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Abstract Elastic rings become unstable when sufficiently twisted. This fundamental
instability plays an important role in the modeling of DNA mechanics and in cable
engineering. In 1962, Zajac computed the value of the critical twist for the instability.
This critical value was rediscovered in 1979 by Benham and independently by Le Bret
in elastic models for DNA; unstable rings have since become an important example of
elastic instabilities in rods both for the development of new methods and in appli-
cations. The purpose of this note is to show that the problem had been completely
solved by John Henry Michell in 1889 in a rather elegant manner and to reflect on its
history and modern developments.
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1. Introduction

The problem is simple to state: “If a wire of isotropic section and naturally straight be
twisted, and the ends joined so as to form a continuous curve, the circle will be a
stable form of equilibrium for less than a certain amount of twist.” [1] In other words,
consider an isotropic elastic rod (the rod has no preferred bending direction') that is
stress-free when held straight. Now, paint a straight line on the straight rod and
shape the rod so that the rod centerline is a circle. At the junction, the tangent from
the two ends agree but the cross-sections can be rotated so that the line painted on
the straight unstressed shape twists around the central curve. The twist is the total
angular rotation of the line with respect to the central curve. The line will close on
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! See [2] for a modern mathematical definition of transverse isotropy in elastic rods.
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Figure 1 Untwisted (left) and twisted ring (right). The total twist is given by the total angular
rotation of an arrow pointing at any circle on the surface of the untwisted ring. Here the total twist
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itself at the junction if the twist is an integral multiple of 27 (Figure 1). The rod is
glued at this point and released. For small values of the twist, the twisted ring is
stable. For sufficiently high twist, the elastic ring will become unstable and will start
writhing out of the plane. The phenomenon is quite striking as the instability
appears to be subcritical (in the sense that no stable equilibrium shape exists close to
the unstable ring). The ring suddenly buckles and loops back on itself by forming an
eight-shape where self-contact plays a particularly important role (see Figure 2). For
reasons that will soon become apparent, we shall refer to the twisted elastic ring
instability as Michell’s instability and the problem addressed here is to identify the
value of the critical twist at which the instability sets in.
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Figure 2 Buckling of an unstable ring when the critical twist is first reached (twist not shown on
the ring).
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This phenomenon raises many interesting questions. Qualitatively, one may un-
derstand the instability as a balance between torsional and bending energy. The tor-
sional energy of the ring increases as the square of the twist and is eventually relieved
by a change of shape that increases the bending energy (proportional to the square of
the curvature). Quantitatively, the first natural question is to determine the value of
the critical twist that makes the ring unstable in terms of its geometric (ring and cross-
section radii) and elastic parameters (torsional and flexural rigidity). Once the insta-
bility threshold has been determined, many other questions can be approached such
as determining the static and dynamic behavior of the ring after the instability sets in
and how this phenomenon can be generalized to more complicated systems (see below).

The instability of the twisted elastic ring is a fundamental instability of elastic
materials akin to the Euler instability describing the buckling of loaded beams.
Beyond its obvious importance as a natural philosophy question and its application
in engineering problems, the problem of twisted elastic rings and related instability
of elastic materials has gained some renewed interest in science largely due to the
realization that Kirchhoff models for elastic rods are suitable models for the study of
macromolecules such as DNA molecules [3-6] but also plants [7, 8] and microbial
filaments [9]. In particular, the analysis of mini-DNA rings made out of a few
hundred bases offers a unique perspective to characterize physical properties of
DNA and twisted elastic rings are the natural theory to understand and extract
these properties [10].

2. History of the Problem

The stability of twisted rings was first discussed by Thomson and Tait in their
classical Treatise on Natural Philosophy [11]. In paragraph 123 (see Figure 3), they
discussed the problem of the respective stability of the circle versus the eight form
(close to the last shape shown on Figure 2) and reached the conclusion that “the
circular form, which is always a figure of equilibrium, may be stable or unstable,
according as the ratio of torsional to flexural rigidity is more or less than a certain
value depending on the actual degree of twist.” Motivated by this assertion, John
Henry Michell (Figure 4) wrote a four-page paper where he determined the critical
twist as a function of the ratio « = M/L of torsional to flexural rigidity. His original
paper is given in Appendix A and a modern proof based on his analysis is given in
the next Section. His analysis rests on an application of a general theory of vibration
of rods around an equilibrium shape [12] (his first published work at age 26).
Apparently, Michell realized that when these frequencies become imaginary the
equilibrium shape loses its stability and he applied this idea to derive a simple
criterion for the instability of a twisted elastic ring.

