is (p+¢q)!/p!q!. Ordinarily an exponential function
exp (x+y) for non-commuting x and y is defined by (5.2a), which means that any product
involving x and y is totally symmetrized, so that the equality (5.2c) does not hold. It is,
however, important to notice here that the equalities (5.2) could be recovered if we introduce
the symmetrization operation S by the definition

S(xry)={x7y%}s (5.4)
and interpret the equation
est¥=e%Y
as
erty=ggs"tv=8(e*+¥)=S(e*-e?) . (5.5)

Thus a symmetrized exponential may be explicitly denoted by the subscript S to e or exp.
Eq. (5.2) is interpreted by this prescription as

e =3 — S(r-+3)"

=33 — S(xry)=S(e*-ev) . (5.6)
» ¢ plg!

There can be many ways to generalize exponential functions by introducing a certain
prescription of ordering. For instance, instead of symmetrization, a total separation of x
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and y may be prescribed. That is, in a product involving x and y, x comes always to the
left of y. If this ordering is denoted by O, such an exponential is defined by

ezti=e%el (5.7)

Eqg. (5.2) then means
e§I=1 = O(x-+y)"

“EoreBgpyeee.

A well-known example of ordered exponential is that ordered in chronological order. If
the variable X(#) is a function of the real parameter ?#, the chronological order gives the
prescription that X(#)’s should be ordered in increasing ¢ from the left or from the right.
Thus, for instance, we have

Yyongir— s L (0
eXpoSOX(t =3, = Sodtl ng’tnO(X(tl) X(t)
=5 S: dhg:ldtz- . S:n_ldtnX(tl)X(t2)~ Xt (5.8)

if the prescription O means the ordering of X(¢)’s from the right in increasing #.
Another example of ordering is given by

expos S¢+<x>¢< WA, y)dxdy
= i;l— Sdm den del- . gdyn0<¢+<xl>¢<yl>¢+<xz>¢<yz>- G ) Alxiys) - - Aaya))
Eg 71-1—&01;;1 den del- - ~den¢+<xl)- )P (In) - - P9 Alxiy) - - - Alknya) 5.9

where ¢+ and ¢ are quantized wave functions and A(x, y) is simply a ¢c-number function of
x and y. This is useful in statistical quantum-statistical mechanics of many-body systems.
More generally an ordering prescription may be defined with respect to a discrete para-
meter, a continuous parameter and the different classes of variables. For such a generalized
ordered exponential function, Eq. (5.2) may be regarded as valid by a suitable interpretation.
We may also introduce different kinds of generalized exponential functions. An example
is provided by

N oo
exprL (2 X)=> .__1_'_ LX)
i=1 n=0 7!
=143 Xit 3 XiXit -+ Dpury Xy Xy +
% %3
=fa+x (5.10)
=1

where the operation L may be called the leveling because it levels off a product of Xj’s by
erasing out those terms in which any of X’s appears with a power higher than one. For
this leveled exponential function we have

expr (3 Xi+ X Yy)=expr (X Xi) expr (X Y5)
=IIA+X)OQA+Y5) (5.11)
Thus Eq. (5.2) again is applicable by interpreting the products always to follow the leveling

operation.
In Eq. (5.10) we did not give a prescription for the ordering of X’s. But in some cases
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it becomes necessary to define an ordering prescription, so that it may be a leveled and
ordered exponential.

§6. Generalized Moments, Cumulants and Cumulant Functions

If a certain average operation A is defined for the variables (Xi, Xz,-:-, X») in such a way
to allow convergent moments and a moment generating function, we may write

N N
A(exp S e )E<exp Sex; >
=3 S I A X 6.1y
yi=0  vy=0 ;!
This average is assumed to satisfy the normalization condition

AQ)=1. 6.2y

When X;’s are g-numbers, it is sometimes necessary to introduce an average operation which
leaves the averages of these variables still g-numbers. In such cases the moment generating
function, (6.1), is still a g-number and the unity on the right hand side of Eq. (6.2) must be
the unity in the field of such ¢g-numbers. Thus it is important to note that the concept of
average may be quite freely extended as far as a certain condition of convergence and the
normalization condition (6.2) are fulfilled.

