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Formulas are derived for the osmotic coefficient, the Donnan salt-exclusion factor, and the mobile-ion
activity coefficients in a polyelectrolyte solution with or without added sample salt. The formulas, which
contain no adjustable parameters, are based on the (theoretical) observation by several workers that
counterions will “condense” on the polyion until the charge density on the polyion is reduced below a
certain critical value. The uncondensed mobile ions are treated in the Debye-Hiickel approximation. In
a restricted sense, the formulas are “limiting laws,” and this aspect is discussed at length. Detailed com-
parison with experimental data in the literature is given; agreement of the theory with experiment is usually

found to be quantitative.

I. INTRODUCTION

Workers who study the properties of polyelectrolyte
solutions have long been at a disavantage vis d vis
their colleagues in the field of simple ionic solutions, for
the latter have had, for several decades now, the avail-
ability of a theory which is generally accepted to be
exact—the Debye—~Hiickel limiting law. Thus, all meas-
urements at finite concentrations can be extrapolated
with confidence into very dilute regions and may be
referred to as “deviations from the limiting law.” All
such deviations may then be attributed to effects not
taken into account in the derivation of the limiting law
(short-range interionic forces, molecular nature of the
solvent, etc.), and theories concerning such effects may
then be attempted.

On the contrary, no such *‘reference point” has been
available to polyelectrolyte chemists. The high charge
density on the polyion implies that many counterions
will be attracted to its immediate neighborhood at all
concentrations for which measurements can be made.
Even at low equivalent concentrations, therefore, the
problem is one of concentrated solutions for which a
limiting law is not anticipated. For that reason, experi-
mentalists have given equal emphasis to all convenient
concentration ranges, while theoreticians have tried to
“fit the data” over the entire range of concentration.
In practice, the result has been the introduction of
adjustable parameters such as effective dielectric con-
stants, mass-action binding constants, polyion size
parameters, and effective polyion charge densities (the
author has contributed his share), without, however,
any really clear idea of what the “ideal” values of such
parameters should be, or under what conditions the
ideal values would be applicable. For example, while it
is obvious that the dielectric constant which appears in
the Debye-Hiickel limiting law is that which governs
the interaction of point charges at large separations,
namely, the bulk dielectric constant of the pure solvent,
it has not at all been clear that the bulk dielectric con-
stant of water has any relation whatever to the observed
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behavior of aqueous polyelectrolyte solutions. Again,
for a very dilute solution of sodium chloride, the size
and shape of the ions is irrelevant; it is sufficient to
specify the valence of each ion. For a solution of sodium
polyphosphate, however, it is important to know not
only the “valence” of the polyphosphate ion (there are
usually of the order of a thousand charged groups on
each polyion), but the spatial distribution of the charges
on the polyphosphate, that is, the charge density. The
choice of a charge-density parameter is not obvious on
a priori grounds.

It is the purpose of this communication to construct
a series of plausible and well-motivated assumptions
which lead to formulas for several colligative properties
of polyelectrolyte solutions. The formulas may be
thought of as “limiting laws” in the sense that they are
designed specifically for solutions of low equivalent
concentration; the number of parameters is thereby
reduced to an absolute minimum. Moreover, the
numerical values of the parameters are fixed by the
assumptions and do not depend in any way on empirical
results. Although the formulas are probably not of the
same kind of general validity as the Debye-Hiickel
limiting law, it is hoped that they will serve a similar
purpose: to distinguish clearly those effects which
dominate at low concentrations from effects which
become prominent only with increasing concentration.

II. SPECIFICATION OF THE MODEL

It must first be recognized that, strictly speaking, the
Debye-Hiickel limiting law is as valid for a poly-
electrolyte solution as for any other ionic solution. Thus,
in general, if a solution contains o species of ions with
concentrations (number of ions per cc) ny, * -+, #, and
valences 2z, *--, %, then the excess (electrostatic)
Helmholtz free energy Fe* of the solution at sufficiently
low concentrations is given by the limiting law??

Fex 47r€2 4 3/2
=— i3 127)7,
VET (ekT;"Z> (127)

(1)

1 R. Fowler and E. A. Guggenheim, Statistical Thermodynamics
(Cambridge University Press, Cambridge, England, 1960).
¢ J. E. Mayer, J. Chem. Phys. 18, 1426 (1950).
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POLYELECTROLYTE SOLUTIONS. I

where V is the volume, e the protonic charge, and e the
dielectric constant of the pure solvent. If the ath species
happens to be a polyion bearing a thousand charged
groups, one may still assert that, with |z | =1000,
Eq. (1) will be valid at sufficiently low concentrations.
The catch is that for a polyelectrolyte solution, ‘‘suff-
ciently low” turns out to be lower than the minimum
concentration required for accurate measurements. For
long, densely charged polyelectrolytes (polyphosphate,
polyacrylate, DNA, etc.), Debye-Hiickel limiting
behavior has never been observed at the lowest experi-
mentally feasible concentrations; in particular, colliga-
tive properties are invariably found to be independent
of molecular weight (i.e., of polyion valence) over the
entire concentration range studied.

Such behavior is not unexpected if one considers that
interactions of small ions (mobile ions) with the poly-
electrolyte chain will be governed primarily by the
charged groups on relatively short segments of the
chain, contributions from distant groups being screened
at the concentrations used. It is thus possible to regard
the chain as being infinitely long, at least insofar as
interactions of mobile jons with the chain are con-
cerned. Moreover, local chain segments will have a
structure determined largely by the electrostatic repul-
sion of the charged groups and hence will be approxi-
mately in a configuration of maximum extension with
cylindrical symmetry. Since mobile ions in the vicinity
of one segment are screened from charged groups in
other segments, the entire (infinitely long) chain may be
considered to be in its unique configuration of maximum
extension.

