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I present arguments indicating the impossibility of spontaneously rotating ‘‘quantum time crystals,’’ as

recently proposed by Frank Wilczek. In particular, I prove a ‘‘no-go theorem,’’ rigorously ruling out the

possibility of spontaneous ground-state (or thermal equilibrium) rotation for a broad class of systems.
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We are familiar with the idea that setting something into
motion entails some energy cost. Yet, this generally
accepted paradigm has been challenged in a Letter [1] by
Frank Wilczek, who proposed the existence of a new state
of matter, ‘‘quantum time crystals,’’ defined as systems
which, in their quantum mechanical ground state, display
a time-dependent behavior (periodic oscillation) of some
physical observable [2]. Wilczek’s proposal has stimulated
both a considerable interest [3–5] and a vivid controversial
debate [6–9]. The proposal is based upon a model consist-
ing of particles moving on an Aharonov-Bohm (AB) ring
threaded by a magnetic flux, with attractive interaction.
From the observation of the well-known facts that (i) in
absence of coupling, a nonzero AB flux gives rise to a
stationary (time-independent) ground-state current and
that (ii) for zero AB flux, a sufficiently strong interaction
induces a density modulation (soliton) on the ring, Wilczek
then went on to argue that the combined effect of the AB
flux and interaction would result in a spontaneous breaking
of the time-translation invariance, with a persistent rotation
of the soliton in the ground state [1]. However, in a recent
Comment [6], I pointed out that Wilczek’s rotating soliton
is not the correct ground state of the model and that a static
solution with a lower energy can be found; acknowledging
this point, Wilczek nevertheless speculated in a Reply [7]
that some other models could display a ‘‘quantum time-
crystal’’ ground-state motion. A further general objection
raised in Ref. [6], which was left unanswered in Ref. [7], is
the fact that a system displaying a rotational motion in its
ground state would be able to radiate energy (e.g., electro-
magnetic waves), which would conflict with the principle
of energy conservation. In order to settle these puzzling
questions, I give in the present Letter a general argument
for the impossibility of spontaneously rotating quantum
time crystals, based upon a ‘‘no-go theorem,’’ strictly rul-
ing out spontaneous ground-state (or thermal equilibrium)
rotation for a broad class of systems with arbitrary compo-
sition and interactions.

The collective rotational dynamics of interacting sys-
tems has been investigated in detail in the past, in particu-
lar, in the context of rotating nuclei [10,11] or, more
recently, ultracold atomic gases [12,13]; however, the pres-
ence of an AB flux, which breaks time-reversal invariance,

is likely to modify substantially the physical behavior of the
system and compels us to reexamine the problem in this
new context. On the other hand, the effect of the AB flux is
at the heart of Kohn’s theory of the insulating state [14].
Kohn considered a system in a torus geometry threaded
by an AB flux (or, equivalently, with a twisted periodic
boundary condition) and concluded that the hallmark of an
insulator is its complete insensitivity to the AB flux, as a
result of the localization of the many-body wave function.
This consideration already suggests that the realization of a
quantum time crystal by setting a ring-shaped Wigner
crystal (which is known to be an insulator) into spontaneous
ground-state rotation by threading the ring with an AB flux,
as proposed in Ref. [3], is a hopelessly doomed endeavor.
A system can be meaningfully said to be in rotational

motion only if it breaks rotational invariance in the first
place. For finite systems subject to a potential with rota-
tional symmetry, the ground state (like any energy eigen-
state) will always be rotationally invariant [15]; thus, the
rotational symmetry has to be explicitly broken by the
external potential. The breaking of the rotational symmetry
may also occur spontaneously, as a result of interactions,
in the thermodynamic limit, as in Wilczek’s model [1].
The correct treatment of the thermodynamic limit needs
great care; a general method to this aim has been presented
by Bogoliubov [16]: it consists of calculating physical
quantities for finite values of the particle number N and
symmetry-breaking potential V, and then taking the limit
N ! 1 first, and the limit V ! 0 next [17]. In view of the
above considerations, it appears that the problem amounts

to studying the ground-state energy of the system Eð�Þ
0 , as

seen from the static frame, for finite N and in the presence
of an external symmetry-breaking potential rotating at
angular velocity � [18] (this procedure is essentially
equivalent to the cranking model of rotating nuclei [19]),
and eventually taking the thermodynamic limit according
to Bogoliubov’s prescription. The system is a quantum

time crystal if, and only if, the minimum of Eð�Þ
0 is obtained

for some nonzero value of �. Such a behavior would take
place, in particular, if the term linear in �, in the series

expansion of Eð�Þ
0 in powers of �, is nonvanishing. Since

both the AB flux and the external potential rotation break
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the time-reversal symmetry of the Hamiltonian, terms of
odd powers of � are generally allowed for noninteger AB
flux, so that Wilczek’s idea seems to be a priori plausible.
Yet, as we shall show below, the term linear in� is always

exactly zero. Furthermore, I prove that Eð�Þ
0 > Eð0Þ

0 , for

� � 0. The latter inequality is a no-go theorem which
strictly prohibits the existence of spontaneously rotating
time crystals as speculated by Wilczek. These results are
also generalized to the situation of thermal equilibrium at
nonzero temperature.