With this possibility in mind we now remark that the moments and cumulants may be
widely generalized. Let Xj’s be c-number or g-numbers and let the exponential function

expq (X §:iX)=Q exp (X £: X) (6.3)

be a generalized exponential function which is defined by a prescription Q, which operates
on any product of X’s to give, for instance, certain ordering or leveling. The parameters.

&1, -+, &y are regarded simply as ordinary c-numbers. Then Eq. (2.2) may now be interpreted
as
(expe S Xy =3+ 3 T AQ I Xi) (6.42)
vy vy i Vil

I
—expa{ 3 ME0etus o 0 | (6.4b)

vy il
=expg {K(61,- -+, Em)}. (6.4c)

Eq. (6.4a) defines the generalized moments
v, -, vr)=AQII X3 . (6.5)

The second equality, (6.4a,b) defines generalized cumulants. If the average operation A is
such that gives simply c¢-number moments, there is no need to retain the subscript Q for
the exponential in (6.4b) since it is an ordinary exponential, and so Eq. (2.7) as it is holds
for the cumulants x(»). If, on the other hand, the average operation A leaves the moments
still g-numbers, then it becomes necessary to specify the exponential in (6.4b) by the subscript
Q, for it actually means

epo 37 M50 =3 Lo & ee)”
Vitevy vil n: Vi

n=0
f,i ). 6.6)

= > 1
N

vyeeey

The operation Q here takes care of necessary arrangements of g-number £(v)’s. By solving
Eq. (6.6) we have again Eq. (2.7) but with the complication that all products of X’s in the
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moments and products of g-number moments have to follow the prescription Q.

Therefore Egs. (6.4a,b,c) can be used even with these generalizations of exponential
functions and the definition of average. It now remains to see if the Theorems I-IV also
allow such generalizations, but it is actually almost evident.

The concept of connected or unconnected is based upon the relation (3.1) for unconnected
sets {X’} and {X”’}. But weé have seen already in §5 that Eq. (5.2) may be regarded as true
if the prescription is kept in mind in order to define the exponential functions properly.
“Thus Egs. (3.1a, b) are interpreted as

{expq X EX)=Q<expq X §' X" ){expq 2§/ X"
=expq {K1(§)+ K2(§")} 6.7)

-‘which shows that the powers of & and &’ will never mix in the cumulant function if the
sets {X’} and {X”’} are unconnected. Thus Theorem I holds quite generally.

Theorem II holds evidently irrespective of the nature of the variable X(f) or the exponential
function or the definition of average, since it only depends on the continuous nature of the
Pparameter £.

Theorem III states a particular kind of rearrangement of the cumulant series. Any kind
of rearrangement can be made for generalized cumulant series if the proper prescription is
always followed strictly. Thus (4.13) may be applied if log Mi({l{}») in it are properly
constructed. This can be done by expanding the logarithmic functions in powers of the
moments and all kinds of products in the expressions of the moments and the products of
moments are dealt with the given prescription.

The above arguments are summarized by

Theorem V: The concepts of moments, cumulants and cumulant functions can be genera-
lized to c-number or g-number variables for which an average operation is defined and a
certain prescription for defining their products is given. Theorems I-IV allow such
generalization.

Eq. (6.4) may be written as follows:

<epr é £ X >=epr Cexpo (3 6:X)—15% (6.82)
—expo { sr néqu Xm>c} (6.8b)
ViV ;!

where <QII X;¥), is a cumulant which may be explicitly expressed in terms of the moments
as

QUXDe=—Tul 5 5 (Shk—DI-)™

3 kgmii=v;
Pl e

xQ oL {w}k‘ 6.9)

i=1 k;! II mi5!

by generalizing Eq. (2.6). Thus interpreting the symbolical expression (6.8a), the operation
“c” which constructs cumulants out of the variables inside, must be done first, then the
operation Q for the products of the variables, next the average operations, and finally the
operation Q is again considered, if necessary. In this way one can construct formal expres-
sions of the cumulants and cumulant functions.