Tt is, furthermore, reasonable to assume that the
interactions of the polyion with mobile ions will be
primarily dependent on the over-all charge density
along the chain, with the discrete nature of the charged
groups being a secondary effect (‘“discrete-charge”
effect). Thus, if the contour length of the polyelec-
trolyte (end-to-end distance in the state of maximum
extension) is L, and if the chain bears P charged groups
of valence z,, a uniform linear charge density 8 is
assigned to the chain, given by

B=2,¢/b, (2)
b=L/P. (3)

where

The above discussion leads naturally to the following
model:

(A) The real polyelectrolyte chain is replaced by an
infinite line charge with density B given by Egs. (2) and
(3).

It should be emphasized that 8 may not be treated as an
adjustable parameter, for the only value consistent with
the model of a line charge is that given by Eqs. (2) and
(3) and is calculable from the known structure of the
particular polyelectrolyte under study. Cylindrically
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symmetric models have been previously used by many
authors,* 1 usually with the additional specification of
a distance of closest approach (formulated as a cylinder
of finite radius with uniform surface charge density).
Since this communication deals only with limiting laws,
such specification will not be necessary.

When a simple salt, e.g., sodium chloride, is present in
excess over the equivalent polyelectrolyte concentration,
one may rigorously neglect electrostatic interactions
between polyions in comparison to interactions between
a polyion and mobile ions in its vicinity; such, however,
is not the case in salt-free solutions.® Nevertheless, it
has been assumed above that local segments of a polyion
are screened from other segments on the same polyion,
and it is only consistent to assume that segments on
different polyions are likewise screened from each
other. Thus,

(B) interactions between two or more polyions are
neglected regardless of the ratio of polyelectrolyle concen-
lration to that of added simple salt.

In common with nearly all other theories of ionic
solutions, the solvent will be regarded as a continuum
with a uniform dielectric constant e. It is stated at the
outset that

(C) the dielectric constant € is taken as that of the pure
bulk solvent.

In the context of the present article, justification of this
assumption is primarily that it will lead to results which
agree with experiment. It is, in fact, possible to under-
stand on physical grounds why the local structure of
the solvent in the immediate vicinity of the polyion
chain does not affect colligative properties at low equiv-
alent concentrations; an approach other than the
present one is needed, however, and will be the subject
of a future publication in this series.

The next two assumptions are not familiar and
require detailed discussion. Onsager' has observed that
the statistical-mechanical phase integral for an infinite
line-charge model diverges for all values of 8 greater
than a critical value. This phenomenon is easily verified.
If p denotes distance from the line charge, then the
electrostatic energy of a mobile ion (considered as a

3T. Alfrey, P. W. Berg, and H. Morawetz, J. Polymer Sci. 7,
543 (1951).

¢ R. M. Fuoss, A. Katchalsky, and S. Lifson, Proc. Natl. Acad.
Sci. U.S. 37, 579 (1951).

®8S. Lifson and A. Katchalsky, J. Polymer Sci. 13, 43 (1954).

8 F. Qosawa, J. Polymer Sci. 23, 421 (1957).

7 U. P. Strauss, J. Am. Chem. Soc. 80, 6498 (1958).

8 L. Kotin and M. Nagasawa, J. Chem. Phys. 36, 873 (1962).
( ® G.)S. Manning and B. H. Zimm, J. Chem. Phys. 43, 4250

1965).

10 A, Katchalsky, Z. Alexandrowicz, and O. Kedem, in Chemical
Physics of Ionic Solutions, B. E. Conway and R. G. Barradas,
Eds. (John Wiley & Sons, Inc., New York, 1966), p. 295.

UL, M. Gross and U. P. Strauss, in Chemical Physics of Tonic
Solutions, B. E. Conway and R. G. Barradas, Eds. (John Wiley &
Sons, Inc., New York, 1966), p. 347.

12 A. D. MacGillivray, J. Chem. Phys. 45, 2184 (1966).

12 L, Onsager (informal discussion).
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point charge) of valence 2, for sufficiently small values
of p, say for p<py, is given by the unscreened Coulomb
interaction,

(4)

The contribution A;(ps) to the phase integral of the
region in which mobile ion ¢ is within a distance py of
the line charge, while all other mobile ions are at a
distance greater than py, thereby contributing a finite
factor f(pp), is given by

A(po) =F(p0) /oﬁo exp (— ”’—Z(Zé’l) 2rpdp

uip=—2i¢(28/¢) Inp,  p<po.

20
=2mf(po) / plizzastidp, (5)
0

where
t=¢*/ekTh, (6)

Eq. (2) for 8 having been used. If ion 7 is a counterion,
so that 2;2,<0, the integral in Eq. (5) diverges at the
lower limit for all ¢ such that

£> | 7z, 7L (7)

Attention will be restricted in the following to mono-
valent charged groups and mobile ions, so the condition
(7) becomes

£>1. (8)

For water at 25°C (e=78.5), the critical value £=1
corresponds to the charge spacing §=7.135 A. Tt will
be recognized that the quantity (e2/ekT’) is the “Bjer-
rum length” of the classical theory of simple electrolyte
solutions!; the critical charge spacing is therefore equal
to the Bjerrum length.

