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Analysis of the swimming of microscopic organisms
By Sir GeorrreEY TAaYLOR, F.R.S.

(Recetved 25 June 1951)

Large objects which propel themselves in air or water make use of inertia in the surrounding
fluid. The propulsive organ pushes the fluid backwards, while the resistance of the body gives
the fluid a forward momentum. The forward and backward momenta exactly balance, but the
propulsive organ and the resistance can be thought about as acting separately. This conception
cannot be transferred to problems of propulsion in microscopic bodies for which the stresses due
to viscosity may be many thousands of times as great as those due to inertia. No case of self-
propulsion in a viscous fluid due to purely viscous forces seems to have been discussed.

The motion of a fluid near a sheet down which waves of lateral displacement are propagated
is described. It is found that the sheet moves forwards at a rate 272b2/A2 times the velocity
of propagation of the waves. Here b is the amplitude and A the wave-length. This analysis
seems to explain how a propulsive tail can move a body through a viscous fluid without
relying on reaction due to inertia. The energy dissipation and stress in the tail are also
calculated. .

The work is extended to explore the reaction between the tails of two neighbouring
small organisms with propulsive tails. It is found that if the waves down neighbouring tails
are in phase very much less energy is dissipated in the fluid between them than when the waves
are in opposite phase. It is also found that when the phase of the wave in one tail lags behind
that in the other there is a strong reaction, due to the viscous stress in the fluid between them,
which tends to force the two wave trains into phase. It is in fact observed that the tails of
spermatozoa wave in unison when they are close to one another and pointing the same way.

INTRODUCTION

The manner in which a fish swims by causing a wave of lateral displacement to
travel down its body from head to tail seems to be understood through the work of
James Gray and his colleagues. This movement gives rise to circulations round the
body which, in a fluid of small viscosity like water, are necessary to produce a forward
force by dynamical reaction. In other words, the creature owes its ability to propel
itself entirely to the inertia forces set up in the surrounding fluid by its muscular
movements. Viscosity is important only in so far as it plays a part in the mechanics
of the boundary layer, which in turn plays a part in determining the magnitude of
the circulations with which the inertia reaction of the water is associated.

The propelling organs of some very small living bodies (spermatozoa for instance)
bear a superficial resemblance to those of fish, in that propulsion is achieved by
sending waves of lateral displacement down a thin tail or flagellum. The direction
of movement of the organism is, like that of the fish, opposite to that of propagation
of the waves of lateral displacement. The dynamics of a body as small as a sperma-
tozoon—say 5x 10~3cm. long with a tail 10-5 cm. diameter—swimming in water
must, however, be completely different from that of a fish. If L is some character-
istic length defining the size of a body moving in water with velocity V, in a fluid of
density p, and viscosity u, the Reynolds number, B = LVp/u, expresses in numerical
form the order of magnitude of the ratio

stress in fluid due to inertia
stress due to viscosity
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In most fishes R is of order many thousands, in a tadpole it is perhaps of order 102,
and in bodies of the size of spermatozoa it is of order 103 or less. It will be seen,
therefore, that the forces due to viscosity, which may legitimately be neglected in
comparison with inertia forces, in studying the motions of fish, may be thousands
of times as great as the inertia forceg in the case of the smallest swimming bodies.

Reynolds number is usually defined in relation to a body moving steadily through
a fluid with velocity V. In cases where the body is vibrating the inertia stresses arise
from the reaction between the vibrating surface and the surrounding fluid. The
number which corresponds with Reynolds number in describing the order of

magnitude of the ratio stress due to inertia

stress due to viscosity

is nlp/p,

where » is the frequency of vibration. In the case of a spermatozoon n is of order
100 c./sec., and ¢ for water is 10~-2. The length which is of importance in consider-
ing the stress in the fluid is the diameter of the tail rather than its length, so that -
L is of order 10-5 cm. and nL?o/u is of order 10—8. In considering the motions of
spermatozoa therefore it is necessary only to take account of viscous forces. Inertia
forces may legitimately be neglected. ' :

These considerations naturally give rise to the following question. How can a
body propel itself when the inertia forces, which are the essential element in self-
propulsion of all large living or mechanical bodies, are small compared with the
forces due to viscosity?