A few example may serve for illustration. Let the variable X() be a g-number for which
the ordering (5.8) is prescribed. If an average operation A is defined which gives c-numbers
after average, we may write

<expo S:X(t’)dt’> =exp<expo SZ X(t’)dt’—1>c=exp K®). 6.10)
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Therefore the cumulant function is given by

K@) =§l—nl—, Stdtl- : -Stdtn<OX(t1)- X (E)e
:él gt dhgtl dtz' . Stn—l dtn<X(tl) . X(t’rb)>c . (611)1

The cumulant averages may be represented by moments as shown by (2.9). For example,
COX(#1) X (t2)De =< X(#1) X(t2)> — <L X (#1) ){ X(t2))> if #>t ‘
= X(#2) X(#1))— X (#:) ) X(£2)) if t<tz,
COX(#1) X(#2) X(#3) e =< X(#1) X(£2) X(¢3) ) — { X (A1) Y X(t2) X(25))
— (X (2) ) X (1) X(#5))—< X)) X(¢) X(22))
+2{ X (1)) X)) X(t3)) if t>t>1s. (6.12)»

If we have
XO=Y®Z(@) (6.13)

where Y(#) and Z(f) are both g-numbers and the average operation A is defined only for
Y(#)’s, then the expressions (6.10)-(6.12) become g-numbers so that one has to keep a certain.
prescription for ordering Z(#)’s. Thus, if

0=0r0z (6.14):

is an ordering prescription, Oy and Oz being those for Y(¢)’s and Z(¢)’s respectively, we have:

<expo {S: Y(t’)Z(t’)dt'}> —expo, <expo (S: Y(t’)Z(t’)dt')—l >

=expo, K(?) . (6.15)

The cumulant function K(#) is defined here for the exponential function ordered with respect:
to Z(t)’s as

K(t)= g:—an S:du. . S:dmo YN Z(E) - - - Y(En) Z(En)e

=5 St dtlgtldtz- : -S:”—ldM YU Z(t)- - Y(ta) Z(ta) > : (6.16):

n=1 Jo 0
For a leveled exponential (5.10) with a c-number average, we have the following example:.

{expL X & Xi)=-exp {expL >, §:Xi—1)c

=exp K(&) .
K©=X---3/1I %{L T X% 6.17)>
v, Yy ;!

Following the instruction given by Eq. (6.9) the cumulants are explicitly calculated. For-
example,
LXGpe=<{Xs)
LX3%e=(LX;*)—<LX;>*=—{X;>*
LXG%e=(LX;%) —3LX5>{LX;*) +2(LX;>*=2( X;>*
LX: X5De={ X X;)— < Xi){ X3 if i#j5
LX:?X5e=(LX:? X5 — 2L X)L X: X)) — L X3 LX)+ 2L X)X LX)
=—2{XiXXi X5+ 2K X)X XD (6.18)»
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and so on. But this example may be calculated more conveniently using the cluster cumulants
by Tueorem III. Note that

expL ( =§1 X ):H expr £ Xi=TT (1+6:X5) (6.19)

and so
Mu({n}w) ={Um(1+&:X0)) (6.20)

By Tueorewm III, we have

N
<eXpL 26X >=exp Kyv=exp > Kn (6.21)

where
Kl—_—iz log Mi(X;)= ; log 1+ X5D)

=3 (=X,

Kzz(% log { Ma( X X5)] Mi(Xa) M(X5)}

= £ (XiXipe

$§7. Applications to Physical Problems

In order to illustrate the usefulness of the present method, we shall briefly sketch a few
examples of physical application. More detailed treatments will be published elsewhere.

Q) Ursell-Mayer Expansion of Classical Gases: For a classical gas, which is assumed
for simplicity to consist of structureless mass points, the partition function Zxy is written as

Zy=Znexp (—BU{N})> 7.1)
where

4s the kinetic part of partition function and U{N} represents the interaction potential of N
mmolecules. The average in (7.1) is defined by

Cexp (—BUINDY= V—NS . Sexp (—BUINDAIN} 72

-where d{N} means a volume element in the configuration space of N molecules. The
.cumulant function for this is nothing but the interaction free energy Fx’, so that the free
energy may be expanded in cluster cumulant functions by Eq. (4.12). The result must be

identical with the known Ursell-Mayer virial expansion.
If the molecular interaction consists of two particle interactions, it is very convenient to

“write
exp (—BUIND=exp (— B 3 uij)
=(g) I+ fiz)
=expr (%) fis) (7.3)