John Henry Michell is an interesting, almost tragic, figure of applied mathematics
at the turn of the 20th century. A bright Australian student, he went to Cambridge
(UK) for his postgraduate study and then returned to the University of Melbourne
where he was eventually appointed Professor of Mathematics and retired at age 65
[13]. His entire research publication records took place between 1889 and 1902
when he published 23 papers. His contributions are believed to be “the most
important contributions ever made by an Australian mathematician” [14]. While
Michell was very active in teaching and science in Australia after 1902, the reasons of
his abandonment of research activity are unclear and may be due to his dedication to
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The principles of twist thus developed are of vital import-
ance in the theory of rope-making, especially the construction
and the dynamics of wire ropes and submarine cables, elastic
bars, and spiral springs.

For example: take a picce of steel pianoforte-wire carefully
straightened, so that when free from stress it is straight : bend
it into a circle and join the ends securely so that there can be
no turning of one relatively to the other. Do this first without
torsion: then twist the ring into a figure of 8, and tie the two
parts together at the crossing. The area of the spherical hodo-
graph is zero, and therefore there is one full turn (27) of twist;
which (§ 600 below) is uniformly distributed throughout the
length of the wire. The form of the wire, (which is not in a
plane,) will be investigated in § 610. Meantime we can see
that the “torsional couples” in the normal sections farthest
from the crossing give rise to forces by which the tie at the
crossing is pulled in opposite directions perpendicular to the
Plane of the crossing. Thus if the tie is cut the wire springs
back into the circular form. Now do the same thing again,
beginning with a straight wire, but giving it one full turn
(27) of twist before bending it into the circle. The wire will
stay in the 8 form without any pull on the tie. Whether
the circular or the 8 form is stable or unstable depends
on the relations between torsional and flexural rigidity. If
the torsional rigidity is small in comparison with the flexural
rigidity [as (§§ 703, 704. 703, 709) would be the case if,
instead of round wire, a rod of + shaped section were used)
the circular form would be stable, the 8 unstable.

Lastly, suppose any degree of twist, either more or less
than 2w, to be given before bending into the circle. The
circular form, which is always a figure of free equilibrium, may
be stable or unstable, according as the ratio of torsional to
flexural rigidity is more or less than a certain value depending
on the actual degree of twist. The tortuous 8 form is not (except
in the case of whole twist = 2=, when it becomes the plane
elastic lemniscate of Fig. 4, § 610,) a continuous figure of free
equilibrium, but involves a positive pressure of the two cross-
ing parts on one another when the twist > 27, and a negative
pressure (or a pull on the tie) between them when twist < 2x:
and with this force it is a figure of stable equilibrium.

Figure 3 Extract from Trait and Thomson’s Natural Philosophy (1867).

teaching and a lack of positive response from the scientific community [15, 16]. To
date, his single most recognized work is the computation of wave resistance to a
ship, that is, the energy loss into a wave pattern by a steadily moving ship known as
the “wave resistance formula,” which was not fully appreciated before his death [14].

Michell’s work on the stability of rods received some attention at the turn of the
20th century and eventually led him, with other contributions, to his election at the
Royal Society in 1902. At this time his work in elasticity was well received as is
evidenced by the discussion in Basset’s paper [17] and in the second edition (1906)
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Figure 4. John Henry Michell
(1863-1940).

of Love’s classic treatise [18]. However, his pioneering work in elasticity seems to
have fallen in complete darkness as it is completely absent from the literature after
1945 (with the notable exception of Antman and Kenney [19]). At the turn of the
21st century, the name of John Henry Michell has resurfaced in Australia through
the establishment of the J.H. Michell Medal, awarded yearly since 1999 by the
Australian Mathematical Society to a young outstanding applied mathematician.