The physical interpretation of the divergence of the
phase integral for values of £ greater than unity is that
systems characterized by such values are unstable:
sufficiently many counterions will “condense” on the
line charge to reduce £ to a value just less than one.
Although the argument presented is valid at arbitrary
concentrations for an infinitely thin line charge, it will
be shown in a future article that for a more realistic
model with a finite distance of closest approach, the
instability condition (8) is valid only in the limit of
zero concentration; the instability is a “limiting law.”
The assumption, then, is as follows:

(D) For dilute solutions, sufficiently many counterions
will “condense’ on the polyion to lower the charge-density
parameter £ lo the value one.

The critical nature of the point £=1 has in fact been
noted previously by a number of authors, but not from
as fundamental a point of view as Onsager’s. From
their detailed analyses of the Poisson-Boltzmann equa-
tion as applied to various problems involving rodlike

GERALD §.
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charges, Imai, Onishi, and Qosawa!* deduced the special
significance of the condition £=1 and, indeed, the
terminology ‘“‘counterion condensation” is to be at-
tributed to them. (I have chosen “condensation” over
“binding” primarily because the latter term means
so many different things to so many different people.)
Jackson and Coriell,’® while studying the Browian
motion of a counterion in the neighborhood of a line
charge, found the onset of “trapped trajectories” at
£=1 and speculated about their relation to the concept
of “ion association.” As long ago as 1951, Fuoss,
Katchalsky, and Lifson* noted that their exact solution
of the cylindrically symmetric Poisson-Boltzmann
equation in salt-free solutions exhibited qualitatively
different behavior for small values of ¢ than for large
values; although, being interested in the case of
a cylinder with finite radius and finite concentra-
tions, they did not emphasize the transition point
£=1. Gross and Strauss and MacGillivray? also
noticed the importance of the condition §=1; their
contribution will be discussed in the context of the next
assumption.

The uncondensed mobile ions are still subject to
electrostatic interactions with the line charge since the
charge density of the line after condensation is not zero:
if the value of ¢ before condensation is greater than one,
the value after condensation is equal to one; if it is less
than one, there is no condensation and all mobile ions
are subject to the full charge density of the line. It is
now assumed that:

(E) The uncondensed mobile ions may be treated in the
Debye~Hiickel approximation.

In support of this assumption it may be noted that
MacGillivray®? has demonstrated, from both an analy-
tical and numerical study of the cylindrically symmetric
Poisson—Boltzmann equation, that the solution of the
linearized equation is a good approximation to the solu-
tion of the complete equation for all values of §<1. His
result is by no means trivial since for dilute solutions,
ey/kT>>1 at the distance of closest approach, where ¥
is the electrostatic potential. Second, from a purely
numerical solution of the Poisson-Boltzmann equation
Gross and Strauss!! derived the following expressions
for T', the Donnan salt-exclusion factor, cf. Eq. (30):

limP=3(1—-38), ¢<1 (9a)

ng/->0
=(46)7, £>1. (9b)

The limit refers to the concentration of salt in the
external compartment. As will be seen in Sec. III, the
expression (9a) is precisely that obtained from the
Debye-Hiickel approximation. Finally, Lifson and

4N, Imai and T. Onishi, J. Chem. Phys. 30, 1115 (1959).
T. Onishi, N. Imai and F. Oosawa, J. Phys. Soc. Japan 15, 896
(1960) ; N. Imai, ¢bid. 16, 746 (1961).

157, L. Jackson and S. R. Coriell, J. Chem. Phys. 40, 1460
(1964).
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POLYELECTROLYTE SOLUTIONS. I

Katchalsky® calculated the osmotic coefficient ¢, of a
salt-free polyelectrolyte solution from an exact analyti-
cal solution of the appropriate Poisson-Boltzmann
equation. Their result, when applied to the limit as #,,
the equivalent polyelectrolyte concentration, tends to
zero, is

lim ¢, =1—3¢, (10a)

ne0
=(2¢)7, £>1. (10b)

Again, it will be shown in Sec. III that (10a), the ex-
pression for £<1, is the same as that given by the
Debye-Hiickel approximation.

The analogy of the last two assumptions to the
Bjerrum theory of simple electrolytes! is striking, All
deviations from Debye-Hiickel behavior are attributed
to counterion condensation (ion pairs for simple
electrolytes). Bjerrum calculated the extent of pairing
from the partition function of an ion pair; the extent of
condensation has also been determined here from the
partition function (phase integral). Moreover, the
Bjerrum length (e?/ekT) turns out to be central to both
theories.

<1

III. THE CASE (<1

According to Assumption (E) of the preceding sec-
tion, the case £<1 may be treated in the Debye-
Hiickel approximation. The potential ¢/(p) at a distance
p from the line charge (taken along the z axis) is thus
given by a superposition of screened Coulomb potentials
from infinitesimal segménts of length dz:

_ B [= (exp [—«(p*+35*) 1] _
)—6/ ( (P22 112 )d"‘

26 ooexp(—xpt)
/ (=1

= (28/¢) Ko(xp), (11)

where the integral in the second line has been noted to
be a representation of Ky(«p), the zeroth-order modified
Bessel function of the second kind. If two species 1 and
2 of monovalent mobile ions are present, the Debye
screening parameter « is given by

=)\(ﬂ1+ﬂ2),

dt

(12)
with
N=dyet/ekT.