~where u;; is the pair interaction potential and fi; is defined by

Sfij=exp (—Buij)—1
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as usual. In the last expression of (7.3) we have introduced a leveled exponential. Therefore
one may write

—pFx'=log {exp (—BU{ND)
=log exp {expr, (@Ej})ﬂj)—lk
={expL (%})fij)—Dc . (7.4)

This is similar to the example (6.17) discussed previously. The general term of expansion
of (7.4) has the form

<II fipe (7.5)

where the product II is taken over a specified set of pair bonds. By Trreorem IV, the set
of these pair bonds must be comnected, for otherwise (7.5) will vanish. It is obvious that
the set of bonds is unconnected if the bonds do not connect all of the particles involved,
but a connected set of bonds means more in this case. Since the pair interaction u;; is
assumed to depend only on the relative position of two particles, the condition (4.17) for an
unconnected set allows us to identify the concept of a commected set with the irreducibility
of a cluster integral familiar in Mayer’s theory. Furthermore one sees easily that

K fispe=<IL fii){1+-O(V=1)} (7.6)

in the limit of V—co, so that the subscript ¢ on (7.5) may be dropped by remembering,
however, that the bonds are connected. If # molecules are involved in the set of bonds in
-question, the expression (7.5) is in fact of the order of V—"*! as is seen from the definition
of average: i.e.

< fip=v-r|--- |1 fidi)

:V—ng... Snﬁjd{n}
=V—<“—”S - Sn Fuidin—1} . @.7)
In the expansion of the cumulant (7.5) in lower moments by Eq. (2.9) those lower order
‘moments give only the lower order terms in 1/V, because some molecules must be counted

at least twice or more in different sets of bonds corresponding to a decomposition to a number
of lower moments. Therefore Eq. (7.4) gives

=S (N]) s g @.9)

n=1 connected

where the superscript (z+1) indicates the number of molecules in the connected set of bonds
defining II fi;. Taking the limit of N—co and V—oo, Eq. (7.8) will give

—BFy =N Pr_yn -
PRy'=N3 Lro™,  @=VIN) (7.9)

where the irreducible cluster integral 8. is defined by

!
S figyrn =2, (7.10)
connected V™
“This in fact coincides with the usual definition of Ba.
(2) Ursell-Mayer Expansion for Quantum Gases: The quantum-mechanical partition
function may be written as®
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ZN:ZN°<exp+ <—S:UN(z)dz>> . (7.11)

The kinetic part of the partition function is defined by
Zx*=Trace (exp —BKw)
where Kx is the pure kinetic energy. Ux(2) in (7.11) is defined by
Ux(A)=e*xUy e Ex (7.12)

and there the exponential function is ordered chronologically in 2. The average in (7.11) is
defined as

<exp+ (— S: UN(z)dz>>:(ZN°)—l Trace e-PX¥ exps <— S: UN(z)dx) (7.13)

so we have
—BFx'=log Zn|Zx"

=<exp+ (_ S: UN(z)dz>—1 > (7.14)

for the interaction free energy. One may introduce here a leveled exponential if Ux consists
of pair interactions. Namely Eq. (7.14) can be written as

—BFx'={Iy A+ fii)—1De

=<{exp+r (%‘,)ﬁj)—bc (7.15)
with
fiz=exp <—Spuu(l)d1 )—1. (7.16)

Here the subscript + takes care of ordering in 2 and L means the leveling. In Eq. (7.15)
fii’s actually involve the integration parameters 4, and so they ought to be ordered. The
general principle of constructing the cluster cumulant functions is similar to the classical
case, but the concept of irreducibility has to be modified, because the interference effects
are present due to the wave nature of the particles. Thus, for instance, fizfzs is not
reducible any more. We shall not go into further details here, but it is rather easy to write
down some formal expressions, if necessary, for the first few terms of the virial expansion

from (7.15).
(8) Perturbation Series in Quantum Mechanics: If the Hamiltonian of a system is given

by
=S4+ A (7.17)

where S#% is the unperturbed Hamiltonian and S#5 is the the perturbation, the quantum-
mechanical equation of the state vector takes the form

l%tb‘ =240y, SAW)=exp (it S£%) 7 exp (—it S7%) (7.18)

in the interaction representation. This is integrated to
()= U(£)¢(0) (7.19)

with the use of the transformation U(#) as given by, with the use of an ordered exponential,

