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The electrostatic contribution to the bending moduli of an amphiphilic monolayer is 
calculated on the basis of the Poisson-Boltzmann equation. The electrical free energy for a 
spherical and cylindrical surface is expanded in inverse powers of the radius of curvature a. 
The coefficient ( l /a)  2 in the electrical free energy gives the bending elastic moduli. 

1. Introduction 

In recent years it has become increasingly clear that for the understanding of 
the physics of amphiphilic monolaycrs and bilayers the curvature elastic 
properties [1, 2] of these systems play a key role [3]. For example the intricate 
phase behaviour of microemulsions appears to be largely controlled by the 
curvature elastic moduli of the amphiphilic layers in these systems [4, 5]. Also 
the various equilibrium configurations of fluid membranes are determined by 
their curvature elasticity [6]. 

Measurements based on the analysis of thermally excited shape fluctuations 
[7-11] and micromechanical measurements [12] yield for the bending elastic 
modulus K of simple lipid bilayers a value of (1-2) x 10 -19 J ,  i.e. on the order 
of tens of k BT. This value agrees remarkably with an early estimate [1] based 
nn th~ rt~rvntqre elasticity of liquid crystals. On the other hand for the bending 
elastic modulus of the amphiphilic layers in microemulsion systems one finds 
with various techniques (ESR [13], dynamic light scattering [14, 15], ellip- 
sometry [16, 17], X-ray scattering [18,191) a value of (0.2-2)kBT, i.e. typically 
one order of magnitude ~.ower than in the case of lipid bilayers. The high 
flexibility of the amphiphilic layers in microemulsions has been invoked to 
explain the variety of phases in these systems [4, 5]. 
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The small value of the bending elastic! modulus K in micro-emulsion systems 
appears to be intimately connected with the fact that the amphiphilic layers in 
these systems are composed of a surfactant and a shorter chain cosurfactant 
(alcohol). Recently Szleifer et al. [20] presented a statistical thermodynamic 
theory to explain the decrease of the bending elastic modulus upon replace- 
ment of a fraction of the long chains by shorter ones. These authors pursued 
the premise that the curvature elasticity of surfactant filrms is dominated by the 
“tails” - rather than by the “heads” - of the constituent amphiphiles. However 
electrostatic energies do play a role in microemulsions and also in membrane 
systems. They contribute to the interfacial tension (213 and to the interfacial 
bending stress [22]. Recently Winterhalter and Helfrich [23] calculated the 
electrostatic contribution to the curvature elastic modwli using the linearized 
Poisson-Boltzmann equation (Debye-Hiicke h approximation). This approxi- 
mation is only valid for low potentials, i.e. low surface charges. Here we show 
how the electrostatic contribution to the curvature elastic parameters can be 
calculated on the basis of the non-linear Poisson-Boltzmann equation. Starting 
from this equation the electrical free energy of a charged spherical and 
cylindrical is obtained as a series in inverse powers of the radius of curvature a. 
From the coefficient of the (l/a)’ term in the electrical free energy the 
electrostatic contribution to the curvature elastic moduli is obtained. 

The problem treated here bears a close relation to the problem of the 
determination of the electrostatic contribution to the stiffness of wormlike 
polyelectrolytes. The bending elastic modulus of polyelectrolytes has an intrin- 
sic part (the bending elastic modulus of the corresponding uncharged polymer) 
and an electric part. The electrostatic contribution was first determined by 
Odijk [24] and independently by Skolnick and Fixman [25] in the Debye- 
Hiickel approximation. Later Le Bret [26] and Fixman [27] calculated the 
electrostatic contribution lo the bending elastic modulus using the non-linear 
Poisson-Boltzmann equation. In fact the determination of the electrostatic 
contribution to the curvature elastic parameters of layers turns out to be 
simpler than the corresponding calculation of the electrostatic contribution to 
the bending modulus of polyelectrolytes. Whereas in the latter case one has to 
rCS0it to riumeiical calculations to obtain results, in the case of iayers anaiytic 
expressions can be obtained for the electrostatic contribution to the curvature 
elastic moduli. 

2. Calculation of the electricall free energy of a charged spherical and cylindrical 
surface 

The electrical free energy per unit area of the double layer is given by (281 
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(1) 

Here clr is the surface charge density and qO is the potential at the surface, 
Finding the relation between the zrface charge density and the surface 
potential for a charged spherical or cylindrical surface is difficult, because this 
involves solutions of the Poisson~Bo~tzmann equation for sphe~cal or cyhndri- 
cal symmetry for which no closed solutions exist. Extending the work of 
Dukhin et al. [29] and Chew and Sen [30] we obtain for the case of thin double 
layers (KQ s 1, a radius of the particle, K inverse Debye length) a series 
expansion in l/~a for Q. up to terms of order 1 /@a)‘. Using these results we 
are able to calculate the electrical free energy up to terms of order of 1 /( Ka)’ 
and from there on we obtain the electrical contribution to the curvature 
elasticity. 