In 1962, Edward E. Zajac, then at Bell Laboratory, published an article on the
stability of twisted elastic rings and the stability of the clamped looped elastica [20].
His work was motivated by the coiling and kinking of submarine cables but he
argued that these problems ‘are of intrinsic interest in applied mechanics.” He was
apparently unaware of Michell’s work as he states that “contrary to what one might
expect, neither of the foregoing problems is solved in Born’s thesis on the stability
of elastic line.” In the first part of the paper, Zajac studies the stability of the twisted
elastic ring based on Love’s formulation in Euler angles and rederives Michell’s
criterion by linearizing the static equation of rod equilibrium. His paper is clear and
concise and a good example of applied mechanics at his best, a well-formulated
problem of interest solved elegantly by direct analysis of Kirchhoff equations.

The story of repeated discoveries does not end with Zajac. Zajac’s paper was
published in an engineering journal and aside from the submarine cable community it
did not receive much attention. However, the stability of twisted elastic rings became
of interest to the biophysics DNA community when it was first realized that geometric
and topological characterizations of curves could be of importance to understand
DNA configurations [21, 22]. Shortly after, Benham and LeBret independently
proposed to model DNA as an elastic rod [3, 23, 24] and both considered the
stability of twisted elastic rings and essentially rederived Michell’s criterion [25, 26].
The connection with Zajac’s work was only realized years later by Coleman, Tobias,
Olson, and collaborators in a series of papers [27-29]. Since then, Zajac’s work has
been considered as the original paper on the subject [30-35] and the instability of
the twisted rings has even been referred to as Zajac’s instability [36].

3. Michell’s Analysis

The basic idea behind Michell’s analysis is to study the linearized dynamics of the
rings and to identify vibration frequencies. The instability threshold is reached when
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the frequencies become imaginary, that is when small perturbations are exponen-
tially amplified. Therefore, the analysis should be based on the full dynamical equa-
tions (described in the next section). However, in Michell’s analysis, the rotational
acceleration of the cross-section, given by the right-hand side of Equation (16), is
not taken into account. This leads to a simpler formulation (independent of the spin
vector w) that gives the wrong vibration frequencies, but since the stability threshold
does not depend on the dynamical part of the equations but only on the static part, it
does not change the basic computation for the critical value of the twist.
Accordingly, to follow closely Michell’s basic analysis while remaining mathemat-
ically consistent, we give a simpler and shorter proof by considering the static
equations and looking for non-trivial periodic solutions of the linearized equation.
This proof is actually very close to the derivation of Euler criterion for the
instability of a beam and to the best of my knowledge the simplest self-contained
proof available.

In the absence of body force, the static equations describing the balance of
resultant force” n and moment m acting on the centerline r = r(s) parameterized by
its arc length are given by

W =0, 1)
m +r' xn=0. (2)

In the case of an isotropic cross-section, these equations are closed by the
constitutive relationship

m = L&f + M~yT (3)

where ' = 1, v, and B are, respectively, the tangent, normal, and binormal vectors
to r. We define 7, s to be the Frenet torsion and curvature and +y is the twist. They
are related by the Frenet equations:

v =krv, V=18-krr, B =-10 (4)

The twist v describes the rotation of the material frame around the centerline and
therefore is not a property of the centerline. Therefore, it does not appear in the
Frenet equations but only in the constitutive relationship. The coefficients M and L
describe the bending and torsional rigidity of the rod. By substituting the
constitutive equation into Equations (1-2) and using the Frenet equation, one can
solve for m explicitly in terms of «, 7,y and reduce the system to three differential
equations in terms of geometric parameters:

0 (5)
0 (6)
0 (7)

where @ = M/L. The first equation implies that the twist v must be constant. To
identify bifurcations points where the ring may lose stability with respect to out-of-
plane and torsional deformations we consider small variations of the curvature and

/
~y

/ /
KT — QYK

w2 (ay = 27)7 4+ K (K — K") + kK"

2 Michell uses S, T, U and F, G, H to denote the components of n and m in the Frenet
basis, see Appendix A.
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torsion k = K 4 ex1, 7 = er; and expand Equations (6-7) to first order in € (where
K = 1/R is the curvature of the circle). After simplification, a single equation for x;
is obtained

K1+ (K2 + azfyz)n{ =0. (8)

This equation supports periodic solutions of the form x; = exp(insK) with n integer
for

YK =n?—1. 9)

The first non-trivial solution occurs for n = 2 and corresponds to
K
y=v3 =. (10)

The total twist 7w is the integral of the twist v over the circumference and
corresponds to the total angular rotation of the cross-section along the rod, that is
Tw = % and the twisted ring becomes unstable for values of the twist larger than

Tw, = 2mV3. (11)
«

This is the critical value of the twist identified by J. H. Michell in 1889.