The function Ky(«p) has the asymptotic behavior

(13)

kp—0, (14)

so that, when p is allowed to tend to zero in Eq. (11),
the potential '(0) at the position of the line charge due
to the mobile ions is seen to be

¥'(0) =—(28/e) Inx; (15)

the term proportional to Inp is the potential due to the
line charge itself. The excess free energy fe=dz associated

Ko(kp) ~— Inip,

927

with the segment dz of the line charge, that is, the free
energy attributable to interactions between the segment
and mobile ions, may be obtained by “charging” the
segment up to the charge 8dz starting from zero charge.
This procedure amounts to the integration of Eq. (15)
from 8=0 to the final value §:

fexdz=— (8/€) In«dz.

The total excess free energy Fe* of the solution of volume
V is set equal to

(16)

w, f " prds,

where NV, is the number of polyions in the solution so
that, when Eq. (2) is used for 8 (with | 2, | =1),

Fe/VRT=—tn, Ink, <,
where the definition (6) of £ has been used, and

b1 /m dz

has been given the obvious interpretation as the number
P of charged groups on each polyion; the equivalent
concentration #, is then

#ne=PN,/V.

(17)

(18)

Equation (17) is the desired Debye-Hiickel approxima-
tion to the excess free energy for £< 1. The problem of
units raised by the appearance of the factor Ink is only
apparent, for all measurable quantities to be calculated
from Eq. (17) will have proper units. Actually only
part of the excess free energy is given by Eq. (17) since
the charging procedure was not applied to the charge
on the mobile ions. The contribution of mobile ions may
be shown® to be of higher order in x and is neglected
here.

Having obtained an expression for the excess Helm-
holtz free energy, one may easily derive deviations from
ideality of various colligative properties. Thus, with the
derivatives
(19)

dn/omi=N2,  i=1,2,

the activity coeficients of the mobile ions follow as

(a(Fex/ VET) )
Iny,= (S22
ani T,V njxi

=—3tnx?, i=1,2; (<1, (20)
It is useful to write this equation in another form.
If Species 1 is the counterion, then
nl=nc+n8, (21)
where #, is the concentration of uni-univalent salt
added to the polyelectrolyte solution; while for Species
2, the co-ion
(22)

Ny =Hs.
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With the use of Eq. (12) and the quantity

X =n./n, (23)

Eq. (20) becomes

Inyi=—3X(X+2)7,  i=1,2;i<l. (24

The same formula holds for the mean activity coefficient
v+ of the mobile ions:

1n7d:=%(1n’)’1+1n72)

=—#X(X+2)7, <l (25)

The osmotic coefficient ¢ is easily calculated from
Eq. (17) with the help of the derivative (#;=N;/V,
where N; is the number of ions of species 7),

(8xk/V )N, =—«/2V. (26)

Indeed, since ¢ is defined in terms of the excess part
of the osmotic pressure 7*%,

kT (p—1) (m+ne) =n>=— (aFe=/dV) T,Np.N1,N2s (27)

one gets,

o=1—3EX(X+2)7" (28)

In Eq. (27), the contribution of the concentration #, of
the polyions has been neglected with respect to .,
the minimum value of (#;4#n,). For the salt-free case,
1n,=0 and X— 0, while ¢ is denoted by ¢,; thus,

Pp= 1_%57

in agreement with the Lifson-Katchalsky result, Eq.
(10a).

Consider now a Donnan equilibrium in which the
external compartment has the fixed salt concentration
n,. The internal compartment, which contains the
polyelectrolyte solution, will have a lower salt concen-
tration #.. The Donnan salt-exclusion factor T is defined

by

£<1, (29)

I'=lim (n/—n,) /n.. (30)

ne>0

It may be shown that!
I =[34+n/(8 Inv1/ne)no][141,(0 Invy'/9n) I
g+ (8 Iny/ne) n o, (31)

where the derivative of Invy,, the mean activity coeffi-
cient of the mobile ions in the internal compartment, is
to be evaluated in the limit of zero polyion concentra-
tion, i.e., in the limit as #, tends to #,’; the approxima-
tion introduced in the second line becomes exact as
#s tends to zero. Note that the ideal value (v, =v4"=1)
of T is L. It follows from Egs. (25) and (31) that

in agreement with the result of Gross and Strauss, Eq.

(9a) [their Eq. (26)].

MANNING

IV. THE CASE £>1

In this section one must distinguish between ‘“‘real”
and “effective” values. The symbol £ refers to the real
value, that is, the value calculated from Eq. (6) and a
structural model of the polyion under study. According
to Assumption (D) of Sec. I1, however, when the real
value of £ is greater than unity, its effective value will be
equal to one since condensed counterions will neutralize
the fraction (1—¢7!) of the polyion charge. Similarly,
while the real (stoichiometric) concentration of counter-
ions is (#.+mn,), the effective value (uncondensed
counterions) is (£ 'n.+n,). The stoichiometric and
effective concentrations of the co-ion have, of course,
the same value #,.

The simplest example is the salt-exclusion factor I
Tt follows from Eq. (30) that, to terms of order #.,

(33)

n —n,=n.I.

But because the effective equivalent polyelectrolyte
concentration is £ n,, it is also the case that

1y —n. = (1), (34)

where T'(1) is the salt-exclusion factor for a poly-
electrolyte with £=1. According to Assumption (E)
of Sec. II, T'(1) may be obtained simply by setting
£=1 in the Debye-Hiickel approximation to I' given
by Eq. (32),

I'(1) =i (35)

Identification of the right-hand sides of Egs. (33) and
(34), together with Eq. (35), yields the desired result:

r=(49)-, o1 (36)

This expression agrees with Eq. (9b), found by Gross
and Strauss from a numerical solution of the Poisson—
Boltzmann equation.