2.1. Charged spherical surface 

The Poisson-Boltzmann equation for a charged spherical surface immersed 
in a . .-1 electrolyte can be written as 

d% + 2 dV 
-=&inhp. 

z ;dY 

Here r is the radial coordinate, V is the dimensionless potenti& 

etFr 
q=k,-p 

and K is the inverse Debye length, 

(3) 

where e is the elementary charge, k, is ~o~t~rnann~s constant, T is the absolute 
temperature, 12,, is the number of mahxufes of clcctrolyte er unit volume, I, is 
the dielectric canstant of the aqueous medium and E,, is t per~~ttivi~~ of the 

vacuum. 

In fact a full solution of the Poisson-Boltzmann equation (2) is not needed. 
For the calculation of the electrical free energy (eq. (1)) it is only necessary to 
know how the potential at the surface varies with the surface charge density. 
Therefore we consider the solution of eq. (2) near the surface. We consider the 
case of a double layer outside a sphere. Taking 1 IKII as the small yi>~;l 
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write 

substituting eq. (5) in eq. 

r= u t X/K 

we find 

I. 
-7 Y(*) + . , . . 
( 1 rca 

(2’) and making the coordinate transformation 

We now assume that x is suf~cient~y small such that 

and thus we may write 

1 
1 + xlaK = 1 WV ,“, + . l ‘ . 

Using this expansion and equating terms of the same power of I/M an both 
sides of eq. (7) gives the f~~~~win~ equations: 

dx’ 

With the 



one obtains from eqs. (S)-(10) 

- = -2 sinh( 4 P(O)) , 
dx 
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d?P(‘) 
dx + ?P(‘) cosh( i!P”‘) = -4 tanh( $!P’“‘) , 
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( 2) i 

(13) 

d!.Pq2’ 
dx + Pt2) cosh( $P(“) = - a (P’ 1))2 sinh( $ !P”‘) - cosh(~~~~~~) + 1 

+ 4x tanh( $P”‘) + 
4[tanh2( $?P”‘) - 2 In cosh( $P(“‘)] 

sinh( i PC’)) 
. (14) 

Assuming that we are dealing with a constant surface charge the boundary 
conditiarns at the surface are 

Using these boundary condiiions one obtains from cqs. (12)-( 14) to order 
l/c~a)’ the following expression for the surface potential: 

1 4(q-1) P,=2ln(P+&-, 
P4 

1 14(q-1)*(2q+l) JW[q+l]) 

+ (Ka)2 I. p3q3 - pq I ’ 

where 

p=; I MA 

and 

(17) 

(18) 

(In writing down eq. (17) we have assumed that we are dealing with a situation 
where !&) is positive.) Through the equation of Gauss the quantity p is related 
to the surface charge density CT, 
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where Q is the B jerrum length, 

e* 
Q = 4n&&k, T 

(Q = 0,714 nm for aqueous solutions at 298 K). 
Hence it follows that eq. (17) represents a relation between the surface 
potential and the surface charge density. Now the integral in the expression (1) 
for the electrical free energy can be calculated, resulting in 

-I- 4 
(9-1)(q+2) ze5 

2 I (4+l)!I I 
In2 dz * ( ) -L *,(i-r-q) z-1 }I P-0 Ki2 -a: 

A similar result was first obtained by Stokes [31] using a slightly different 
method. 

The Poisson-Boltzmann equation for a charged cylindrical surface immersed 
in a l-l electrolyte can be written as 

Here I- is the radial coordinate and 1v is 
consider the case of the double layer outside 
trat~stormation P = 1x + X/K we find 

the dimensionless potential. We 
a cylinder. faking the coordinate 

d* 1 
dx’ ?lP) + KQ !P’l) + * . , 

I 1 l/K@ d 1 + l + XrfKa -& P(“) -I- -$ !PC1~ + . . L 

[ 1 
zz sinb I- 1 pi:v + 1 ,~iij+...]. cw 

Atong the same lines as for the case of the spherical surface we now find the 
following equations: 

(23) 

(24) 
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d2~(z) 

d x  2 

d ~(o) 1 ~(o) d ~ ( t ) + x  + (~(t))Esinh . ~(2) cosh(~(o)) = _ dx ~ 
(25) 

With the boundary condition (11) we now obtain 

dap,(o) 

dx 
= - 2  sinh(½ap'((')), (26) 

d~(  l ) 

dx 
+ aP '(t) cosh(½W (°)) = - 2  tanh( : ~ ( o ) ) ,  (27) 

dap.(2) 

dx 
1 (~(I))2 sinh( ~ ~((')) - + ~(2) cosh( ~ ~(o)) = _ 

g,(I) 

cosh( ½ g, to)) + 1 

+ 2x tanh( ~ ~(o)) + 
tanh2( ~ ~('))) 

sinh( ~ ~(o)) 
(28) 