U =exp (it S73) exp (—ité’/)=exp+( iS’ %(t')dt’) . (7.20)
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The diagonal matrix element of U(#) is, in the representation diagonalizing S#%,
£
(e U@ =(a]exps "S SAEd ) )
0

:<exp zS: g//;(t/)dt/> (7.21)

where the average { ) is defined as the diagonal element to the unperturbed state . Thus
we may write

(@l U®la)=exp <exp+ ( zS: SAW)dY ) -1 >c=e7‘“. (7.22)
The cumulant function 7(¥) is now written as

rt)= éli"S:th:l dts-- -S:“‘ldtn<%(t1)- - ). (7.29)
By Laplace transformation, it becomes

© - -t . 4
S 7(t) e=e-ife tdtzg e~6-iBatds 1 inS dis-- - S ! At e=it1Pa
0 0 n=1 0

0
XLl SA1|B) €178~ B(B| SAY) - - - e nu(p| S| @))e eitnPa
1

:—(_s——iET)Z(aIF(S)Ia) (7.24)
where I'(s) is defined by
1 i »
F(s)—l. P %(S_i% %) > (7.25)

The subscript ¢ means that the operators inside are connected. By Theorem I one sees
easily that a never appears in the intermediate states. But this concept of connected
cumulants can be greatly generalized if 5#7 consists of many terms as one often meets in
treating many-body systems. In such cases, some graphs are seen to be unconnected even
when the initial or the final state never appears at the intermediate stages®. Generalizations
of the concept of commected and unconnected originate from Theorem I but depend greatly
on the particular type of the system in question. Eq. (7.25) is a well-known formula in
perturbation theories”.

4) Random Frequency Modulation: A simple oscillator with modulated frequency may
be represented by the equation of motion,

x=io(t)x (7.26)
where

o(t)=wo+oi(t)

is the frequency, wo being the average frequency and wi(#) the frequency modulation. There-
fore wi(#) may be assumed to be averaged to zero, i.e.,

{ou()>=0. (7.27)

Since o(t) is now regarded as a stochastic process, the solution x(¢) of Eq. (7.26) as given by
t

£()=x(0) exp (ZS w(t’)dt’)) (7.28)
0

defines a stochastic process derived from the basic process «(%).
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The correlation function of x(f) is defined by
€
<x(l‘)x*(0)>=<lx(0)12><eXp ZS w(t’)dt’> (7.29)
0

where we assumed that the stochastic process o(¢) is independent of the distribution of the
initial value x(0). We are now interested in the normalized correlation function x(2),
namely,

@) =<{x(B)x*(0)>/<|x(0)]*>

:<exp ZS: o(t"dt" > (7.30)

=exp {iwot +¢(1)} . (7.31)

Here ¢(#) is the cumulant function for the stochastic process wi(¢) as defined by

¢(t)=<exp (i S:wl(t')dt’>—1 >

=§1i,,gt dl‘lgtldz‘z- . gt”‘ldtn@l(n). et (7.32)
n= 0 0 0

The effect of frequency modulation is determined by the nature of this function ¢(#), which
depends essentially on the relative magnitudes of the modulation amplitude of ®.(f) and the
speed of its temporal change. A well known physical example is provided by the narrowing
phenomena in magnetic resonance spectrum. The modulation amplitude of w:(f) may be

measured roughly by
Ad={o¥))/? (7.33)

and the speed of the modulation by
rczsw<w1(t)m1(0)>dt/42 (7.34)
0

which may be called the correlation time of the modulation. If the modulation is slow as
represented by the condition
4d-ze>1, (7.35)

it may be called quasi-static, and the spectrum of x(¢) reflects directly the distribution of
the modulated frequency (f). On the other hand, if the modulation is fast so that the
condition

4-z. <1 (7.36)

is fulfilled, the spectrum of x(¢) is narrowed and it approaches to a Lorentzian form with
the half-width,
ljr=4%<. . (7.37)

More detailed treatments of this problem are referred to preceding articles of the present
author.2.®