For most materials, typical values for « lie between 2/3 (incompressible material)
and 1 (compressible) with metals around 4/5. Other filaments such as DNA may
present higher values of twist to bending rigidity [31]. Therefore, a ring becomes
unstable when it has been twisted by about two full turns (with limits 1.73 to 2.6
corresponding to a between 2/3 and 1).

The stability of the ring solution with respect to the out-of-plane deformation
cannot be assessed by the present method. This can be achieved either by looking
at the dynamics of the perturbed solutions and verifying that past the critical
values, these solutions are exponentially growing in time. This was the method
originally proposed by Michell and has been developed independently in a general
framework by Goriely and Tabor [33, 37-39]. The second alternative to test for
stability is to use the variational structure of the Kirchhoff equations and identify
the mimina of the corresponding energy functional. The powerful machinery of
variational calculus presents some interesting subtleties in the case of rods due to
the particular integral constraints associated with inextensibility and unshearability
[10, 40—43]. For a geometric variational proof of stability, see [44].

4. A Modern Formulation of Rod Theory

Here, following [2, 10, 27], we give a short overview of the general theory of rods in
modern notation. A Cosserat or Kirchhoff rod is represented by its centerline r(s)
where s is a material parameter taken to be the arc length in a stress-free con-
figuration (0 <s < L) and two orthonormal vector fields d;(s),d,(s) representing
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the orientation of a material cross-section at s. A local orthonormal basis is obtained
by defining r' =ds(s) =d;(s) x do(s) and a complete kinetic and dynamics
description is given by

r' =v, (12)
d =uxd;, i=123, (13)
d=wxd i=12,3, (14)

where ()" and( ) denote the derivative with respect to s and ¢, and u, v are the strain
vectors and w is the spin vector. The components of a vector a = a;d; + axd; + azds
in the local basis are denoted by a = (a;,a,a;) (following [2], we use the
sans-serif fonts to denote the components of a vector in the local basis). The two
first components represent transverse shearing while vz > 0 is associated with
stretching and compression. The two first components of the curvature vector u, are
associated with bending while us represents twisting.

The stress acting at r(s) is given by a resultant force n(s) and resultant moment
m(s). The balance of linear and angular momenta yields [2]

0+ = pAi, (15)
m/+r’><n+l:p([2d1><Hl+11dzx ;iz), (16)

where f(s) and I(s) are the body force and couple per unit length applied on the
cross-section at s, A is the cross-section surface, p the mass density, and /;, are the
principal moments of inertia of the cross-section (corresponding to the directions
d]ﬁz).

To close the system, we assume that the resultant stresses are related to the
strains. There are two important cases to distinguish.

4.1. Extensible and Shearable Rods

First, we consider the case where the rod is extensible and shearable and we assume
that there exists a strain-energy density function W = W(y,z,s) such that the
constitutive relations for the resultant moment and force in the local basis are given
by

m=fu— Gv-vs)=o,Wu—- bv-— Vs), (17)

n=gu— Gv— Vs)=9,Wu- 0,v— Vs), (18)

A

where U, O are the strains in the unstressed reference configuration (m=n=0
when u =0,v=v). Typically, W is assumed to be continuously differentiable,
convex, and coercive. The rod is uniform if its material properties do not change
along its length (i.e., W has no explicit dependence on s) and the stress-free strains
¥, i are independent of s.

4.2. Inextensible and Unshearable Rods

In the second case, we assume that the rod is inextensible and unshearable (the case
considered by Michell), that is we take v = d; and the material parameter s becomes
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the arc length. In that case, there is no constitutive relationship for the resultant
force and the strain-energy density function is a function only of (u — ), that is

m=0,W(u—u)=f(u—u). (19)

In Michell’s case, the energy is quadratic, the stress-free configuration is the
straight rod, and the cross-section is circular. Explicitly, the resultant moment is

m = Fliuid; + ElLusd; + pJuzds, (20)

where E is the young modulus, u is the shear modulus, and J is a parameter that
depends on the cross-section shape (an explicit form for J and examples can be
found in [50]). For a circular cross-section, these parameters are:

-, (21)

where R is the radius of the cross-section. The products EI; and EI, are usually
called the principal bending stiffnesses of the rod, and pJ is the torsional stiffness.

