
L a n g m u i r  1989, 5 ,  1121-1123 1121 

Table 11. Comparison of Predictions from the Modified Dubinin-Radushkevich (MDR), Dubinin-Radushkevich (DR), 
Dubinin-Astakhov (DA), and Langmuir (LAN) Adsorption Isotherms 

avg re1 error,” ’% Henry’s law constantb 
adsorbate T, K MDR LAN DR DA MDR LAN 

CH4c 212 0.884 7.314 1.115 0.946 4.679 5.905 
260 1.394 4.858 1.632 0.547 
301 1.957 2.725 2.239 1.145 

C2H6c 212 2.336 10.831 4.515 5.107 
260 1.606 8.746 1.729 1.556 
301 0.779 5.493 1.172 0.719 

C2H4c 212 2.925 13.392 5.063 3.371 
260 0.689 8.426 0.840 0.781 
301 0.414 5.456 0.844 0.472 

COzC 212 1.548 6.506 3.739 0.977 
260 1.547 3.597 2.957 1.032 
301 0.757 3.310 1.789 0.398 

CHdd 293 0.804 1.338 0.782 0.685 
313 0.368 1.482 0.529 0.402 
333 0.513 0.747 0.529 0.524 
363 0.687 0.891 0.726 0.709 

C2H4d 293 0.166 1.087 0.235 0.073 
313 0.243 0.810 0.412 0.365 
333 0.180 1.246 0.232 0.236 
363 0.733 1.576 0.760 0.759 

CZbd  293 0.254 1.126 0.355 0.354 
313 0.172 1.473 0.173 0.174 
333 0.078 1.632 0.096 0.085 
363 0.718 1.769 0.689 0.666 

CZHfld 293 0.544 0.858 0.885 0.473 
313 0.314 0.905 0.559 0.279 
333 0.177 1.122 0.428 0.177 
363 0.111 1.340 0.403 0.167 

C3H6d 293 0.473 0.696 0.664 0.486 
313 0.091 0.539 0.151 0.089 
363 0.172 1.449 0.311 0.163 

313 0.598 1.462 0.813 0.764 
333 0.899 1.820 1.278 1.230 
363 0.893 1.665 1.142 0.912 

C02d 293 0.34 1.068 0.268 0.102 

nAverage relative error = ( 1 0 0 / N ) ~ ~ , a b s ( n C d  - nexp)!/nexp, where N = number of data points. 
BPL activated carbon (Reich et  al., 1980). Nuxit activated carbon (Szepesy and Illes, 1963). 

0.947 1.422 
0.380 0.589 

291.155 265.827 
31.473 24.649 
3.488 6.172 

3626.522 116.233 
18.702 14.883 
2.529 4.260 

67.259 39.580 
6.355 5.134 
1.803 1.442 
1.059 0.966 
0.734 0.649 
0.489 0.453 
0.290 0.274 
9.176 5.481 
6.498 3.398 
3.648 2.400 
1.373 1.362 

17.323 7.109 
8.046 4.804 
2.101 2.929 
1.345 1.739 
7.858 19.713 
5.709 13.888 
4.471 9.746 
3.169 5.314 
7.132 21.821 
4.106 14.133 
3.327 4.633 
3.115 2.758 
1.774 1.732 
1.179 1.139 
0.711 0.634 

Henry’s law constant, mmol/g per atm. 

muir isotherms. Below a P/Ps of lo4, the MDR and 
Langmuir models again predicted very similar a* values, 
whereas the a* from the DR equation was significantly 
lower as a result of having a zero limiting slope. Some 
generalizations can be made from these results. 

The differences in the a* values below a P/Ps of 10% are 

insignificant because this range is far below typical ex- 
perimental conditions. However, in the range of P/Ps  
between 10% and the MDR equation should be used 
to calculate a*. Above a P/Ps of the DR equation 
can be used directly to calculate a* by using the analytical 
expression given by Talu and Myers.3 

Notes  
Curvature Elasticity of Charged Membranes 

D. J. Mitchell and B. W. Ninham* 

Department  o f  Applied Mathematics, Insti tute for 
Advanced Studies, Australian National University, 

Canberra 2600, Australia 

Received October 13, 1988. I n  Final Form: January 31, 1989 

The phenomenological formula for the bending energy 
per unit area of a membrane in quadratic approximation 
is’ 

(1) 
1 
2 gbend = -kc(cl + c2 - Co)’ + h c C I C Z  

where c1 and c2 are the principal curvatures, co is the 
spontaneous curvature (which vanishes for symmetric 
membranes), kc is the bending rigidity, and 12, is the elastic 
modulus of Gaussian curvature. 

