
Comment on ‘‘Quantum Time Crystals’’

In a recent Letter [1], Wilczek proposes the existence of
a new state of matter, ‘‘quantum time crystals,’’ defined as
systems which, in their quantum-mechanical ground state,
exhibit periodic oscillations of some physical observable.
The proposed model consists of (discernible) particles on
an Aharonov-Bohm (AB) ring, with a contact attractive
interaction. Using mean-field theory, the problem reduces
to the nonlinear Schrödinger equation (NLSE), i@tc ¼
½12 ð�i@� � �Þ2 � �jc j2�c , with periodic boundary con-

dition c ð�þ 2�Þ ¼ c ð�Þ, and
R
2�
0 d�jc j2 ¼ 1. For

zero AB flux (� ¼ 0), the particles form a lump (bright
soliton) for � � �

2 . For nonzero flux �, Wilczek constructs

a solution of the NLSE in which the zero-flux soliton
rotates with velocity ! ¼ � (so that the apparent flux
vanishes in the rotating frame); the flux-induced energy

change is �� ¼ �2

2 per particle. (I restrict here the discus-

sion to j�j � 1
2 , since all physical properties are periodic in

�, with period 1 [2].) This is interpreted as being due to
Faraday’s electromotive torque, which accelerates the
lump to velocity ! ¼ � as the flux is ramped up from
zero to �. The gained energy �� is just the corresponding
rotational kinetic energy. Wilczek claims without further
justification that this rotating-soliton solution is the ground
state and concludes that his model thus constitutes a
‘‘quantum time crystal.’’

Furthermore, Wilczek’s result leads to paradoxical
(unphysical) consequences. (i) In the large coupling limit
(� ! þ1), the soliton width shrinks to zero like ��1, and
the wave function amplitude near the antipode of the

soliton shrinks exponentially (jc j � ffiffiffiffi
�

p
e���=2). The sen-

sitivity to the AB flux � should also be exponentially small
(in particular, �� should be exponentially small, too), and
the dynamics of a classical lump (which is completely
insensitive to the AB flux and has a static ground state)
should be recovered for � ! þ1, in striking contrast with
Wilczek’s result. (ii) When coupled to the environment
(e.g., the electromagnetic field, if the particles carry
some electric charge), the rotating lump would radiate
energy while being in its ground state, thereby violating
the principle of energy conservation. Wilczek’s suggestion
that the coupling to the environment could be reduced by
using higher multipoles or by placing the system in a cavity
does not address the paradox convincingly.

These remarks strongly suggest that Wilczek’s rotating
soliton is not the ground state and that the true ground state
is actually a stationary state, as I show below. The solution
of the NLSE for arbitrary flux [3] is too lengthy and
technical to fit in this Comment; thus, I shall give here

only the solution for � ¼ 1
2 , which is sufficient to disprove

Wilczek’s claim. Noticing that the flux � can be gauged

away from the NLSE by the transformation c ð�Þ ¼
ei�� ~c ð�Þ results in the twisted boundary condition
~c ð�þ 2�Þ ¼ e�i2�� ~c ð�Þ. So, for � ¼ 1

2 , one simply

has to solve the NLSE with � � 0 and an antiperiodic
boundary condition. The correct ground state has the fol-

lowing stationary wave function: ~c ð�Þ ¼ kK
�
ffiffiffi
�

p cnð�K
� ; kÞ.

K � KðkÞ and E � EðkÞ are the complete elliptic integrals
of the first and second kind, and cnðu; kÞ is a Jacobi
elliptic function [4]; the elliptic modulus k satisfies

½E� ð1� k2ÞK�K ¼ ��
2 . The chemical potential is � ¼

K2

�2 ð12 � k2Þ, and the total energy per particle is � �
� þ �

2

R
2�
0 d�jc j4 ¼ � K2½ð2k2�1ÞE�ð1�k2Þð3k2�1ÞK�

6�2½E�ð1�k2ÞK� [5].

Solving explicitly these equations confirms that the present
state has a lower energy thanWilczek’s state. For � ! þ1,
fully analytical results can be obtained for any value
of �, yielding the simple asymptotic result �� ¼
�3½1� cosð2��Þ��2e���, which is negative because the
lump is narrower for� ¼ 1

2 than for� ¼ 0, leading to more

effective attractive coupling, and is thus considerably lower

than Wilczek’s result (�� ¼ �2

2 ) and does not lead to any

unphysical paradox.
In the light of the above discussion, it seems that the very

existence of ‘‘quantum time crystals’’ remains highly
speculative.
I am grateful to Andres Cano and Efim Kats for helpful

comments and discussions.
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