Let us now move on to the proof of the no-go theorem.
Let us consider an assembly of N particles of masses mi

moving on a one-dimensional AB ring (of radius R)
threaded by a magnetic flux, described by the following
Hamiltonian:

Ĥð�Þ
� ð�; tÞ ¼ XN

i¼1

"
@
2ðl̂i ��iÞ2
2miR

2
þ Við�i ��tÞ

#

þX
i<j

Uijð�i � �jÞ; (1)

where �i is the angular coordinate of particle i, and l̂i �
�i@�i is the corresponding (dimensionless) angular mo-

mentum operator. The particles may be fermions or bosons
(or any mixture of bosons and fermions) or discernable
particles. The AB flux may be either a true magnetic flux or
an effective gauge flux [20] due, for instance, to adiabatic
spin tracking [21], to trap rotation [22], or to coherent level
transitions [23]. For the sake of generality, we allow the
flux, external potential, and interparticle coupling to take
different values for each particle; this would be the case,
for instance, if the various particles are located on physi-
cally different rings. The dimensionless number �i is the
flux (in units of flux quanta) experienced by particle i,
Við�i ��tÞ is the external potential experienced by
particle i (which we set into rotation at angular velocity
�, as explained above), and Uijð�i � �jÞ is the coupling

between particles i and j. We use vector notations, such
as � � ð�1; �2; . . . ; �NÞ and � � ð�1; �2; . . . ; �NÞ. The
generic model given by Eq. (1) encompasses not only
the models considered in Refs. [1,3] but also the Fermi
and Bose-Hubbard models for ultracold atomic gases on
optical lattices [24,25].

Let c ð0Þ
�;nð�; tÞ ¼ ’ð0Þ

�;nð�Þe�iEð0Þ
�;n

t=@
be the nth many-

body eigenstate of the static Hamiltonian Ĥð0Þ
� ð�Þ, with

energy eigenvalue Eð0Þ
�;n � hc ð0Þ

�;njĤð0Þ
� jc ð0Þ

�;ni (throughout

the Letter, wave functions are normalized to 1). For

nonzero �, let c ð�Þ
�;nð�; tÞ be the rotatory eigenstates [18]

of the time-dependent Schrödinger equation i@@tc ð�; tÞ ¼
Ĥð�Þ

� ð�; tÞc ð�; tÞ, with time-independent energy in the

static frame Eð�Þ
�;n � hc ð�Þ

�;njĤð�Þ
� jc ð�Þ

�;ni.
The transformation to the rotating frame is achieved

by the change of variables ð�i; tÞ ! ð�0i; t0Þ � ð�i ��t; tÞ

(throughout this Letter, the primes indicate quantities
expressed in the rotating frame), which yields @�i ¼ @�0i
and @t ¼ @t0 ��@�0i , so that the Schrödinger

equation in the rotating frame becomes i@@t0c
0ð�0; t0Þ ¼

Ĥ0ð�Þ
� ð�0; t0Þc 0ð�0; t0Þ, with Ĥ0ð�Þ

� ð�0Þ ¼ Ĥð0Þ
� ð�0Þ ��L̂z.

This is a classic textbook result [26]; here, L̂z ¼ @
P

il̂i ¼
L̂0
z is the total angular momentum operator and is the same

in the rotating frame as in the static frame. Simple
manipulations then yield

Ĥ0ð�Þ
� ð�0Þ ¼ Ĥð0Þ

�þ��ð�0Þ � @��tot � Icl�
2

2
; (2)

where �tot ¼ P
i�i is the total flux seen by all the parti-

cles, and Icl ¼
P

imiR
2 is the classical moment of inertia of

the system; here and below, we use the shorthand notations
�i � miR

2=@ and � � ð�1; �2; . . . ; �NÞ. Thus, the rota-
tory eigenstates and eigenvalues, expressed in the rotating
frame, are, respectively,

c 0ð�Þ
�;n ð�0; t0Þ ¼ ’ð0Þ

�þ��;nð�0Þe�iE0ð�Þ
�;n

t0=@
(3)

and

E0ð�Þ
�;n ¼ Eð0Þ

�þ��;n � @��tot � Icl�
2

2
: (4)