Low-angle X-ray scattering can yield spectra for lamellar 
phases from which it is possible to infer these moduli.2 A 
recent calculation by Helfrich3 deals with the limit of low 
surface charge or high salt. However, there is extant no 
a priori theoretical estimates in realistic regimes. We here 
derive expressions for bending moduli in that situation. 

(1) Helfrich, W. 2. Naturforsch. 1973, 28C, 693. 
(2) Safinya, C. R.; Roux, D.; Smith, G. S.; Sinha, S. K.; Dimon, P.; 

(3) Winterhalter, M.; Helfrich, W. J. Phys. Chem. 1988, 92, 6865. 
Clark, N. A.; Bellocq, A. M. Phys. Reu. Let t .  1986, 57, 2718. 
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In the Appendix we calculate the free energy per unit 
area of a diffuse double layer inside and outside of a 
cylinder or sphere with uniform surface charge density u, 
assuming charge neutrality. These formulas have the form, 
to order 1/(KRI2 

Notes 

g1 g2 
KR ( K R ) ~  

g$ = go - - + - (3) 

where K is the inverse Debye length and R the radius of 
the cylinder or sph,ere. The quantities go, g,, and g2 can 
be detemined from eq A13 and A14. 

These results can be used to calculate the electrostatic 
free energy for cylindrical and spherical membranes. 
Because the dielectric constant of the membrane is much 
smaller than that of water, it should be a reasonable ap- 
proximation to ignore any coupling between the mono- 
layers and regard the inside and outside to be both charge 
neutral. We shall also assume that the surface charge 
density is the same on the inside and outside. 

For cylindrical membranes, the free energy per unit area 
of membrane can be shown (cf. Appendix) to be 

2g2 (4) 
2(RogoUt + Rig'") 

= 2go + - 
( K R ) ~  gzyl = R, + Ri 

and for spherical membranes the free energy per unit area 
of membrane can be shown to be 

where Ri and R, are the inner and outer radii, R = (Ri + 
R,)/2, and t = R, - Ri is the membrane thickness. 

Comparison with eq I yields 

Thus we obtain for the bending rigidity 

and for the modulus of Gaussian curvature 

where s = 4xea/(t~kT), e is the dielectric constant of water, 
e is the protonic charge, k is Boltzmann's constant, T is 
the absolute temperature, and D1 is the Debye function 
(see eq A16). 

Discussion 
For small s (i.e., for low surface charge density or high 

salt concentration), the bending moduli take the approx- 
imate form 

9 - 2  
V I , "  k, = - 

€ K 3  

in agreement with the result of H e l f r i ~ h . ~  

or low salt concentration) they take the form 
On the other hand, for large s (i.e., large surface charge 

(12) 

6, = -"( P K  y)'[ f + ~t In (:)I (13) 

The stability of membranes requires hC to be negative 
(a condition that is met) and 12, + Ec/2 to be positive. 
Thus, we conclude that the electrostatic contribution to 
the bending energy tends to destabilize highly charged 
planar membranes and also weakly charged planar mem- 
branes unless their half-thickness (t/2) is less than the 
Debye length. 

The above results have been obtained assuming the 
validity of the Poisson-Boltzmann description of the 
double layer, the limitations of which are well k n o ~ n . ~ ? ~  
In particular, in the low-s limit there is a problem in in- 
terpreting the effective surface charge (including ion 
binding). Fortunately, in the case of real interest, large 
s, the results are independent of this quantity and should 
have a wider validity. Further extensions of the theory 
to include, e.g., association-dissociation equilibrium of the 
ionic head groups and/or optimization of the head group 
area6 are straightforward. For the more difficult coun- 
terions only case for which the phenomenological formula 
for the bending energy, eq 1, no longer holds will be dealt 
with in a subsequent paper. 

Appendix 
In the Gouy-Chapman theory (for a 1-1 electrolyte), the 

electrostatic potential \k is given by the Poisson-Boltz- 
mann equation 

where no is the bulk electrolyte concentration, t is the 
dielectric constant of water, e is the protonic charge, k is 
Boltzmann's constant, and T i s  the absolute temperature. 
By use of the dimensionless quantities y = e\k/kT and x 
= Kr, this equation becomes, in cylindrical or spherical 
coordinates, assuming \k is a function of r only 

d2y m dy 
- + - =  sinh y 
dX2 x dx 

where K is the inverse Debye length given by 

and where m = 1 or 2 for cylindrical or spherical coordi- 
nates, respectively. 