An attempt will be made to answer this question by showing that self-propulsion
is possible in a viscous fluid when bodies immersed in it execute movements which
bear a strong resemblance to those which spermatozoa are known to make.

Self-propulsion in a viscous fluid

The only problems concerning the motion of solids in viscous fluids which have
so far been solved relate to bodies which are moved by the application of an external
force like gravity. The motion of spheres and ellipsoids in an infinitely extended fluid
under external forces or couples has been analyzed. It has been found that such
bodies tend to move along with them a very large volume of the surrounding fluid.
Long cylindrical bodies move so much fluid that the whole volume, extending to
infinity, moves with the body. The fact that a cylinder in steady motion gives rise
to finite fluid velocity at an infinite distance was discussed by Stokes (1851) who also
obtained the solution to the problem presented by an oscillating cylinder in which
inertia stresses are comparable with those due to viscosity. He pointed out that as
the frequency of oscillation decreases the volume of fluid which moves with the
cylinder increases till, as the frequency approaches zero, the disturbance tends to
extend to infinity.

When large bodies like ships or aeroplanes are propelled by some internal
mechanism through a fluid, the mechanics of their motion is always analyzed by
considering separately (a) a propelling mechanism like a paddle wheel or airscrew
which develops a forward force by pushing fluid backwards, and (b) resistance which
arises because the body entrains some of the surrounding fluid and thus gives it
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a forward momentum. When the self-propelled body is moving-at a steady pace it is
clear that the backward momentum considered under (@) exactly balances the
forward momentum of ().

When a body propels itself in a viscous fluid it is still true that the total rate of
production of momentum is zero. In other words the resultant force which the fluid
exerts on the body must be zero. On the other hand, it is clear that when inertia
stresses are negligible compared with those due to viscosity it is no longer possible
to use the conception of propulsion as being due to the separable effects of a pro-
pulsive unit and fluid resistance. The truth of this statement is at once obvious if
the body considered is two-dimensional, in the form of an infinitely long cylinder,
for the effect on the fluid of moving the cylinder—considered independently of the
propulsive unit—would, as Stokes showed, be to move the whole fluid in which it
was immersed. There is no reason to suppose that a self-propelling body would move
a great volume of the fluid surrounding it, in fact in the particular problem the
solution of which fills most of this paper, the influence of a self-propelling body
extends only a very short distance from it.

Provided that no attempt is made to separate propulsion from resistance, but the
motions of the whole fluid and the body are considered as inseparable, Stokes’s
difficulty disappears. Though microscopic swimming creatures are certainly three-
dimensional, yet the great simplicity of two-dimensional, compared with three- .
dimensional analysis, makes it worth while to discuss the problem of self-propulsion
in a viscous fluid in two dimensions.

The propelling organ of a spermatozoon is a thin tail down which the organism
sends waves of lateral displacement. Whether this tail moves in two or three dimen-
sionsisnot clear (Rothschild 1951). The analogous two-dimensional problem is that of
a sheet down which waves of lateral displacement are propagated. This problem will
be investigated with a view to finding out whether such waves can give rise to viscous
stresses which drive the sheet forwards.

Waves of small amplitude in sheet immersed in a viscous fluid
Take axes which are fixed relative to the mean position of the particles of the sheet.
The waving surface will be taken represented by

Yo = bsin (kx — o). (1)
The velocity of the wave is o/k and it moves in the direction « positive. The wave-
length is 27k = A¢ represents time. b, the amplitude, will be assumed small
compared with A. If the sheet is inextensible and the amplitude of the wave small,
material particles will oscillate in a path which is nearly parallel to the axis of y,
though, as will be seen later, their actual paths are narrow figures of 8. The com-