Their expressions in the static frame are thus, respectively,

c ð�Þ
�;nð�; tÞ ¼ ’ð0Þ

�þ��;nð� ��tÞe�iE0ð�Þ
�;n

t=@
(5)

and

Eð�Þ
�;n � hc ð�Þ

�;njĤð�Þ
� jc ð�Þ

�;ni
¼ h’ð0Þ

�þ��;njĤð0Þ
� j’ð0Þ

�þ��;ni
¼ Eð0Þ

�þ��;n � h’ð0Þ
�þ��;nj�Ĥð�Þ

� j’ð0Þ
�þ��;ni;

with

�Ĥð�Þ
� � Ĥð0Þ

�þ�� � Ĥð0Þ
�

¼ @
X
i

½l̂i � ð�i þ�i�Þ�2 � ðl̂i ��iÞ2
2�i

(6)

¼ �
dĤð0Þ

�þ��

d�
� Icl�

2

2
: (7)

We eventually obtain

Eð�Þ
�;n ¼ Eð0Þ

�þ��;n ��
dEð0Þ

�þ��;n

d�
þ Icl�

2

2
: (8)

Obviously, the term linear in �, in the expansion of Eð�Þ
�;n,

vanishes, as announced above, and one has

Eð�Þ
�;n � Eð0Þ

�;n ¼ I�;n�
2

2
þOð�3Þ; (9)
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where

I�;n ¼ Icl �
d2Eð0Þ

�þ��;n

d�2

���������¼0
(10)

is the moment of inertia for the nth energy level of the
system. The second term, in the above equation, is the
quantum correction, which gives rise to the phenomenon
of nonclassical rotational inertia in coherent quantum
systems such as nuclei [11] or superfluids [27]. It is also
the central ingredient in Kohn’s theory of the insulating
state [14], who relates it to lim!!0!Im�ð!Þ. To obtain the
moment of inertia, we expand the rotatory energy eigen-
value, expressed in the rotating frame, in powers of � and

use second order perturbation theory; this yields E0ð�Þ
�;n ¼

Eð0Þ
�;n ��L�;n � ðI�;n�

2=2Þ þOð�3Þ, with

L�;n ¼ @�tot �
dEð0Þ

�þ��;n

d�

���������¼0
(11)

and

I�;n ¼ 2
X
m�n

jL�;n;mj2
Eð0Þ
�;m � Eð0Þ

�;n

; (12)

where L�;n;m � h’0
�;njL̂zj’0

�;mi and L�;n; � �n;mL�;n;m.

Obviously, for a ground state which breaks rotational
symmetry, I�;0 > 0, and I�;0 ¼ 0 otherwise. The latter

expression for the moment of inertia generalizes the result
obtained in the absence of magnetic field for nuclei [10] or
ultracold atomic gases [12]. For an excited state, the
moment of inertia I�;n (n > 0) may be negative.

To generalize these results to the case of a system in
thermal equilibrium, we first note that, since the reference
frame in which the Hamiltonian is time independent is the
rotating frame, the statistics of level population is con-

trolled by the energy levels in the rotating frame E0ð�Þ
�;n ;

thus, the free energy in the rotating frame F 0ð�Þ
�;� , at tem-

perature kBT � ��1, is given by

e��F 0ð�Þ
�;� � Tr

�
e��ðĤð0Þ

�
��L̂zÞ

�
¼ X

n

e��E0ð�Þ
�;n : (13)

To obtain the expression of the free energy in the static

frame F ð�Þ
�;�, we should carefully pay attention to the fact

that e��F ð�Þ
�;� �

P
ne

��Eð�Þ
�;n . Instead, one gets

F ð�Þ
�;� ¼ F 0ð�Þ

�;� þX
n

½e��ðE0ð�Þ
�;n

�F 0ð�Þ
�;�

ÞðEð�Þ
�;n � E0ð�Þ

�;n Þ�: (14)

Inserting in the above equations the expressions given by
Eqs. (4) and (8), one obtains [28]

F 0ð�Þ
�;� ¼ F ð0Þ

�;� ��L�;� �
~I�;��

2

2
þOð�3Þ; (15)

F ð�Þ
�;� ¼ F ð0Þ

�;� þ
~I�;��

2

2
þOð�3Þ; (16)

with

L �;� � hL̂zi�;�; (17)

~I �;� � I�;� þ �ðh�̂2
�i�;� � h�̂�i2�;�Þ; (18)

I�;� � X
n�m

 
e��Eð0Þ

�;n � e��Eð0Þ
�;m

e��F ð0Þ
�;�ðEð0Þ

�;m � Eð0Þ
�;nÞ

jL�;n;mj2
!
; (19)

where �̂� � P
nj’0

�;niL�;nh’0
�;nj is the diagonal part of

the angular momentum, and hÂi�;� � Tr½e��ðĤð0Þ
�
�F ð0Þ

�;�
ÞÂ�.