The orthonormal frame (dy,d;,d3) is different from the Frenet-Serret frame
defined by the triple (normal,binormal,tangent)=(v, 8, 7). If we take v3 = 1, then the
vectors (dg, d;) lie in the normal plane to the axis and are related to the normal and
binormal vectors by a rotation through an angle ¢:

d; = v cos p + B sin g, (22)
d, = —vsin ¢ + B cos . (23)

This rotation implies that
u = (ksin ¢,k cos p, 7+ ¢), (24)

where « and 7 are the usual Frenet curvature and torsion.
4.3. Michell’s Analysis for Rods with Intrinsic Curvature

Michell’s analysis can be generalized to consider the stability of various config-
urations. As an example, we consider here the stability of an inextensible rings with
intrinsic curvature. Such rods are characterized by the constitutive relationship

m = B;(uy — (i1 )d; + B (up —Gg)dz + Cugds, (25)

where Uy 2 are constant. The stability analysis can be carried out in the general case
but we only present here a simpler problem to avoid lengthy discussions on para-
meters. We consider an isotropic rod (B; = B, = B) and choose the director basis so
that the first vector is in the direction of intrinsic curvature, that is (s = 0. In this
case, there exists a family of rings with arbitrary curvature K defined by u; = K,
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uz = ug = 0. Following Michell’s idea, we can solve for the resultant force and write
a closed system for the curvatures. Explicitly, we first substitute, the constitutive
relationship (25) into the equation for the resultant moment written in local
components. The equation for the tangential component mj leads to

aug + CI1 u, = 0. (26)

The two other equations can be solved explicitly for ny, in terms of u and 4. The
substitution of these relations into the equation for the resultant force n yields a
system for u and n3 which after elimination of n3 reads

ufup — uquh — ujup? — 2ugUbus + aupugup + aup’ul
(27)
— u3u1? — 2uugd) + Oruruy + augufus + aus®ug + Giug?up =0,

A
Upus — uhuy + Upuquy + 2 Uupug — Uqupuy — auauf — aupuiug

+ 3upuguy + uruug® 4 uzuh — 2uzun®ug + 2aur’uzugus — 2aunul Uy (28)

— Ubuguy — 2ubuau + Uyupug 4 aubuug + aubusuy —Giug’ug = 0,

where o = C/B as before. The three last equations form a closed system for the
curvature vector u. It is now straightforward to consider the perturbation problem
ui = K + ex, up = ey and uz = ez, which leads after simplification to the linearized
system

2" 4031+ pa — p)7 =0, (29)

with p = K /0. Since we are considering a closed rod, the curvature vector must be
periodic with period 2%. The linearized equation supports periodic solutions of the
form z = exp(insK) for

—1 —pa + p+ nfap’ =0, (30)

where n must be an integer for the solution to have the period 2%. The solution n = 0
corresponds to a rod with constant torsion and curvature, that is a helix which is
clearly incompatible with the condition that the rod is closed. The solution n =1
exists only for p =1 when the rod is in a stress-free state that is always stable (its
energy vanishes). Since the positive roots p, of (30) are strictly decreasing with n,
the first non-trivial solution occurs for n = 2 for which

Ca—-1+vVa2+1l4a+1
B 8a .

, (31)

Therefore, we conclude that the instability is triggered when the ring has a radius
between 1.68 to 2 times as large as the unstressed radius of curvature (corresponding
to a =1/2 and o =1, respectively). The stability analysis of rings with intrinsic
curvature has been studied independently by different authors [28, 40, 45-48] and
has found some interesting application to the problem of DNA mini-rings [46, 49].
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5. Modern Developments

We give here a list of generalizations of Michell’s results that have been proposed
over the years. This list is not meant to be exhaustive and some important results or
applications may have been overlooked.