5) Random Perturbations in Dynamical Systems: Let us briefly remark an important
resemblance between the foregoing example of random frequency modulation and the
dynamical behaviour of a system which suffers a perturbation of some stochastic nature.
The dynamical motion of a system may be described in terms of the Hamiltonian equation
of motion,

dpi__ 02  dgi I
dt dq; dt — op; (7.38)



1962) Generalized Cumulant Expansion Method 1117

‘One may, however, equally use the Liouville equation in the phase space,

(b, qst) 7 (02 0 357 8
ot _ZLf_Z< dq; -0p;  p; an)

for the distribution function f(p,q;f). L in (7.39) is a linear differential operator which
-constructs the Poisson bracket for 5% and f. If the unperturbed motion of the system is
-determined by the Hamiltonian S#%, the interaction representation introduced by the trans-
formation

(7.39)

J

(D, q;D)=eitolf (p, q;t) (7.40)
transforms Eq. (7.39) into
af__ o« D A
37—1L1(t)f. (7.41)

Lo in Eq. (7.40) is the unperturbed Liouville operator, and I:\l(t) in Eq. (7.41) is a modulation,
Li(t)=e-%0t Lyeitot=e~To{(L— Lo)eiLot (7.42)

‘Similarly, the equation of motion of the density matrix of a quantum-mechanical system,*

.0
;ﬁz[% ol=57%p (7.43)
‘may be transformed into the interaction representation
00 A o . R
a—f =%[.§%<t),pls—} A D (7.44)

by the transformation
p(t)=exp (—i2F0*t)p(t)=exp (—i SFt)b exp (i SF0t). (7.45)

Egs. (7.41) and (7.44) are quite similar to Eq. (7.26). The only difference is that :(¢) in
‘Eq. (7.26) is now replaced by operators operating on functions in the phase space or the
space of density matrices. The formal integral of (7.41), for instance, is written as

F®)= expo <z St L@t ) -£(0). (7.46)
0
‘Similarly for Eq. (7.44) we have

b(H)=expo (i‘lgz SAW<ar )-,:(0) . (7.47)

In the above expressions the exponential functions have to be ordered chronologically. If

the perturbation I:I(t) or 92’1(1,‘) can be regarded as stochastic in some sense and if the
average can be defined for the ensembles of such stochastic processes, f(¢) or p(#) as given
by (7.46) or (7.47) may be averaged. The results may be expressed in the form

{F(t)y=(expo &t))- £(0) (7.48)
O
o)y =(expo @) $(0) (7.49)

where %(#) or £(#) is a generalized cumulant function which is generally a ¢g-number and
the exponential in each case has to be ordered by a certain prescription. The temporal

* The operator a¢X is defined by a*b=l[a, b]. This is conveniently used in dealing with quantum-
imechanical equations of motion?.
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behaviour of the cumulant function will determine the stochastic nature of the dynamical
system. This may be understood by an analogy to the concept of random modulation and
the narrowing condition mentioned previously. Usual perturbational treatment or more
generally the damping-theoretical treatment corresponds to the case where the narrowing
condition in some sense is satisfied.? It is also clear that Eq. (7.18) for the state vector
can be looked from the same point of view.

6) Relaxation Function: If a force F(f) acting on a system has the variable A as its:
conjugate, the linear effect of F(!) on a dynamical variable B of the system, which is.
assumed to be nearly in equilibrium at a temperature T=1/k8, is described by an addmit-
tance yza(w) or a relaxation function @z4(f). The latter has been shown to be given by?

@BA(t):Trace{ exp (—B.S7) SBA(ow(t)} / Trace exp (—BS7) . (7.50)

We have assumed here for simplicity

{A>=Trace (exp (—B57)A)/Trace exp (—pS#)=0 . (7.51)
In Eq. (7.50) A(2) and B(t) stand for
AQ)=exp (1 2#) Aexp(—157) (7.52)
and
B(t)=exp (it 7 |#) Bexp (—itSZ %) (7.53).
respectively.