“ponents of velocity of a particle of the sheet are ug, v, where

Uy =0, vy= %‘7{9 = —bo cos (kx — ot). (2)

The problem is therefore to find a motion in a viscous fluid which satisfies (2) as
a boundary condition on y, = bsin (kx — ot). The field equation which viscous flow
in two dimensions satisfies when inertia is neglected is
Vi = 0, (3)
20-2
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where i is a stream function and the components of velocity are
__w o
= ——ag, V= P (4)

As a first approximation when bk is small assume for ¥
¥ = (4,y+B;) e ™ sgin (kx— ot)— Vy. (3)

This function satisfies (3). The velocity of the fluid at infinity is V, so that if ¥ has
a finite value the particles of the waving surface will move relative to the main body
of viscous fluid with velocity — V. The conditions to be satisfied at the surface
Yo = b sin (kx— ot) are

oy N _ . _

—a;—vo-—bcrcos(kx—at), —@—u{,—O. (6)
To the first order (when bk is small) the values of 4 and » at y = 0 will be the same
as those at y = bsin (kx— ot), so that the boundary conditions (6) are satisfied if

—V+(4,—Bk)sin (kx —0t) = —uy =0 (7
and B, kcos (kx — ot) = vy = —bo cos (kx — at). (8)
(7) and (8) are satisfied if
V=0, A =Bk=-bo. 9)
Inserting values of 4, and B, in (5) it is found that

U= -—l-)]g—(l + ky)e~*¥sin (kx — ot), (10)

and i represents the flow near a sheet down which waves of small amplitude are
. travelling. It will be noticed that since V = 0 the waves in the sheet do not propel it
through the fluid. This conclusion, however, will be modified when the equations
are treated, using a higher order of accuracy than that which led to (7) and (8).
The dissipation of energy can be found by calculating the work done per unit
area of the sheet against viscous stress. Its mean value is

. dy,
w=-"hy, (11)

where Y, is the stress normal to the sheet and (Lamb 1932)

Yy=—ip+2ﬂ%- (12)
Here — p is the mean value of the principal stress components. p is described as
pressure. The pressure associated with the stream function (10) is
p = 20bku e~ cos (kx — ot), (13)
and since at the surface 4 = 0, ou/dx = 0 so that dv/dy = 0. Hence
W = 2b202ky cos? (kx — ot) = b202kp. (14)
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Since the motion vanishes at infinity, it is clear from what has been said that the
total force on the sheet must be zero. In fact the forward component of the force
which the pressure exerts on the plate is

F = p% = — uob?k2. : (15)
This is negative so that the pressure tends to drive the sheet in the direction —z. The
force, due to the tangential component of stress at any point, is u(0u/dy). To the first
order of small quantities the mean value F, of the tangential stress on the sheet is
zero, but it must be remembered that the tangential stress actually acts over the
wavy surface y, = bsin (kx — o). Thus taking the variation in tangential stress due
to this fact into account, the mean stress is the mean value of p(cu/0y) over this
surface is ' '

F, = pobk(ky — 1) e~*¥ sin (kx — ot); (186)

putting y = bsin (kx — ot) in (16), and remembering that sin? (kx — ot) = %,
Fy, = pob?k?. (17)
The total mean force per unit area exerted by the fluid on the surface is F} + F,.

From (15) and (17) it is seen that F; +F, = 0, a result which was anticipated on
general principles. ‘

Propulsive effect of waves which are not small

It has been shown that waves of small amplitude travelling down a sheet do not
give rise to propulsive stresses in the surrounding viscous fluid. It is now proposed
to discuss the effect of waves whose amplitude is not so small that terms containing
b2k? can be neglected. It does not seem to be possible to discuss by analytical methods
waves whose amplitude is unlimited, but it is possible to consider the effect of waves
of finite amplitude by expanding the various terms in the mathematical expressions
representing the disturbance produced by the waving sheet in powers of bk. This
expansion will be carried to include terms containing powers of bk as high as (bk)%.
To simplify the analysis the equations will be written in non-dimensional form by
taking k£ = 1. If z is written for x — o¢ the appropriate form to assume for ¥ is

1 ool ‘ o0
;gﬁ: > (4, y+B,)e™Wsinnz+ 3, (C’ng/+l)n)e‘m/cosnz—@. (18)
n odd o

neven

This satisfies V& = 0, and the disturbance rapidly decreases with distance from
the sheet.

