Table II. Comparison of Predictions from the Modified Dubinin–Radushkevich (MDR), Dubinin–Radushkevich (DR),
Dubinin–Astakhov (DA), and Langmuir (LAN) Adsorption Isotherms

<table>
<thead>
<tr>
<th>adsorbate</th>
<th>T, K</th>
<th>MDR</th>
<th>LAN</th>
<th>DR</th>
<th>DA</th>
<th>Henry's law constantb</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_4^c$</td>
<td>212</td>
<td>0.884</td>
<td>7.314</td>
<td>1.115</td>
<td>0.946</td>
<td>4.679</td>
</tr>
<tr>
<td>260</td>
<td>1.394</td>
<td>4.858</td>
<td>1.632</td>
<td>0.547</td>
<td>0.947</td>
<td>1.422</td>
</tr>
<tr>
<td>301</td>
<td>1.957</td>
<td>2.725</td>
<td>2.239</td>
<td>1.145</td>
<td>0.580</td>
<td>0.589</td>
</tr>
<tr>
<td>C$_2$H$_6^c$</td>
<td>212</td>
<td>2.836</td>
<td>10.831</td>
<td>4.515</td>
<td>5.107</td>
<td>291.155</td>
</tr>
<tr>
<td>260</td>
<td>1.806</td>
<td>8.746</td>
<td>1.729</td>
<td>1.556</td>
<td>31.473</td>
<td>24.649</td>
</tr>
<tr>
<td>301</td>
<td>0.779</td>
<td>5.493</td>
<td>1.172</td>
<td>0.719</td>
<td>3.485</td>
<td>6.172</td>
</tr>
<tr>
<td>C$_2$H$_4^c$</td>
<td>212</td>
<td>2.925</td>
<td>13.392</td>
<td>5.063</td>
<td>3.371</td>
<td>3626.522</td>
</tr>
<tr>
<td>260</td>
<td>0.689</td>
<td>8.426</td>
<td>0.840</td>
<td>0.781</td>
<td>18.702</td>
<td>14.883</td>
</tr>
<tr>
<td>301</td>
<td>0.414</td>
<td>5.456</td>
<td>0.844</td>
<td>0.472</td>
<td>2.529</td>
<td>4.260</td>
</tr>
<tr>
<td>CO$_2^c$</td>
<td>212</td>
<td>1.548</td>
<td>6.506</td>
<td>3.799</td>
<td>0.977</td>
<td>67.399</td>
</tr>
<tr>
<td>260</td>
<td>1.547</td>
<td>5.957</td>
<td>2.957</td>
<td>1.032</td>
<td>6.555</td>
<td>5.134</td>
</tr>
<tr>
<td>301</td>
<td>0.757</td>
<td>3.310</td>
<td>1.789</td>
<td>0.398</td>
<td>1.803</td>
<td>1.442</td>
</tr>
<tr>
<td>CH$_4^d$</td>
<td>293</td>
<td>0.804</td>
<td>1.338</td>
<td>0.782</td>
<td>0.685</td>
<td>1.059</td>
</tr>
<tr>
<td>313</td>
<td>0.368</td>
<td>1.482</td>
<td>0.529</td>
<td>0.402</td>
<td>0.734</td>
<td>0.649</td>
</tr>
<tr>
<td>333</td>
<td>0.513</td>
<td>0.747</td>
<td>0.529</td>
<td>0.524</td>
<td>0.489</td>
<td>0.453</td>
</tr>
<tr>
<td>363</td>
<td>0.687</td>
<td>0.891</td>
<td>0.726</td>
<td>0.709</td>
<td>0.290</td>
<td>0.274</td>
</tr>
<tr>
