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Parametrically excited quasicrystalline surface waves
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{Received 15 June 1992)

In an experiment on the parametric excitation of capillary waves (the Faraday instability) we have ob-
served a stable standing-wave pattern with twelvefold orientational order. This "quasipattern" is analo-
gous to a two-dimensional quasicrystal, but it occurs in a macroscopic nonequilibrium fluid-dynamical
system. It is observed in containers whose side walls are of various shapes including an irregular shape,
and thus it cannot be ascribed to side-wall boundary effects.

PACS number(s): 47.35.+ i, 47.20.Ky, 61.43.—j

Recently it has been proposed [1] that two-dimensional
quasicrystalline patterns might arise naturally in spatially
extended dissipative pattern-forming systems. This is an
interesting idea because it suggests that the orientational
order observed in quasicrystals is not restricted to the mi-
croscopic world but could also occur in a macroscopic,
continuum-mechanical context. We report in this Rapid
Communication the observation of a twelvefold "quasi-
pattern, " analogous to a two-dimensional quasicrystal, in
an experiment on the parametric excitation of capillary
waves. The observed quasipattern does not depend on
the shape of the side walls of the container. We note that
an eightfold pattern was recently reported in Ref. [2].

As discovered by Faraday [3], when an open container
of Quid is forced to oscillate vertically, a pattern of stand-
ing waves can be excited on the free surface. The wave
number k depends on the forcing frequency [4]. If the
container is of suKciently large horizontal dimensions, it
is reasonable to pose the linear and weakly nonlinear sta-
bility problems on the infinite plane [5] and to ignore
side-wall boundary effects. The linear problem has all of
the symmetries of the plane and thus a circle of critical
wave vectors
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=k simultaneously becomes unstable as
the amplitude a of the forcing oscillation passes a thresh-
old value a, . The pattern that develops just above the
threshold is determined only by nonlinear interactions
among wave vectors on or very near this circle.

The experiment described herein differs in two impor-
tant ways from recent "large-aspect-ratio" Faraday ex-
periments [6,2,7,8]. The Quid is viscous, with about 85
times the kinematic viscosity of water [9]. And the verti-
cal oscillation is a superposition of two frequencies. We
have shown recently [10] that two-frequency forcing has
important consequences for the symmetries of the non-
linear stability problem.

The Quid is a mixture of 88% (by weight) glycerol and
12 jo water, with kinematic viscosity v =0.85+0.OS
cm /s and density p=1.22 g/cm . The container is
housed in an airtight glass and Plexiglass cover to
prevent the evaporation of water. The temperature is
controlled at 23+0. 1 C by a water bath and infrared
lamps.

All data reported in this Rapid Communication, except
as otherwise noted, are obtained with a superposition of

the two frequencies 4' and Scu where co/2m =14.60 Hz.
The vertical acceleration f (t) is given by

f (t) =a [cos(8)cos(4~t)+sin(8)cos(5cot+P)], (1)

where the phase of 4' is zero by choice of time origin and
where the angle t9, with 0 ~ 0 ~ 90', serves to mix the two
amplitudes.

The container used for precise measurements is a
cylinder of 12 cm diameter and 0.29 cm depth with a
black Formica bottom and aluminum side walls. We use
the brimful technique [11,8] to reduce meniscus effects
[13]. Other containers of square, hexagonal, and octago-
nal form, and an irregularly shaped container, are used to
check that the observed patterns are independent of side-
wall shape. The container is attached rigidly to an elec-
tromagnetic vibration exciter.

The signal that controls the vibration exciter is gen-
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FICx. 1. Pattern arising near the primary instability. For
each point in this plane, i.e., for fixed P and 9 of the vertical ac-
celeration f (t) =a [cos(0)cos(4cot)+sin(0)cos(5cot +P)], insta-
bility of the flat surface is obtained by slowly increasing the arn-
plitude a. This figure shows which pattern is observed just
above the primary transition from the flat surface: L1, lines
with k =8.8 cm ', Q, twelvefold quasipattern; H, hexagons; L2,
lines with k =7.5 cm; D, dynamic states including breaking of
the surface. The quasipattern is found only very near the bicri-
ticality (the horizontal line) for P near 75. The figure is com-
piled from measurements taken on a 16 X 17 grid of ($, 0) values.
Thick gray lines indicate regions where two patterns are in corn-
petition or are simultaneously present near the primary transi-
tion.
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crated by a computer and digital-to-analog converter. To
correct for amplitude and phase errors in the electronics,
the vertical acceleration f (t) is measured by a piezoelec-
tric accelerometer and a calibrated charge amplifier, and
the amplitudes and phases are determined by a two-
frequency lock-in technique. Values reported for a, 0,
and P are those measured from the accelerometer signal.

In the three-parameter space (a, 0, $) instability is ob-
tained by fixing 8 and (() and slowly increasing a through
the critical value a, at which the Aat surface loses stabili-
ty. Note that (t may be chosen within 0'~ (() (90, since
Eq. (1) has the symmetry / ~/+ ~12, t —m. /2'.

Figure 1 shows, in the ($, 8) plane, the patterns ob-
tained just above a =a, (6,$). The twelvefold quasipat-
tern is observed for /=75' near the bicriticality of two
wave numbers, each corresponding approximately to the
critical wave number of one of the two superposed fre-

quencies.
Figure 2(a) shows the primary stability boundary

a =a, (0) for / =75'. We note several features of this dia-
gram.