The term Vy/o is again inserted to allow for the possibility that the waving sheet
may move relatively to the fluid far distant from it with velocity — V.

Boundary conditions
It will be assumed that the form of the sheet is
Yo = bsinz, (19)

even when b is not small. The boundary condition which must be satisfied by the
fluid in contact with the sheet is that there is no slip at its surface. The fact that the
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sheet is in the form y, = bsinz controls the component of velocity normal to its
surface, but some further physical assumption must be made about the sheet before
the component parallel to its surface can be expressed in mathematical form. This
assumption will be that the sheet is inextensible.

Velocity of particles in an inextensible sheet disturbed by transverse waves

The velocity of the waves is . Their external shape can be reduced to rest by
imparting to the whole fluid a velocity —o. The velocity of particles of an in-
extensible sheet moving along the fixed curve y = bsinz is

_ length of a curve in one wave-length
Q=ox ( one wave-length ) (20)
2n
This ratio is —!—f (1 +b2cos?2)t dz. (21)
2m 0
Expanding (21) in powers of b up to b*
?T ST TYY (22)

The velocity components of particles in the sheet relative to axes which travel with
the waves are

Uy =—@cosd, v;=—Qsinb, (23)
where tanf = %yz—o =:b cos z. (24)

After some reduction it is found from (22), (23) and (24), retaining all terms up to
those containing b4, that

"%1 +1 = — 0%+ (1b% — 1b*) cos 2z — &bt cos 4z, (25)

%_l == — (b—4b3) cos z— (3b%) cos 3z. (26)

Since u, + 07, v, are the components of velocity of the particles of the sheet relative
to the original axes the boundary conditions for ¥ are

-—g [%—g = —5b% + (1b% — }b%) cos 2z — &bt cos 4z, (27)
y=bs8inz

1[0y ‘
Z == = — (b —103) cos z — £b8 cos 3z. 28
o-[az y=bsinz ( ° ) % ( )

It will be noticed that if only terms containing b are retained the particles oscillate
in the lines parallel to the axis y. If terms containing b% and b are retained particles
of the sheet traverse paths in the form of figures of 8.

It remains to find the values of 0yr/0z and 0yr/0y on the boundary. For this purpose
it is convenient to expand ¥ near y = 0 in powers of y. Thus

: n2 n2 n3
(Any'l"Bn)e—ny ='Bn+(An_an)y+ (_nAn+2_!)?/2+(?!An—an)yg'f‘"'
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and
L (Ayy+Be = 4,—nB,+2(—nd,+ T B,) y+3(% 4,- 2 B,) o
@( 2yt n)e = A, —nb,+ 2| —n n+ y+ "2—' n"'"3_! % A

Aty =y, = bsinz

3.%5 = {4; ~ By +yo(— 24, + B)) +y3(34, — 3B,) + 43 (— §4, + 1By)} sinz
+{0, — 2D, +yo( — 4G, + 4Dy) + y3(6C, — 4D,)} cos 22
+{A5—3B; +yo( — 645+ 9B;)} sin 32
+{C,—4D,} cos 42— Vo, (29)
L 1Byt gy — B+ 93— 4y + §By) + 4k 4y~ §By)] cos 2
+[ Dy +yo(Co — 2D,) + y3( — 20, + 2D,)] ( — 2 sin 22)
+ [Bs+ yo(ds — 3B3)] (3 cos 32)
+ Dy(—4sin 42). (30)
In order that the boundary conditions may be satisfied for all values of z it is

necessary to express terms like y{,‘(c;f)mz in (29) and (30) in the form ZA,( )l l

being an integer. The coeﬁ'iclents of (Sm)lz in the expressions for the boundary

conditions (27) and (28) may then be equated. The expressions necessary for
developing the expansions up to terms containing b* are given in table 1. Using this
table, the coefficients given in table 2 may be equated to zero.