<td>C$_2$H$_6^d$</td>
<td>293</td>
<td>0.166</td>
<td>1.087</td>
<td>0.235</td>
<td>0.073</td>
<td>9.176</td>
</tr>
<tr>
<td>313</td>
<td>0.243</td>
<td>0.810</td>
<td>0.412</td>
<td>0.365</td>
<td>6.498</td>
<td>3.398</td>
</tr>
<tr>
<td>333</td>
<td>0.180</td>
<td>1.246</td>
<td>0.232</td>
<td>0.236</td>
<td>3.648</td>
<td>2.400</td>
</tr>
<tr>
<td>363</td>
<td>0.733</td>
<td>1.576</td>
<td>0.760</td>
<td>0.759</td>
<td>1.373</td>
<td>1.362</td>
</tr>
<tr>
<td>C$_2$H$_4^d$</td>
<td>293</td>
<td>0.254</td>
<td>1.136</td>
<td>0.355</td>
<td>0.354</td>
<td>17.323</td>
</tr>
<tr>
<td>313</td>
<td>0.172</td>
<td>1.473</td>
<td>0.173</td>
<td>0.174</td>
<td>8.048</td>
<td>4.804</td>
</tr>
<tr>
<td>333</td>
<td>0.078</td>
<td>1.632</td>
<td>0.096</td>
<td>0.085</td>
<td>2.101</td>
<td>2.292</td>
</tr>
<tr>
<td>363</td>
<td>0.718</td>
<td>1.769</td>
<td>0.689</td>
<td>0.666</td>
<td>1.345</td>
<td>1.739</td>
</tr>
<tr>
<td>C$_2$H$_6^d$</td>
<td>293</td>
<td>0.544</td>
<td>0.858</td>
<td>0.885</td>
<td>0.473</td>
<td>7.868</td>
</tr>
<tr>
<td>313</td>
<td>0.314</td>
<td>0.905</td>
<td>0.559</td>
<td>0.279</td>
<td>5.709</td>
<td>13.888</td>
</tr>
<tr>
<td>333</td>
<td>0.177</td>
<td>1.122</td>
<td>0.428</td>
<td>0.177</td>
<td>4.471</td>
<td>9.746</td>
</tr>
<tr>
<td>363</td>
<td>0.111</td>
<td>1.340</td>
<td>0.403</td>
<td>0.167</td>
<td>3.169</td>
<td>5.914</td>
</tr>
<tr>
<td>C$_2$H$_4^d$</td>
<td>293</td>
<td>0.473</td>
<td>0.696</td>
<td>0.664</td>
<td>0.486</td>
<td>7.132</td>
</tr>
<tr>
<td>313</td>
<td>0.091</td>
<td>0.559</td>
<td>0.151</td>
<td>0.089</td>
<td>4.106</td>
<td>14.153</td>
</tr>
<tr>
<td>333</td>
<td>0.172</td>
<td>1.449</td>
<td>0.311</td>
<td>0.163</td>
<td>3.237</td>
<td>4.633</td>
</tr>
<tr>
<td>363</td>
<td>0.34</td>
<td>1.068</td>
<td>0.268</td>
<td>0.102</td>
<td>3.115</td>
<td>2.758</td>
</tr>
<tr>
<td>CO$_2^d$</td>
<td>293</td>
<td>0.598</td>
<td>1.462</td>
<td>0.813</td>
<td>0.764</td>
<td>1.774</td>
</tr>
<tr>
<td>333</td>
<td>0.899</td>
<td>1.820</td>
<td>1.278</td>
<td>1.230</td>
<td>1.179</td>
<td>1.159</td>
</tr>
<tr>
<td>363</td>
<td>0.893</td>
<td>1.665</td>
<td>1.142</td>
<td>0.912</td>
<td>0.711</td>
<td>0.634</td>
</tr>
</tbody>
</table>