Non-isotropic rods. The fact that circular rods with arbitrary constant twist
exist as a solution of the Kirchhoff equations is a direct consequence of the
isotropy and uniformity of the cross-section. That is, for an elastic rod with
material properties specified by G, ¥ and W, there exist generic circular
solutions with arbitrary twist only when the rod is isotropic and uniform. A rod is
isotropic if the bending and shear strains vanish, that is 41 =l =y =v, =0,
and the strain-energy function is invariant under rotation about the d3 axis. It is
uniform if its material properties do not change along its length and strains @, ¥
are independent of s. For a non-isotropic rod, the orientation of the principal
bending direction with respect to the normal and binormal directions is not
arbitrary but only a discrete set of possible orientations is possible [48, 50, 51]
(an example of this property is given in the previous section where due to the
intrinsic curvature, the isotropy of the cross-section is broken and the orientation
of the principal bending direction is fixed).

Multicovered rings. An interesting twist on the problem is to consider rings
that are initially multicovered, that is the unstressed state is a filament
whose central curve goes ¢ times around the circle and the filament is twisted.
Clearly, if contact is taken into account, this starting configuration cannot be
obtained. Nevertheless, they are well defined mathematically and are physically
relevant as soon as the multicovered rings open and self-contact disappears.
Depending on the number g of times the ring is initially covered and the number
p of full turns initially in the system, the rod has the topology of a torus knot
(p,q) (an example of a (3,2) torus knot is given on Figure 5).

Post-buckling analysis and self-contact effect. What happens to the twisted
ring after the instability? Simple experiments seem to suggests that as soon
as the critical twist is reached, the ring completely buckles and folds on
itself. Without considering the self-contact in the fold position, the solution
of the Kirchhoff equations suggest that the ring would completely unfold
and fold back periodically into a ring [33]. A weakly nonlinear analysis of its
post-buckling behavior shows that for o < 11/8, the bifurcation is subcritical
and nearby solutions are also unstable. For « > 11/8, the bifurcation is
supercritical, that is close to the bifurcation, the amplitude of the deformation
increases as /7w — Tw, [40, 52]. Now, taking into account the self-contact
effects that occur when the ring folds back on itself, an entire new class of
solution and bifurcation can be uncovered as shown in a beautiful series of
papers by Coleman and collaborators [53-55] (see also [56]).

Over-twisted rings. The first unstable mode is n=2 and its spatial
configuration is shown in Figure 2. Assuming that the rod is twisted past the
critical value, then closed into a ring and released, other modes can be excited.
Since different modes start growing in time, the dynamics cannot be neglected
and the problem is to establish which mode will be selected in the writhing of the
ring. This can be analyzed by considering the maximum of the dispersion
relation obtained by perturbation [33]. For instance, for «=3/4 and
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Figure 5 Instability of a multicovered ring. Here p = 3,g =2 and the topology after unfolding is
that of the trefoil knot.

Tw = 30 > Tw,, all modes between n =2 and n = 7 are excited but the fastest
growing mode is n = 4, leading to the configuration shown in Figure 6.

* Generalizations. Further studies and generalizations include the analysis of
a growing ring [57], a systematic analysis of all closed loop solutions and
their symmetries [44, 58], the stability of a twisted circular ply [59], the
statistics of fluctuating rings given by distribution of writhe [60] and the
thermal fluctuations of twisted elastic rings with applications to DNA
miniplasmids [61].

6. Conclusions

The instability of the twisted elastic ring is a fundamental elastic instability that has
been overlooked in most textbooks on elasticity. This is probably due to the fact
that the analyses that have been presented require heavy formalisms and lengthy
computations that cannot be described succinctly. Michell’s century old approach of
the problem offers a new way to introduce and discuss the problem in simple terms
requiring only the basic equations for the mechanics of rods and the Frenet equations.
His analysis should be a cornerstone of three-dimensional elastic instability in rod
theory essentially playing the role of Euler Buckling for twisted rods.
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Figure 6 Instability of the overtwisted ring. The twist is 7w = 30 > Tw, and « = 3/4, all modes
between n =2 and n = 7 are unstable and the fastest growing mode is n = 4.

Why Michell’s work has been forgotten remains a mystery, although it may partly
be due to his scientific isolation in Australia. It is also a sign of the new role of
mechanics in science. Michell’s result has been rediscovered independently at least
three times by researchers interested in applications in different fields and well
aware of classical results of mechanics. The fact that twisted elastic rings play such
an important role in such diverse research areas is a testimony of the central role
that elasticity can play today in our understanding of mechanical principles in life
and engineering sciences.
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Appendix A
Michell’s Original Paper

ON THE STABILITY OF A BENT AND
TWISTED WIRE.