TABLE 1. RELATIONS NECESSARY FOR EXPANDING BOUNDARY
CONDITIONS IN POWERS OF b UP TO b*

Yo=>bsinz
Yo sin 2 = 3b(1 — cos 2z) Y3 sin z = }b2(3 sin 2 —sin 3z) ys sin 2 =}b3(3—~4 cos 2z +cos4z)
Yo €OS 2 = }b sin 2z /s cos z = }b¥(cos z — cos 3z) ys cos 2z = b3(2 sin 2z —sin 42)
Yosin 2z = }b(cos z — cos 32) Yasin 2z = }b2%(2 sin 2z —sin 4z)

Yo cos 2z = $b(sin 3z —sin z) y5 cos 22 = 1b%(— 1+ 2 cos 22— cos 42)
YoSin 3z = }b(cos 2z — cos 4z)
9o €08 3z = $b(sin 4z —sin 2z)

TABLE 2. COEFFICIENTS TO BE EQUATED TO ZERO IN THE DEVELOPMENT OF (27) AND (28)

14
1 (=24,+By)3b+(—54,+%B,) §0° —16%(6C, — 4D,) — 5'b* — P

sinz  (4,—By)+(34,—$B,) §6°—$b(—4C,+4D,)

08 2 — (=24, +B,)3b— $b3(—EA, +3By) + Oy — 2D, + 302(6C, — 4Dy) + 3b( — 64, + 9B,) + b° — 1ot
sin 3z  —3b3(34,—3By) + (—4C,+4Dy) 30 + A,— 3B,

cosdz  +4b3(— B4, +3B,) —1b%(6C, — 4D;) — $b(— 64y + 9By) + Oy — 4D, — fgb?

cosz  By+0%(— Ay +3By) — 2(Cy—2Dy) 3o +b— 33

Sin 22 3b(A,— By)+ (34, — 3B;) 169 — 2Dy — b3(— 20, + 2D,) — $b(4, — 3B,)

oS 32 —}b¥(— Ay +3By) +b(Cy— 2D,) + 3B, + 3b°

sin 4z — 30334, —§By) +b0*(—Cy+Dy) + §0(A4; — 3B;) — 4D,

(@)

()
()
(d)
(e)
(f)
(9)
()
(¢)
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It will be noticed that C; and D, occur only in (e) and (z). The constants 4,, B;, C,,
D,, 45 and B; may be obtained by equating (b), (c), (d), (f), (g), (k) to zero. The
equation (a) can then only be satisfied when V has a particular value. It will be
noticed that in order that (b) and (f) may be satisfied it is necessary that 4, and

B, shall be of the form
A, = — b+ higher powers of b

and B; = —b+ higher powers of b.

In fact,in order that the six equations may be satisfied for all values of bitisnecessary
that 4,, B;, C,, D,, A5 and B, shall be of the form \

A, = —b(l+ab?), By=—b(l+pb?), C,=7y b+,
D, = 8,b2+8,b%, A, = b3, B, =nbs.

It remains to determine «, £, 7y, Vs, 01, 85, €, 7 from the equations (b), (¢), (d), (f), (g)
and (k). It can be verified that the appropriate values are

a=-3% p=-%1 vi=% Ya=-% 06,=0, 62=T1§’ €=0, ﬂ:—TlE' (31)
Inserting these in (e) and (¢) it is found that

C, = 25b%, D, = 350t (32)

Propulsive effect of propagating transverse waves in a sheet
(@) may be written in the form

-
— = 1+ (-3 S =) b (33)
Hence from (31) g = $b3(1—130%).