- Average relative error = \(\frac{(100/N)\sum\limits_{i=1}^{N} \frac{R_{exp}(n_{i}) - n_{exp}}{n_{exp}}}{n_{exp}} \) where \(N \) = number of data points. bHenry's law constant, mmol/g per atm. cBPL activated carbon (Reich et al., 1980). dNuxit activated carbon (Szepes and Illes, 1985).

muiri isotherms. Below a \(P/P_s \) of \(10^{-6} \), the MDR and
Langmuir models again predicted very similar \(\pi^* \) values,
whereas the \(\pi^* \) from the DR equation was significantly
lower as a result of having a zero limiting slope. Some
generalizations can be made from these results.
The differences in the \(\pi^* \) values below a \(P/P_s \) of \(10^{-6} \) are
insignificant because this range is far below typical ex-
perimental conditions. However, in the range of \(P/P_s \)
between \(10^{-6} \) and \(10^{-2} \), the MDR equation should be used
to calculate \(\pi^* \). Above a \(P/P_s \) of \(10^{-2} \), the DR equation
can be used directly to calculate \(\pi^* \) by using the analytical
expression given by Talu and Myers.3

Notes

Curvature Elasticity of Charged Membranes

D. J. Mitchell and B. W. Ninham*

Department of Applied Mathematics, Institute for
Advanced Studies, Australian National University,
Canberra 2600, Australia

Received October 13, 1988. In Final Form: January 31, 1989

The phenomenological formula for the bending energy
per unit area of a membrane in quadratic approximation
is

\[
\sigma_{\text{bend}} = \frac{1}{2} k_c (c_1 + c_2 - c_0)^2 + \frac{2}{3} k_c c_1 c_2
\]

(1)

where \(c_1 \) and \(c_2 \) are the principal curvatures, \(c_0 \) is the
spontaneous curvature (which vanishes for symmetric
membranes), \(k_c \) is the bending rigidity, and \(k_s \) is the elastic
modulus of Gaussian curvature.

Low-angle X-ray scattering can yield spectra for lamellar
phases from which it is possible to infer these moduli.2 A
recent calculation by Helfrich3 deals with the limit of low
surface charge or high salt. However, there is extant no
a priori theoretical estimates in realistic regimes. We here
derive expressions for bending moduli in that situation.

In the Appendix we calculate the free energy per unit area of a diffuse double layer inside and outside of a cylinder or sphere with uniform surface charge density σ, assuming charge neutrality. These formulas have the form, to order $1/(KR^2)\sigma$

\[g_{el}^{\text{out}} = g_0 + \frac{g_1}{KR} + \frac{g_2}{(KR)^2} \]
\[g_{el}^{\text{in}} = g_0 - \frac{g_1}{KR} + \frac{g_2}{(KR)^2} \]

where λ is the inverse Debye length and R the radius of the cylinder or sphere. The quantities g_0, g_1, and g_2 can be determined from eq A13 and A14.

These results can be used to calculate the electrostatic free energy for cylindrical and spherical membranes. Because the dielectric constant of the membrane is much smaller than that of water, it should be a reasonable approximation to ignore any coupling between the monolayers and regard the inside and outside to be both charge neutral. We shall also assume that the surface charge density is the same on the inside and outside.

For cylindrical membranes, the free energy per unit area of membrane can be shown (cf. Appendix) to be

\[g_{el}^{\text{cyl}} = \frac{2(Rg_{el}^{\text{out}} + Rg_{el}^{\text{in}})}{R_i + R_o} = 2g_0 + \frac{2g_2 + g_1\lambda t}{(KR)^2} \]

and for spherical membranes the free energy per unit area of membrane can be shown to be

\[g_{el}^{\text{sph}} = \frac{2(Rg_{el}^{\text{out}} + Rg_{el}^{\text{in}})}{R_i^2 + R_o^2} = 2g_0 + \frac{2g_2 + g_1\lambda t}{(KR)^2} \]

where R_i and R_o are the inner and outer radii, $R = (R_i + R_o)/2$, and $t = R_o - R_i$ is the membrane thickness.

Comparison with eq 1 yields

\[k_c = \frac{4g_2}{\kappa^2} \]
\[k_c = \frac{2g_2 + g_1\lambda t}{\kappa^2} \]

Thus we obtain for the bending rigidity

\[k_c = \frac{\epsilon}{\pi \kappa} \left(\frac{kT}{e} \right)^2 \left[1 - \frac{8}{s^2} + \frac{8}{s^2(1 + s^2/4)^{3/2}} \right] \]

and for the modulus of Gaussian curvature

\[k_c = \frac{-2t}{\pi \kappa} \left(\frac{kT}{e} \right)^2 D_1 \left(\ln \left(\frac{1 + (1 + s^2/4)^{1/2}}{2} \right) \right) + \frac{\kappa t \ln \left(\frac{1 + (1 + s^2/4)^{1/2}}{2} \right)}{D_1} \]

where $s = 4\pi \sigma \epsilon (\kappa \kappa T)$, ϵ is the dielectric constant of water, ϵ is the protonic charge, κ is Boltzmann's constant, T is the absolute temperature, and D_1 is the Debye function (see eq A16).