In the expression of the moment of inertia ~I�;�, Eq. (18),

the second term arises from the flux dependence of level
populations; it vanishes for zero flux or zero temperature
and was therefore absent in the results published earlier for
systems with time-reversal invariance such as ultracold

atomic gases [12]. Obviously, ~I�;� > 0 for a system in

which rotational symmetry is broken at equilibrium, and
~I�;� ¼ 0 otherwise.

Having shown that setting the system into rotation
always increases the ground-state energy (or the free en-
ergy, for T > 0) in the limit � ! 0, we finally show that
the same holds for any finite value of�. From Eqs. (8) and
(10), and from analogous relations for the free energy [28],
we obtain, respectively,

Eð�Þ
�;0 � Eð0Þ

�;0 ¼
Z �

0
d�0�0I�þ�0�;0 > 0; (20)

F ð�Þ
�;� �F ð0Þ

�;� ¼
Z �

0
d�0�0~I�þ�0�;� > 0; (21)

where the inequalities follow from the fact that

I�þ�0�;0 > 0 and ~I�þ�0�;� > 0, respectively, in at least

some finite range of�0 for a system with broken rotational
invariance at rotation frequency �. The latter results hold
for any values of particle number N and symmetry-
breaking potential V. Thus, when taking the thermody-
namic limit according to Bogoliubov’s prescription
[16,29], and assuming the occurrence of spontaneous
breaking of rotational symmetry, we obtain for the

ground-state energy per particle "ð�Þ
�;0 (or the free energy

per particle fð�Þ
�;�, for T > 0)

"ð�Þ
�;0 � "ð0Þ�;0 � lim

V!0
lim
N!1

Eð�Þ
�;0 � Eð0Þ

�;0

N
> 0; (22)

fð�Þ
�;� � fð0Þ�;� � lim

V!0
lim
N!1

F ð�Þ
�;� �F ð0Þ

�;�

N
> 0; (23)

PRL 111, 070402 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

16 AUGUST 2013

070402-3



respectively. This completes the proof of our no-go theo-
rem, prohibiting the existence of Wilczek’s spontaneously
rotating quantum time crystals [30].

We can also obtain interesting lower and upper bounds for
the moment of inertia. The lower bound generalizes to the
case of finite temperature and broken time-reversal invari-
ance, a result given earlier by Leggett [31], and reads [28]

~I�;� � X
i

miR
2

�
1�

�
h�ðiÞ

�;�i�
�

1

�ðiÞ
�;�

�
�

��1
	

þ �ðh�̂2
�i�;� � h�̂�i2�;�Þ> 0; (24)

where h� � �i� indicates the average over the ring circum-

ference, and �ðiÞ
�;� is the equilibrium density for particle i at

flux � and inverse temperature �. The second term, in the
above result, vanishes for a system with time-reversal in-
variance, or at zero temperature, and did not appear in the
original Leggett inequality [31]. From the Cauchy-Schwarz

inequality, h�ðiÞi�h1=�ðiÞi� � 1, with equality if and only if

the density �ðiÞ is uniform, we confirm that ~I�;� > 0 for a

system with broken rotational invariance. The remarkable
feature of Leggett’s inequality is that (at least at T ¼ 0,
where the second term vanishes) it allows us to obtain a
lower bound for themoment of inertia in terms of the density
distribution only. The upper bound reads [28]

~I �;� � �ðhL̂2
zi�;� � hL̂zi2�;�Þ; (25)

where the equality holds in the classical (or high tempera-
ture) limit.

Finally, we briefly comment on the proposal [3] of test-
ing Wilczek’s concept by using a Wigner crystal made of
100 9Beþ ions in a toroidal trap with a diameter of 100 �m,
threaded by a magnetic flux. Of course, for this system, the
above no-go theorem prohibits any time-crystal-like spon-
taneous rotation. Furthermore, for thisWigner crystal in the
strong-coupling regime, simple considerations indicate that
the ions are strongly localized around their classical equi-
librium positions, with a Gaussian density distribution of

width w given by ðw=dÞ / ½ðme=MÞðaB=dÞ�1=4, where d is
the Wigner-crystal lattice parameter, aB is the Bohr radius,
me the electron mass, and M the ion mass. This yields
w=d ’ 10�2, and using Leggett’s inequality, Eq. (24), we
can conclude that the quantum correction to the moment
of inertia is completely negligible and that this system
behaves classically with respect to its rotational dynamics,
in sharp contrast with the claims of the authors of Ref. [3],
but in full agreement with Kohn’s theory [14].

The impossibility of spontaneous ground-state rotation
is nicely explained and illustrated by a simple, physically
transparent model proposed by Nozières [32].

I warmly thank Philippe Nozières for numerous illumi-
native discussions, as well as Andres Cano for helpful
comments and suggestions.
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