In the non-dimensional units the velocity of the wave relative to the particles of
the sheet is 0. When dimensional units are used (33) is written

Y&I_c = 10%k2(1 — 12b%k?),
or if the velocity of the waves of lateral displacement relative to the material of the
sheet is V v omu . 197%2) | iy
U a 4 22 )

V is the velocity of the fluid at infinity relative to the material of the sheet.
Since V is positive the sheet moves with velocity — V relative to the fluid at infinity
when waves of lateral displacement travel with velocity + U down the sheet.

Viscous fluid on both sides of the sheet

In the foregoing discussion the reaction of the viscous fluid on one side only of the
waving sheet has been considered. In applying the results to the swimming of
microscopic organisms it is necessary to suppose that the sheet is in contact with the
fluid on both surfaces. In that case for a wave of given amplitude the sheet will move
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relative to the fluid at infinity at the same speed V that has been calculated when
fluid on one side only was contemplated. On the other hand, the rate of dissipation
of energy is 2W instead of W where W has the same meaning as in (14).

It has been proved therefore that when small but not infinitesimal waves travel
down a sheet immersed in a viscous fluid they propel the sheet at a rate which is
2m2b2/A2 times the wave velocity and in the opposite direction to that of propagation
of the waves. It would have been less laborious to calculate only the first term of the
expression for V/U. The second term containing the factor b4/A* was calculated in
order to form some idea of how large the amplitude might be before a serious error
might be expected in the analysis. The outside limit at which the formula might be
expected to give reasonably accurate results would be when the second term was,
say, one-quarter, as big as the first. That is when

b 1
X = ,\/Wﬂz = 0'073.
In that case VIU = $(%) = 0-079.

head (symbolic)

A

Ficure 1. Symbolic representation of microscopic organism swimming. Shape of waving
tail when kh=0-25, b/A=0-073; -, direction of propagation of waves in tail.

The shape of the tail in this case is shown in figure 1. A tail of the shape shown in
figure 1 would have to oscillate 1/0-079 = 12-7 times in order to progress 1 wave-
length. It will be noticed that the wave shown in figure 1 is not very large. It may
well be that waves of larger amplitude would propel the sheet more than 1/12-7 of
a wave-length per oscillation, but the method of analysis here adopted could hardly
be used in discussing such a case without great labour. The Southwell’s relaxation
technique might perhaps be employed.

Stress in the tail

The internal mechanism necessary to produce lateral motion can only be due to
tensions and compressions acting across each normal section of the tail so as to
produce a couple M. This couple varies along the tail. Its magnitude can be calculated
when the distribution of pressure along the tail is known. In the case of a waving
sheet which has fluid on both sides the equilibrium equation is

au_, dF
de =’ da
where P is the difference of pressure on the two sides of the sheet. The pressure
variations are equal in magnitude but of opposite signs on the two sides of the sheet.

/Equa,tion (13) therefore gives
P = 40bkyu cos (kx — ot)
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a2M

so that (35) becomes G = 40bky cos (kx — ot).

Hence M = i%bﬁ cos (kxz — ot).

The maximum value of M is ii—(%bﬁ or 4nbul,

-where 7 is the frequency of vibration of the tail. The magnitude of the maximum
stress can only be calculated if the thickness d of the tail is known. The minimum
possible value of the maximum stress is then

aM

@
Taking the case when A = 10—3cm., s = 107%, b = }A, d = 10~%cm., n = 50c¢./sec.,
this stress is 2 x 104 or 20g. weight/sq. cm.

or 16ubnA/d2.

Mechanical reaction between neighbouring waving tails

It has been observed that when two or more spermatozoa are close to one another
there is a strong tendency for their tails to vibrate in unison. James Gray (1928)
writes: ‘Numerous authors have observed that when the heads of individual sperma-
tozoa are in intimate contact their tails beat synchronously and a very striking
example of the phenomenon can be observed in Spirochacta balbianii.” Figure 2,
which is reproduced from figure 78, p. 119 of James Gray’s book Ciliary movement
(1928), shows his idea of the way in which aggregates of these organisms which
vibrate in unison are formed. Rothschild (1949) attributes certain comparatively
large-scale motions in dense suspensions of bull or ram spermatozoa to ‘periodic
aggregation of spermatozoa the tails of which probably beat synchronously in the
aggregations’.