Discussion

For small s (i.e., for low surface charge density or high salt concentration), the bending moduli take the approximate form

\[k_c = \frac{3\pi \sigma^2}{\kappa \kappa} \]

\[k_c = \frac{2\pi \sigma^2}{\kappa \kappa} \]

in agreement with the result of Helfrich.\(^3\)

On the other hand, for large s (i.e., large surface charge or low salt concentration) they take the form

\[k_c = \frac{\epsilon}{\pi \kappa} \left(\frac{kT}{e} \right)^2 \]

\[k_c = \frac{-2t}{\pi \kappa} \left(\frac{kT}{e} \right)^2 \left[\frac{s^2}{6} + \kappa \ln \left(\frac{s}{4} \right) \right] \]

The stability of membranes requires k_c to be negative (a condition that is met) and $k_c + k_{c2}/2$ to be positive. Thus, we conclude that the electrostatic contribution to the bending energy tends to destabilize highly charged planar membranes and also weakly charged planar membranes unless their half-thickness $(t/2)$ is less than the Debye length.

The above results have been obtained assuming the validity of the Poisson–Boltzmann description of the double layer, the limitations of which are well known.\(^4\)\(^5\)

In particular, in the low-s limit there is a problem in interpreting the effective surface charge (including ion binding). Fortunately, in the case of real interest, large s, the results are independent of this quantity and should have a wider validity. Further extensions of the theory to include, e.g., association–dissociation equilibrium of the ionic head groups and/or optimization of the head group area\(^6\) are straightforward. For the more difficult counterions only case for which the phenomenological formula for the bending energy, eq 1, no longer holds will be dealt with in a subsequent paper.

Appendix

In the Gouy–Chapman theory (for a 1–1 electrolyte), the electrostatic potential Ψ is given by the Poisson–Boltzmann equation

\[\nabla^2 \Psi = \frac{8\pi n_0 \epsilon}{\kappa kT} \sinh \left(\frac{e \Psi}{kT} \right) \]

where n_0 is the bulk electrolyte concentration, ϵ is the dielectric constant of water, ϵ is the protonic charge, κ is Boltzmann's constant, and T is the absolute temperature. By use of the dimensionless quantities $y = e \Psi/kT$ and $x = \kappa \lambda$, this equation becomes, in cylindrical or spherical coordinates, assuming Ψ is a function of r only

\[d^2y \ dx^2 + \frac{m \ dy}{x \ dx} = \sinh y \]

where λ is the inverse Debye length given by

\[\lambda^2 = \frac{8\pi n_0 \epsilon^2}{\kappa kT} \]

and where $m = 1$ or 2 for cylindrical or spherical coordinates, respectively.

For the outside of a cylinder or sphere, assuming charge neutrality and assuming a uniform surface charge density

\[k_c = \frac{\epsilon}{\pi \kappa} \left(\frac{kT}{e} \right)^2 \]

\[k_c = \frac{-2t}{\pi \kappa} \left(\frac{kT}{e} \right)^2 \left[\frac{s^2}{6} + \kappa \ln \left(\frac{s}{4} \right) \right] \]
\(\sigma \) on the surface, the boundary conditions are

\[
\frac{dY}{dx} \bigg|_{y, x \to \infty} = 0, \quad \frac{dY}{dx} = -s = \frac{4\pi e\sigma}{kT} \quad \text{for} \quad x = \kappa R
\]

where \(R \) is the radius of the cylinder or sphere.

Integrating eq A2 with respect to \(y \), we obtain

\[
\left(\frac{dy}{dx} \right)^2 = 4 \sinh^2 \left(\frac{y}{2} \right) - \int_0^y 2m \frac{dy}{x} \, dy
\]

The planar limit \(m = 0 \) is easily solved to yield

\[
\frac{dy}{dx} = -2 \sinh \left(\frac{y}{2} \right)
\]

where \(\kappa R \) is the Debye function.

\[
D_1(x) = \int_0^x \frac{dt}{e^t - 1}
\]

For the inside of a cylinder or sphere we can still apply eq A2. However, the boundary conditions are modified. Assuming charge neutrality, we have

\[
\frac{dy}{dx} \bigg|_{y, x \to 0} = \text{finite}, \quad \frac{dy}{dx} = -s; \quad x = \kappa R
\]

where the only difference is that \(dy/dx \) and therefore \(x = \kappa R \) will now have the opposite sign. Consequently, the expressions for \(\gamma_0 \) and \(\gamma_{\text{Sl}} \) will be the same but with \(R \) replaced by \(-R \).