Using the boundary condition (16) one obtains from eqs. (26)-(28) to order 
1/(Ka) 2 the following expression for the surface potential: 

1 2 ( q -  1) 1 ( q -  1)2(2q + 1) 
+ ~  3 3 , (29) ~ = 2 ln(p + q) Ka p q  (Ka) 2 p q 

where p and q are given by eq. (18). For the electrical free energy we now 
obtain 

( k B T )  2 { 4 l n ( ~ [ q + l ] )  f : ~ =  x - - ~ /  e('erK 4(p  ln(p + q ) -  q + 1 ) -  K----d 

1 ( q -  1)(q + 2) } (30) 
+ (Ka) "-----2- ( q + 1 )q " 

3. Bending elastic moduli 

The curvature elastic free energy per unit area of a fluid layer can be written 

as 

f~ = ~ K(c t  + c2 _ c0) 2 + Rclc2  , (31) 

where c t and c 2 are the prir, cipal curvatures, c()is the spomaneous curvature, K 
is the bending elastic modulus and k is the modulus of Gaussiar. curvatme. For 
a sphere c~ = c 2 = 1/a and thus eq. (31) takes the form 
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f 
1 where a _ 

c 2 

For a cylinder G, = 1 /a and G, = 0 and then the curvature elastic free energy 
takes the form 

f 
11 2 CYl = _ 

c 2 4 ;-co l > (33) 

We now compare the phenomenological expressions (32) and (33) with the 
expressions for the electrical free energy of a charged spherical and cylindrical 
surface (eqs. (20) and (30)). Comparing the coefficients of the (1 /a)” terms in 
the free energy expressions we obtain the following results for the cont~bution 
of the electric double layer to the elastic bending moduli of a charged 
monolayer: 

and 

.?=I 

-1 k,T -- 
71i Q K I 

2=2/f 1 “q) 

In z 

(z- 1) 
dz . (35) 

From the above expressions we see that the contribution of the electric 
double layer to the elastic bending moduti depends on the dimensionless 
quantities Qu and 4. These quantities in turn are determined by the salt 
concentration yt,, and the surface charge cr= In order to get some feeling for the 
values of K”’ and K”, we consider as an example an amphiphilic layer 
encountered in microemulsions, namely a mixed monolayer of sodium dodecyl 
sulfate (SDS) and pentanol at the cycloh~xar~e/water interface [32]. In this 
mixed monolayer the adsorption of SDS is about 1~5 prnol m-*. Assuming 
complete ionisati~n of the SI% this leads to a surface charge of 0.354 C m-“. In 
table I we present values for K”’ and R”’ in units k,T for a surface charge of 
0.15 C m-’ and salt concentrations of 0.01M to 0.40M. We find that for these 
values of the parameters the electric contribution to the bending eXastic moduli 
increases from about Q.&J to fk,T with decreasing salt concentration. This 
trend is in gcod agreement with the experimental results [lb] for K. 

For small surface charge densities p e f and thus 4 -Z 1 -I- ! p’. We then find 
from eqs. (34) and (35) the following expressions for the elastic bending 
modufi of a cha?ged monolayer: 
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Table I 
Kc’ and I!” for a surface charge Ial = O.l5Cm-* and different l-l 
electrolyte concentrations. 

Electrolyte concentration (M) 

0.01 0.02 0.05 0.10 0.20 0.40 

K-’ (nm) 3.04 2.15 1.36 0.96 0.68 0.48 

4 12.8 9.12 5.82 4.17 3.03 2.25 

K”/k,T 0.67 0.47 0.29 0.19 0.13 O&S 

K”Ik,T -1.62 -1.03 -0.55 -0.32 -0.18 -0.09 

and 

- el K =:- k,~~Q142 
tc3e2 

These expressions are in 

. (37) I 

agreement with the results obtained by Winterhalter 
and Helfrich 1231 using the linearized Poisson-Boltzmann equation. 

For high surface charge densities and low salt concentrations p s 4 S 1. and 
we now find the following expressions for the bending elastic moduli: 

K”’ 
1 k,T =-- 

~TF QK ’ 

- el n k,T 
K =--- 

6 QK l 

(38) 

(39) 

Under these conditions (2K” + K”) < 0 which might have important implica- 
tions for spontaneous vesicuiation as discussed by Heifrich and coworkers 
[6,23]. We note that even in the case of hig surface charge densities only for 

rather low salt concentrations (below IO-‘M) the electric contribution to the 
bending elastic modulus will exceed k,T. Therefore it is not unreasonable to 
surmise as did Szleifer et al. 1201 that in general the curvature elasticity of 
surfactant films is dominated by the “tails”’ 
the constituent amphiphiles. Nevertheless 
countered in microemulsion systems, where 
the order of k,T) the electric contribution 
into account. 

- rather than by the “heads” - of 
in the case of monolayers en- 
the curvature elasticity is Pow (of 
is significant and has to 
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