The derivation of the osmotic coefficient ¢ for values
of £>1 is similar. The osmotic pressure = of the solution
is given by

7/ kT =¢(m+ny) =¢(net2n,). 37

On the other hand, since the effective concentration of
mobile ions is (£, +2n,) and the effective charge
density of the polyion corresponds to £=1,

w/kT=¢(1, Ene) (§'nA-2n,), (38)

where ¢(1, £,) is the osmotic coefficient of a solution
whose polyelectrolyte species has charge density =1
and equivalent concentration £'#., and whose con-
centration of added salt is the same value #.. The
Debye-Hiickel approximation to this quantity is ob-
tained from Eq. (28) with £=1 and with X=n./n,
replaced by £71X:

¢(1, £'n,) =1— 3 X (EX+2)7L (39)
Combination of Egs. (37)-(39) yields the simple result
o= (3"X+2)/(X+2), &>1 (40)
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In salt-free solutions (¢=6¢,, X— =), Eq. (40) reduces
to

¢p=(26)7, £>1, (41)

in agreement with the Lifson-Katchalsky result, Eq.
(10b).
Activity coefficients are also easily obtained. The

stoichiometric activity of the counterion g, is given by
a1=‘)’17t1=’)’1(7’l/e+1’ts). (42)

Another expression for a; in terms of ‘“‘effective” quan-
tities is
a=n(1, £'n.) (E'neAn), (43)

where v:(1, £,) has a meaning analogous to the cor-
responding osmotic coefficient in Eq. (38) and is ob-
tained from Eq. (24),

(L, £n,) = exp[— 31X/ (EX+2) ]
It follows that
7= (EIX+1) (X417 expl— 37X/ (52X +2)],
1.

The activity coefficient of the co-ion is trivially ob-
tained as

(44)

(43)

ve=2v2(1; En,) (46)

vo= exp[— 47X/ (X +2) ],

For the square of the mean activity coefficient of the
mobile ions,

v =yrye=(EX4-1) (X+1)!
X exp[—&X/(£71X+2)], £>1. (48)

As a check, it may be verified that when T is calculated
directly from Egs. (31) and (48), the result (36) is
recovered.

or

1. (47)

V. ADDITIVITY RULES

A number of interesting correlations may be found
among the formulas of the two preceding sections. For
example, comparison of Eq. (29) with Eq. (32), and
Eq. (36) with Eq. (41) indicates that for all values of &,

= %‘7311: (49)

a formula which has been observed to agree well with
experimental data for dilute solutions.’® Moreover,
Eqgs. (28), (29), (40), and (41) show that, again for
all £,

¢ (n,~42n,) =¢pn.+ 2n,. (50)

Equation (50) is a well-known formulation of the
empirical “additivity rule” for the osmotic coefficient
in dilute solutions.!

Equations (49) and (50) have been interpreted as
meaning that the fraction (1—¢,) of the counterions

16 Z. Alexandrowicz and A. Katchalsky, J. Polymer Sci. Al,
3231 (1963).

929

from the polyelectrolyte salt is “bound” to the polyion,
while the remaining fraction is ‘“free,” that is, does not
interact with the polyion; mobile ions from the added
simple salt are also assumed not to interact with the
polyion. Thus, Eq. (49) would merely say that I is
given by its ideal value with an effective equivalent
polyion concentration ¢,#.; Eq. (50) would mean that
the osmotic pressure is given by van’t Hoff’s law as
applied only to the free concentration of mobile ions.

The present theory offers a different interpretation of
Eqgs. (49) and (50). Since it is clear that only condensed
counterions should be classified as ‘“bound,” there are
no bound counterions at all when £<1; Egs. (49) and
(50) then follow entirely from the Debye-Hiickel
(diffuse ion atmosphere) treatment of all the mobile
ions. When £>1, the fraction of condensed, or bound,
counterions is (1—£1), whereas ¢,=3&" [see Eq. (41)];
therefore, (1—¢,) is not the fraction of bound counter-
ions but rather reflects a combination of bound counter-
ions and the effect of Debye—Hiickel interactions on the
uncondensed counterions.

The relation between the activity coefficients and the
osmotic coefficient is also of interest. If the counterion
activity coefficient in salt-free solutions is denoted by
17, Egs. (24) and (45) yield the results

Iny?=—3, £<1, (51a)
y=£le > 1, (51b)

On comparison of these expressions with Eqgs. (29) and
(41), the relations

¢p=1+Iny?,
1P ey = 2131 21,

£<1 (52a)
£>1 (52b)

are obtained. These formulas differ from the conclusion
of Katchalsky, Alexandrowicz, and Kedem! that
TP =4,

For solutions which contain an added simple salt, a
relation between the osmotic coefficient and the mean
activity coefficient of the mobile ions is given by Egs.
(25) and (28):

¢=1+Iny,, <L (53)

Equation (53) does not hold in general when £>1, but
imposition of the condition of excess salt, X<1, on
Eqgs. (40) and (48) yields

=1+ ln7i7 (E>17 X<<1)7 (54)
a formula which agrees well with experimental data.?

Finally, if Eq. (50) is solved for ¢ subject to the con-
dition X<<1 (#,K#n,) and the result substituted into
Eqgs. (53) and (54), the “additivity rule” for the mean
activity coefficient is obtained (for either £¢<1 or

£E>1):

Yi(netny) =dpnetn,  (ne/n)<Kl. (55)

(If both sides of this equation are multiplied by #,,
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TasLE I. Comparison of theoretical with experimental values of I".