Two neutral curves depart from the horizontal and
vertical axes and meet at a bicritical point at
0=65.5'+0. 5 . The case 0=0 (the horizontal axis) is the
single frequency 4'/2~=58. 4 Hz. Here the pattern ob-
served is parallel lines of wave number k =7.5+0.3
cm . This differs from the low-viscosity case where
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FIG. 2. Stability boundaries for /=75' in the (a, 0) plane. (a)
shows the primary transition (solid line) from the flat surface F,
hysteresis (dashed line), and the pattern which develops just
above a =a, (0); instability is produced by fixing 0 and increas-
ing a as shown by the arrow. (b) shows in detail the transitions
among stable states in the neighborhood of the bicriticality.
H!F, Q/F, and Q/L 1 denote regions of hysteresis. The thick
gray line separating H and Q indicates a regime where the
twelvefold quasipattern competes with hexagons, including os-
cillations from one to the other. The thick gray line separating

Q and D indicates a "melting" regime where the quasipattern
order breaks down via localized defects, which become more
frequent with increasing a. Irregularities in the boundaries are
due mainly to temperature fluctuations.

FIG. 3. Photographs of the twelvefold quasipattern. (a) Cir-
cular container, 12 cm in diameter and 0.29 cm deep. The Auid

is 88%%uo glycerol, v=0. 85+0.5 cm /s at 23+0. 1 C; forcing pa-
rameters for Eq. (1) are a = 142 m/s, 0=66. 1, co/2m = 14.6 Hz,
/=75'. (b) Irregularly shaped container, 0.3 cm deep, with a
flat bottom and with side walls in the shape of France; the dis-
tance Bordeaux-geneva is 5 cm. The Quid is 82% glycerol,
v=0. 60 crn /s, at ambient temperature; forcing parameters are
()=65', co/2~=31 Hz, /=66'; a was adjusted to be slightly
above a, (not measured).
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theory [5] and experiment [3,6] agree that the pattern is
squares [12].

For small but nonzero 8, that is, when the single fre-
quency 4' is slightly perturbed by 5', the observed pat-
tern is still lines. For 0 greater than approximately 20',
the pattern changes to hexagons, although there is no
sharp changeover and hexagons, lines, and disordered
patterns are observed together over a small range of 0.
For 0 above 30 a perfect hexagonal pattern is observed
[14]. The transition to hexagons becomes increasingly
hysteretic as 0 is increased further.

The case 8=90' (the vertical axis) is also a single fre-
quency, 5'/2m. =73.0 Hz. Here the pattern is lines of
wave number k =8.8+0.2 cm '. For 90 ~ 0) 65.5' the
pattern of lines is essentially unchanged from the pure
single frequency. There is no evidence of hexagons or
hysteresis for this upper branch of the neutral stability
boundary.

The twelvefold quasipattern is found near the bicritical
point. Figure 2(b) shows in detail the transitions occur-
ring near the bicriticality.

Figure 3 exhibits photographs of the quasipattern in
two containers. We invite the reader to view these at
glancing angles to observe that the quasipattern is orien-
tationally ordered and that this ordering extends across
almost the full width of each container. The pattern is
visualized axisymmetrically by reflected light from 30
small incandescent lamps arranged on a circle of radius
14.5 cm. To eliminate the thirtyfold symmetry this light
is passed through an axisymmetric translucent plastic
diffuser in the form of an annulus of inner radius 14 cm
and outer radius 18 cm. The lamps and annular diffuser
surround the camera, which is 128 cm from the surface.
The exposure time is 1 s, which is much longer than the
standing-wave period.

Figure 4 is a computer-generated image of the twelve-
fold surface height function

12

g(x) —=go y exp(ik, x)

for k symmetrically arranged on a circle. The effect of
the experimental visualization has been approximated by
calculating Vg at each point and determining if this gra-
dient would permit light from the annular diffuser to be
reflected into the camera. The surface is assumed to
move simusoidally in time, and reflected light is averaged
over one period of the oscillation to yield gray levels; go
and contrast are chosen to match the photographs.
Many details in the experimental photographs are also
apparent in this image [15].

FIG. 4. Computer-generated image of the twelvefold surface
height function g(x) = (go—,"exp(ik," )xwith an approximation
of the effect of the experimental visualization.

Stroboscopic methods were used to determine the
response frequency of the patterns. The vertical accelera-
tion f (t) of Eq. (1) is periodic with period 2m/co. The
patterns 1.2, H, and Q all appear stationary when the
strobe period is 2m/co, while the pattern I 1 appears sta-
tionary only at period 4m /co [16].

We speculate that a weakly nonlinear theory of quasi-
patterns similar to the X =6 case considered in Ref. [1]
may be appropriate to describe our results. The hexa-
gons are weakly subcritical (less than 5%%uo hysteresis) and
their overall behavior is similar to that of hexagons in
non-Boussinesq convection for which the theory is well
established [17]. A sufficient change in the cubic-order
coefficients [P(8) in the notation of [1]],perhaps due to
proximity to the wave-number bicriticality, would suffice
to destabilize the hexagons in favor of the twelvefold
quasipattern. We note that most analyses of pattern-
forming systems consider only regular patterns (lines,
squares, hexagons). But because hexagons arise in a
variety of such systems, the transition to a twelvefold
quasipattern may be more common than previously sup-
posed.
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