For calculation of the relaxation function (7.50), the following method may be useful. Let
us introduce a generating function Z(a, b, t) by the definition,

Z(a, b, t)=Trace exp—(BS# —aA) exp (bB(¢)) (7.54)

for which we see that

2@, 5. 8| _Trace exp(—BS7) SBA(Z)dx
aa a=b=0 0
=pTrace exp(—p2#)A=0 (7.55)-
and
KA ) —Trace exp (—B.SF )SBA(R)dzB(t)
aaab a=b=0 0

=700, 0, 0) Pra(?) . (7.56) -

Now the Hamiltonian S#° of the system is assumed to be divided into the unperturbed part .
S# and the perturbation S#5. Then we may writte

Za, b, 1)
B
=Trace {exp (—BS#0) exp+ [——So {%(2)—61%1(2)}07]'

exp_ih‘lgt SPX()dt -exp bBY(D) } (7.57)
0
by introducing the ordered exponentials

exp+ {— S:X(l)dl}

- g](—)nrdzl ‘:ldlz- : -Sf”"‘dz,,X(zl)- X0 (7.58) -

0 J
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and

exp. St Yt
0

s Stdtlstldtz- : -St”“ldtnmn) Y(tas)- - Y(to) . (7.59)
0 0 0

n=0
In Eq. (7.57) B%(%) represents the unperturbed motion of B, i.e.
B'(t)=exp (it S#0/#%) B exp (—it S#0lh) .

‘"The expression (7.57) of Z(a, b, t) is now written as

Za, b, t)
:Zo<expp{ S (AR —aAR)drA+ — S SAX(Nd +bB(t) }>
=ZyexpK(a, b, 1), (Zy=Trace exp (—BS#)) (7.60)

where the ordering P now prescribes the ordering of S#(2), AQX), S#4%() and B(t) as
explicitly indicated in (7.57). Thus exp® here is a complex generalization of ordered exponen-
tial. By virtue of Egs. (7.55) and (7.56) we find

2, b, ?) L K| K
Baab a=b=0 Zoe a aba b=0 Z(O 0 0) a aba. b=0
so that we have
PK
Cuud=5 2|
:<P exp _S 9//@)&) S A(2)d2-exp-L S PNt B°(t)> (7.61)
0

‘where the ordering operation P works on every product in the expansion of the expression
in the cumulant average. Eq. (7.61) has some connection to those methods used by Montroll
and Ward® and by Izuyama.!® Further application of this method will be discussed else-
‘where.

Another method of applying the cumulant expansion for calculation of the relaxation
function (7.50) is to write it as

Trace exp (~ﬁ%)§ AW exp (22 0B

Dpa(t)=
Trace exp (— ﬁ%)g AQNdiB

<expv S P (t’)dt'>

=exp {¢(®)} . (7.62)

Namely a particular kind of average process is introduced here for the ordered exponential
t

Aexp_{(i/h)g %X(t’)dt’}. The cumulant function ¢(#) is simply a c-number, which may be
0

expanded as
o)=L S(%X(t’»dt’ —S dnS Ll SEK) S U)ok . (7.63)

‘The simplest approximation is obtained by terminating the series at the second order, which
is allowed if a Gaussian nature can be assumed in the stochastic behaviour of the pertur-



1120

bation ZZ4(1).

behaves as

Ryogo KUBO

¢(t>~‘_t/fr

for practically important regions of .

(Vol. 17,

Further, if a certain narrowing condition holds, the cumulant function ¢(f)

(7.64)

The relaxation time =z, may be approximately estimated by

. rdt Trace exp (—ﬁ%)gﬁA(l)dx-B(t)

rdt Sfdﬂ Trace {exp (—B.S7) AN BE)

Trace exp (—p5# )S ﬁA(i)dﬂB

(7.65)

Ssdl Trace {exp (—B2#)A(4)B}

This approximation corresponds to the cru-
dest Griineisen formula in the case of
electronic conduction in metals!?, but still it
is very conveniently applied to' various pro-
blems.®

§ 8. Conclusion

We have so far tried to show how greatly
the concepts of cumulants and cumulant
functions can be generalized and how these
generalizations may be applied to physical
problems. Of course, many of such generali-
zations and applications have been done by
various authors for various problems. But
such an unified point of view as developed
in the present article seems to be very useful
to obtain insights into sometimes very much
complicated problems which often look quite
different from each other. More detailed
discussion of this subject is hoped to be
published in the Supplement of Theoretical
Physics in the near future.

This study was partially financed by the
Research Fund of the Ministry of Education.
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