~ System Reference ¢ Texptl®  Ttheoret®
NaPVS; NaCl 18 1.85 0.10 0.14
KPP; KBr 19 2.85 0.08 0.09
KDNA; KBr 20 4.20 0.09 0.06
NaPA; NaBr 16 2.28 0.1 0.11
(2=0.8)
NaPA; NaBr 16 0.86 0.24 0.29
(a=0.3)
NaPA; NaBr 16 0.29 0.38 0.43
(a=0.1)

2 Calculated from Eqgs. (3) and (6).

b In each case, these values correspond to the lowest salt concentration
used in the measurements,

¢ Calculated from Eq. (32) or Eq. (36).

the interpretation in terms of “bound” and “free” ions
becomes clear: the lhs is the product of the activities
of counter- and co-ions; the rhs would be the product
of the respective “free” concentrations.) It is to be
noted that ¢,, not v*, appears in Eq. (55); empirical
formulations of the additivity rules have sometimes
used the assumption that ¢,=+,?, which is not true for
the present theory. It is also significant that Eq. (55)
is restricted by the condition of excess salt, while Eq.
(50) holds for any value of the ratio (n./n,); previous
discussions of the additivity rules treat both formulas
on the same footing.

Incidentally, the additivity rule for the counterion
alone does not hold here. Thus, from Eq. (45),

‘Yl(np+ns) = (3/45) ne+ns
=(3/2) A n,, [E>1, (n./n)<K1]; (56)

whereas the additivity rule replaces the factor 3/2 with
unity. For the co-ion, from Eq. (47),

Yalts =1, §E7 0,
[E> 1, (ne/na)<<1]; (57)

the additivity rule (all co-ions are “free”) would read
YoM =*Hs, 1.€., ya=1. It is of interest in this connection
that Lyons and Kotin have recently concluded on
experimental grounds that the additivity rule for the
counterion is not valid.”

=1 3PMe,

VI. COMPARISON WITH EXPERIMENT

This section will be devoted to a fairly comprehensive
survey of the available data and their treatment by
means of the formulas developed in the preceding sec-
tions. Numerical values of £ are all calculated from Eqgs.
(3) and (6), £=7.135b71 (25°C), where, for example,
b=2.5 A for polyphosphate or fully charged vinylic
polyelectrolytes. If the fraction « of vinylic monomeric
groups is charged, b=2.5¢71. For native DNA, =1.7 A.

177, W. Lyons and L. Kotin, J. Am. Chem. Soc. 87, 1670 (1965).

MANNING

The following abbreviations are used: PA (polyacryl-
ate) ; PMA (polymethacrylate); PP (polyphosphate);
PVS (polyvinyl sulfate) ; PSS (polystyrene sulfonate) ;
PES (polyethylene sulfonate) ; DNA (deoxyribonucleic
acid).

Table I has been constructed for the Donnan salt-
exclusion factor. The first thing to note is that the
theoretical values of T, calculated from Eq. (32) or
Eq. (36) according to whether £ is less than or greater
than unity, are all in good agreement with the measured
values.’%2 Since the theory gives the “limiting”
values of T' as the salt concentration tends to zero, the
observed value of I listed in Table I is in each case that
for the lowest salt concentration used. Note also that
for the last three systems, which differ only in the values
of £, the observable trend is for I' to increase toward its
ideal value of 0.5 with decreasing charge density, and
that the theoretical values follow this trend fairly well.

In Fig. 1 an attempt is made to illustrate the “limit-
ing-law” concept for polyelectrolyte solutions. The data
for the KDNA system® (open circles) and for the KPP
system! (filled circles) are plotted in Fig. 1(a) as a
function of external salt concentration. The theory
[Eqg. (36)] predicts that with decreasing concentration
the open circles should converge to the intercept of the
lower dashed line, while the filled circles should con-
verge to the (more or less equal) intercept of the upper
dashed line. The data are inconclusive in that regard,
but the trend for the two sets of points to become more
alike as n,” decreases is obvious. In Fig. 1(b), both sets
of points are for polyphosphate, but the open circles
represent values when tetramethylammonium (TMA+4-)
is used as the counterion; the salt is TMABr. The

0.3 -
KDNA
o
TMAPP
o
o2k o] L‘ o
T
KPP KPP
o i ° ]
LY - S—— ':___..______' _______
1 i 1. 1 1 1
0.l 0.3 0.5 [oX) 03 05
(a) ~n! (b)

¥1c. 1. In (a), open circles are data for system KDNA~KBr
(Ref. 20); filled circles for KPP-KBr (Ref. 19). Dashed lines
are respective values of I'yneoret; See Table I. In (b), open circles
are data for TMAPP-TMABT; filled circles are same data as in
(a). Dashed line is value of T¢heoret for PP (£=2.85). n,’ (equiva-
lents/liter) is salt concentration in external compartment.

18 M, Nagasawa, A. Takahashi, M. Tzumi, and I. Kagawa, J.
Polymer Sci. 38, 213 (1959).

¥ U, P. Strauss and P. Ander, J. Am. Chem. Soc. 80, 6494
(1958).