For the outside of a cylinder or sphere, assuming charge 
neutrality and assuming a uniform surface charge density 

(4) Attard, P.; Mitchell, D. J.; Ninham, B. W. J .  Chem. Phys. 1988, 

(5) Kjellander, R.; Marcelja, S. J.  Phys. (Les Ulis, Fr.) 1988,49, 1009. 
(6) Evans, D. F.; Mitchell, D. J.; Ninham, B. W. J .  Phys. Chem. 1984, 

88,4987; 1988,89,4358. 

88, 6344. 
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a on the surface, the boundary conditions are 

dY 
dx 

y, - + 0 as x + 

4irea - - s = - -  ~ K k T  for x = KR dY 
dx 
_ -  

where R is the radius of the cylinder or sphere. 
Integrating eq A2 with respect to y, we obtain 

( f ) = 4 s i n h 2 ( a ) -  Y2m -dy dy 
x dx 

The planar limit m = 0 is easily solved to yield 

dY 
- = -2 sinh (i) 
dx 

x - KR = - 1 In (-)(e) z + l  
2 z - 1  z o + l  

where z = cosh (y/2) and zo =cash (yOl21, yo = e\ko/kT, 
and \ko is the surface potential. 

We wish to solve eq A6 for large KR. We note that except 
for very small y (exponentially small in KR)  x = KR. 
Therefore, to first order in 1/&, using this approximation 
and eq A7, we have 

To obtain the next order approximation, we use eq A8 and 
A9, which yield 

( 2)' = 
. .  

8m(m - ln ( F) (Ai01 8m 
KR ( K R ) ~  

4(z2 - 1) + -(z - 1) + 
Applying this equation at  the surface (x = KR)  where z = 
zo and dyldx = -s yields a relation between s and zo or yo. 
It is straightforward to invert this equation to obtain (to 
leading orders in ~ I K R )  

Z" = (1 + s2/4)'/2 - 

(Al l )  1 m(m - 1) 1 + (1 + s2/4)'/2 

( K R ) ~ ( ~  + ~ ' / 4 ) ' / ~  In [ 2 

or 

Yo = 

(-412) I 4m(m - 1) 1 + (1 + s2/4)'/' 
s (~R) ' ( l  + s2/4)'l2 In [ 2 

The electrostatic free energy per unit area is 

where 

L j s y o  ds = 2 In 
s o  I :  + (1 + s2/4)'l2 - -[(I + 

where 

"In [ ( l  + z)/2] dz = Dl[ In ( T)] l + x  
2 2 -  1 

(A151 
where D l ( x )  is the Debye function7 

" t dt 
Dl(x) = 1 - 

et - 1 

For the inside of a cylinder or sphere we can still apply 
eq A2. However, the boundary conditions are modified. 
Assuming charge neutrality, we have 

dY 
dx 

y, - finite as x - 0 

For large KR, y is exponentially small a t  x = 0. Therefore, 
we will still obtain to the required accuracy eq A6. The 
only difference is that dyldx and therefore x - KR will now 
have the opposite sign. Consequently, the expressions for 
yo and gel will be the same but with R replaced by -R. 

(7) Abramowitz, M.; Stegun, I. A. Handbook of Mathematical Func- 
tions; National Bureau of Standards, U S .  Dept. of Commerce, 1970; p 
998. 
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Introduction 
It  has been reported that stable monolayers of long 

n-alkyl alcohols (R-OH) are formed on a water surface and 
can be deposited on substrates.',' Although monolayers 
of n-alkanethiols (R-SH) adsorbed on gold from dilute 
solution have recently been reported: there are few reports 
concerning stable monolayers of thiols on a water surface. 
Sobotka and Rosenberg reported that 1-octadecanethiol 
did not form stable monolayers on a water surface by itself 
but that a mixture of 1-octadecanethiol and stearic acid 
formed stable mixed monolayers. They furthermore sug- 
gested that the thiol was air-oxidized to the disulfide in 
mixed layers on a water ~ u r f a c e . ~  Livingstone and 
Swingley also reported that 1-octadecanethiol did not form 
a stable film on an aqueous 0.01 mol L-' solution of alu- 
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