IF a wire of isotropic section and naturally straight be
twisted, and the two ends joined so as to form a continuous
curve, the circle will be a stable form of equilibrium for less
than a certain amount of twist.*

I propose in this note to determine the limit of stability.
I begin by finding the general intrinsic equations of vibration
of a bent wire.

Let ADB be an clement of the wire bounded by normal
sections A, B, and let the distances of these sections from a
fixed point of the wire be s — 8s and s respectively.

Let 8, 7, U be the components of the resultant force on
the section B, S being measured along the tangent in the
direction of s increasing, 7" along the principal normal inwards,
and U along the binormal, so that the three directions form a
right-handed system.

Let I, G, H be the components of the couple on the
section I3 in the same three dircctions.

Then, if P, @, B are the impressed forces on the element
AB per unit length, the equations of equilibrium are

Ez‘uff-aﬁd’+ P =0
%—?—TU+ kS+Q=0
%g-!- T+ R =0
%E:-xG o T T—— (1),
%?—TH+::F—U=0
r-f{g—ir+'rt?+ T =0

where k is the curvature and 7 the torsion at s.

* ‘Thomson aud Tait, Nut. Phil,, § 123,
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Now let  be the rate of twist of the wire at s, then the
theory of wires gives

F= My
G=0 ¢,
H=1L«x

agsuming the flexibility the same in all directions.
Substituting in equations (1), we get

dF
%=
U= — Lkt + M xy,
de
T=-L 7t
so that the twist « is constant, and
8=-2 s (Lr-sp)+11 %%
K 7 P
Substituting in the two remaining equations of (1), we get
the two dynamical equations
d (1d% dr d Q
L‘T’("E-I-&"—T')'i‘ﬂ'ygﬂ—l"l'zs; (2}
d dr de i
L (;xr+r£) — My E_R

Now let the wire vibrate about its equilibrium form, and
let %, », w be the displacements of the point s along the
tangent, principal normal, and binormal respectively at time .

Supposing no impressed forces we have

d’u
—P=m F 3
d*
L
d'w
—-—RB=m E ’
and the condition of inextensibility is
du

& ="
dl

8o that Q=2 1.

=3

&
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Further, if «, 7, denote the equilibrium values of the
curvature and torsion rcspectlva]y, we have*

N ®
_f_ 148 vss ay viaasisarnel B )
LA APt P i
where —i}d—hvcu T
ds k ds ?
dw T du
B=_+;£.

Substituting these values in equations (2), we have the
gencral intrinsic equations of vibration.
When the cqmlbrlum form is a plane curve, these equa-
tions reduce to

« d'u d 1 du
La(;‘é.?”") O
’
L(im+7§f)-ﬂyﬁ—sn—md

&t @
P1du d
s “=htTes e

_d1d, do
T=%x o5 +xds'

Proceeding to the particular case of a circular ring, the
equations are

L;:a(‘%: +x’§a)’u+ﬂ'y! (£+x'£)w=m(d—::‘ - 5‘%}5‘;),

L(d‘I + i d.)w+M7 (d +4 d’)u=m%ﬂ.

d 4 (bl
The appropriate solution, when the wire forms a complete
circle, is
%= A",
0= Bel'u:l"ﬂlij,

r being an integer.

* “The small deformation of curves and suxfaces, &c.," ante p. 8.
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Making the substitutions and climinating 4, B, we find
‘wpt (14907) = L' (1 =%, =My’ (1-27) | =0,
— My’ (1 =), mp' + Le'r* (1 =r¥)
or
mipt (14 %) 4+ 20p"Lie's* (1 = %) = L' (1= 1*)°
= Ml (1= 2")"=0.
For stability, the values of »* must be positive, and this
leads to the condition
L' (v =1)> My,
Now r=1 corresponds merely to displacement of the ring

as a rigid body.
The necessary condition for stability is therefore

vy L
;<Ii'v!{3}:

so that the total twist must be less than
2+(3)m L[M.
If the cross-section is circular,
L_E
A~ 2
where E is Young’s modulus and g is the rigidity modulus.

For metals /2= 3u about, and in this case the total twist
must be less than 27 x 2. 16.

Messeng. Math., 19, 181-184 (1890).
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