20 U, P. Strauss, C. Helfgott, and H. Pink, J. Phys. Chem. 71,
2550 (1967).
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£=228 £=1.43
| L o
0.6 o
Fic. 2. Comparison of Eq. (40) for the qS o o
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closed circles are the same KPP data as in Fig. 1(a).
The theory predicts that both sets of points will con-
verge to the intercept of the dashed line. Again, the
data are inconclusive, but it looks as though the TMA+
and K+ points could be converging to the same value.
The theory preducts only the intercept; Fig. 1 is not
meant to imply that the slope should be zero.
Alexandrowicz® has published extensive data for the
osmotic coefficient ¢ and the mean activity coefficient
v. of the mobile ions. The system is NaPMA with
various degrees of neutralization « and with added
NaBr. In Fig. 2, the data for ¢ are plotted as a function
of X2 and compared with the theoretical expression

1.0
08 P a=0.8
(o) E =2.28
o}
o6
0,
Ys “o
+ \\0\~Q~__‘_____
04 ) 0.80 o
O 4Ho.75
02+ 40.70
o
-0.65
L i 1 1
o )} 2 4 6 8

Fi6. 3. Comparison of Eq. (48) for the mean activity coefficient
v+ (solid line) with data from Ref, 21.

2 7. Alexandrowicz, J. Polymer Sci. 43, 337 (1960).

given by Eq. (40). The points cover a range of values
of the total mobile ion concentration 7,

n=mnq+2n,,

(58)

varying from 14X1073N to 0.17N. Data for v,
(Alexandrowicz’s quantity f; is equal to v;2) are shown
in Fig. 3 for a similar concentration range of #; the
theoretical curve is found from Eq. (48).

If Egs. (40) and (48) are to be interpreted as limiting
laws, then they give the limiting value of ¢ and v,
respectively, for a fixed value of X as » tends to zero.
Data over a wide concentration range for a fixed value
of X are not available at present, but the inset in Fig. 3
is intended to show the possibilities of such a point of
view. The lower point is the value of v, measured when
n=0.17N; the upper point is that measured at n=
0.006/N. In both cases, X1. The theory is in excellent
agreement with the value of vy in the more dilute
solution.

In Fig. 4, curves computed from Egs. (45) and (47)
are compared with measured values of the single-
mobile-ion activity coefficients.””2 Both sets of data
were taken for the system NaPVS with added NaCl,
although £ is somewhat higher for v, the sodium
activity coefficient,” than for v,, the chloride activity
coefficient.”? The value of » ranges from 1.9X10-3N-
3.2X107%N for v and from 3X103V-4.5X 102N for
ve. Nagasawa, lzumi, and Kagawa® also measured
ynar for their system with the use of a sodium amalgam
electrode; their values (not included in Fig. 4) are lower
than those predicted by Eq. (45). Lyons and Kotin"
used a cation-exchange resin for their measurements of
yna+; Nagasawa et al. used a AgCl electrode for yci-.

Lyons and Kotin? also report counterion activity
coefficients for NaPSS and NaPP, both with added
NaCl. These data (along with some points from Fig.

( 29'*’51;% Nagasawa, M. Izumi, I. Kagawa, J. Polymer Sci. 37, 375
1 .
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F16. 4. Comparison of Eq. (45) for the counterion activity
coefficient v, (lower solid line; £=2.36) and Eq. (47) for the
co-ion activity coefficient v2 (upper solid line; £=1.85) with data
from Refs. 17 and 22, respectively.

4) are shown in Table II. Note in particular that, in
accordance with the theory, the measured values of v;
are the same for fixed values of X.

Data are plentiful for the counterion activity co-
efficient v,? in salt-free solutions.”*~% With very few

Tasie II. Experimental and theoretical values of ;.

n X103 (N)  n,X103(N) X v (expth)* v [Eq. (45)]

(NaPSS; NaCl), £=2.34

0.293 0.107 2.74 0.47 0.49
9.11 3.4 2.73 0.47 0.49
1.97 0.673 2.93 0.45 0.47
(NaPP; NaCl), £=2.85
0.310 0.099 3.13 0.46 0.42
0.613 0.196 3.13 0.47 0.42
1.25 0.398 3.14 0.46 0.42
2.48 0.794 3.12 0.46 0.42
4.93 1.38 3.57 0.40 0.41
9.75 1.53 6.37 0.42 0.34
(NaPVS; NaCl), £=2.37
3.04 2.20 1.38 0.51 0.59
7.34 5.32 1.38 0.49 0.59
45.7 33.7 1.36 0.48 0.59

# Taken from Ref. 17,

23 W, Kern, Makromol. Chemie 2, 279 (1948).
2¢ M, Nagasawa and I. Kagawa, J. Polymer Sci. 25, 61 (1957).
2% A, M. Liquori, S. Ascoli, C. Botré, V. Crescenzi, and A. Mele,
J. Polymer Sci. 40, 169 (1959).
2T, Okubo, Y. Nishizaki, and N. Ise, J. Phys. Chem. 69, 3690
1965).
( 27 L? Costantino, V. Crescenzi, F. Quadrifoglio, and V. Vi-
tagliano, ]. Polymer Sci. AS, 771 (1967).
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TiG. 5. Comparison of Egs. (51a) and (51b) for the counterion
activity coefficient 4,? in salt-free solutions (upper curve) with
data (open circles) from Ref. 27, and of Eqs. (29) and (41) for
the osmotic coefficient ¢, in salt-free solutions (lower curve)
with data (filled circles) from Refs. 28 and 29.

exceptions, they may easily be summarized by stating
that for values of b in the range 2.5-3.5 & (0.7<a<1.0
for vinylic polymers) values of v:» fall between 0.20
and 0.35. According to Eq. (51b), the present theory
predicts the value 0.21 when =25 & (£=2.85) and
0.30 when 56=3.54& (¢=2.04). In particular, Liquori
et al.® found that v,* was almost the same (0.21-0.25,
insofar as the points may be read from their graphs)
for fully neutralized NaPA, NaPES, and NaPP, all
characterized by b=2.5 A [theoretical value 0.21 from
Eq. (51b) 7. Usually, variation of v,* with polyelectrolyte
concentration 7. is reported to be small, although a
tendency to decrease with decreasing #, is frequently
observed.”# In Fig. 5, the upper curve is computed
from Egs. (51a) and (51b). The data (open circles)
are from Costantino ef a/.¥ The poor agreement for low
values of £ is probably due to the breakdown in the
validity of the assumption of local rodlike structure.”
The agreement for £>1 is excellent.

As examples of the osmotic coefficient in salt-free
solutions ¢,, one may compare the value 0.13 (z.=
0.02N) found by Alexandrowicz and Katchalsky® for
LiPP and NaPP (¢£=2.85) to the value 0.18 from Eq.
(41). Data for NaPA and NaPMA are summarized by

020} J
f’"“"'; """" o ¢ o -~ TTTTTTTTTTTT o-
aisf o
o
$, |¢
o.10°
o
1 L L J ] l 1
005 [ 2 - 4
ne x 102 (N)

FiG. 6. Data for ¢, at low concentrations #, compared to the value
given by Eq. (41) (dashed line).
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the filled circles®? in Fig. 5; the lower curve is drawn
according to Egs. (29) and (41). As for v1?, the agree-
ment is better for high charge densities than for low,
probably because the cylindrically symmetric model is
a poor description of the actual polymer configuration
for small &.

Some recent measurements of ¢, by Takahashi, Kato,
and Nagasawa® for the system NaPPS (£=2.85) are of
considerable interest. In Fig. 6, these data are compared
with the theoretical value ¢,=0.18 (dashed line). For
solutions more dilute than 0.005N, ¢, is observed to
decrease sharply with further dilution. Above this con-
centration, the theoretical value is in excellent agree-
ment with those observed.

The data of Takahashi et al. should be considered as a
complement to those of Chu and Marinsky,® who
measured ¢, in salt-free PSS («=0.92) solutions for no
less than nine counterions: H+, Lit, Nat, K+ Cst,
NH,* and the first three members of the tetraalkyl-
ammonium series—TMA+, TEA+ and TBA*. The
lowest concentration used was #,=0.05V; thus, Chu
and Marinsky started where Takahashi et al. left off.
In Figs. 1 and 2 of their paper, Chu and Marinsky plot
¢» as a function of #, for each of the nine counterions
and find that a linear extrapolation to #.=0 is easily
accomplished. In each case, the extrapolated value lies
in the range 0.20-0.23. The theoretical value (£=2.62)
from Eq. (41) is 0.19.

A unified interpretation of the measurements of
Takahashi, Kato, and Nagasawa and of Chu and
Marinsky based on the “limiting-law” concept is given
in the next section.

VII. CONCLUDING REMARKS

On the basis of certain assumptions stated in Sec. II,
formulas have been derived for colligative properties of
polyelectrolyte solutions and shown to be frequently
in quantitative agreement with experimental measure-
ments (without the help of adjustable parameters).
The formulas are thought to be “limiting laws” but in a
restricted sense, a point which I wish to pursue further
here with special reference to Fig. 6.

For an imaginary system of polyions which really are

22 W. Kern, Z. Physik. Chem. A184, 197 (1939); also see Table
Iin Ref. 10.

2 Z. Alexandrowicz, J. Polymer Sci. 40, 91 (1959).

3 A. Takahashi, N. Kato, and M. Nagasawa (private com-
munication).

1 P, Chu and J. A. Marinsky, J. Phys. Chem. 71, 4352 (1967).
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infinitely long cylinders, the formulas give the limiting
values (not the slopes) as the total mobile-ion concen-
tration tends to zero. [For a solution which contains
added simple salt, the ratio (#./7,) must be fixed when
the limit is taken.] For a real polyelectrolyte, these
“limiting values” can still be observed, but only if the
lowest mobile-ion concentration used is still sufficiently
large for ! to be less than /,, the average length of a
local rodlike segment of the polyion chain. (Strictly
speaking, « should be calculated in this context from
the concentration of uncondensed mobile ions, but such
a distinction is not important for the order-of-magnitude
arguments being presented.) Consider, for example, two
charged groups separated by (m—1) other charged
groups along the chain. According to the model of an
infinitely long cylinder (fully stretched chain) the
distance between these groups is mb. Now if mb is
sufficiently large to be comparable with /,, the actual
average distance will be somewhat less than mb because
of the globally flexible structure of the chain. This
observation will be of no consequence as long as «!
is less than /,, for then the groups will be effectively
screened; and I suggest that that is why the data in Fig.
6 for values of #, larger than 5X 1073V reflect the pre-
dicted limiting value for an infinitely long, fully
stretched chain, and also why the values of ¢, extrap-
olated from the high concentration range by Chu and
Marinsky agree with the theoretical value. But as «
decreases and 7! becomes comparable to /o, interactions
between these distant groups become important and
are underestimated by the infinite cylinder model.
Although the error is due to the deviation from cylin-
drical symmetry, these “end effects” may be formally
treated by retaining the cylindrical symmetry and al-
lowing b to become a function of ¥ which decreases with
its argument. In Fig. 6, a value of b equal to about half
that for a fully stretched chain [Eq. (3)] would give
agreement with the measured value of ¢, when 7,8
X 10~*N. The deviation of this “adjusted” parameter b
from the fixed value determined from Eq. (3) is a
measure of how far the system deviates from the model
of Sec. II.
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