F1aURE 2. Spirochaeta balbianii forming aggregates, the individuals in which soon
establish synchronous movements. (Reproduced from Gray’s Ciliary movement.)

Among the various possible explanations of this phenomenon it might be supposed
that the stresses set up in the viscous fluid between neighbouring tails may have
a component which would tend to force their waves into phase. It is of interest
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therefore to analyze the field of flow between two waving sheets when their waves
are not in phase in order to find out whether the viscous stresses are of such a nature
as to tend to force them into phase.

Taking axes of co-ordinates midway between the two sheets which areat y = +4
it will be assumed that waves of the same amplitude, b, travel down each sheet with
the same velocity o/k. It will be assumed also that the phase of the sheet at y = +4
lags behind that of the sheet at y = — & by an angle 2¢. All cases will be covered if

¢ is taken to lie in the range 0 < ¢ < 3.
The equations to the two sheets are then
y=hty =htbsin(z+g), |
and y=—k+y2=—-k+bsin(z——¢),J

where 2z = kx—ot.

(36)

Figure 3¢ shows the sheets when ¢ = 45° so that y, lags 90° behind y,.

b
c

Ficure 3. a, waves in phase, ¢ = 0, b/A = 0-073, 2h/A = §. b, waves in opposite phase, ¢ = i,

b/A = 0-073, 2h/A = §. ¢, wave y, lags behind y,, ¢ = }7. The arrows indicate the direction
of wave propagation.
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The stream function is assumed to be
¥ = (A4, ysinh ky + B, cosh ky) cos ¢ sin z + (4, y cosh ky + B, sinh ky) sin ¢ cosz. (37)
The condition 0yr/oy = 0 at y = + h is satisfied provided

Bk = — (khcothkh+1), Bok =— (khtanhkh+ 1); (38)
4, 4,
the second condition to be satisfied at ¥y = + A is
o _oue__ o
ox 0z &t 0z’
_ . oy _ oYy
and at y = —his Pl

Both these are satisfied if
Ayhsinh kh + By cosh kh = —bo k|

(39)
A,hcosh kh+ Bysinh kh = —bok.)
From (38) and (39)
A — bo sinh kh Bo—_ {)2’ (lch cosh kh +sinh kh)
1™ sinhkhcoshkh+kh’ ~ ' k \sinhkhcoshkh+kh)’ (40)
A = bo cosh kh B - _bg_' kh sinh kh + cosh kh
2~ Sinhkhcoshkh—kh®> ~ 2 k \sinhkhcoshkh—Fkh)"

It is now possible to calculate the stress which the viscous fluid exerts on the sheets.
The component perpendicular to the sheet is as in (12)

ov
Y, = —p+2pp = —p. (41)

The pressure p corresponding with the stream function (37) is given by
p _ sinhkysinhkhcos@cosz coshkycosh khsin gsinz

Sukbs ~  sinhkhooshh+kh  sinhihcosh bh— (42)
At y = h the pressure is p,, where
2;])011)0 = acos P cosz— fsin psinz (43)
sinh? kh cosh? kA
and %= ShFhoosh i’ P = sinhkhocoshEh— " (44)

The mean rate of dissipation of energy between the two sheets is equal to the mean
rate at which the sheets do work. The rate at which unit length of the sheet y = 2 +y,
does work on the fluid is

— pl% = (acos ¢ cos z— fsin ¢ sin z) (cos ¢ cos z —sin ¢ sin z) (zukb?02).  (45)

Since cos?z =gin%z =1 and sinzcosz =0,

the mean rate of doing work is

Il

E=- pl%ytl = ukb?0?(c cos? ¢ + fsin? @). (46)
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Since « is less than £ for all values of kA the rate of dissipation is least when ¢ = 0, so
that the waves are in phase as in figure 3a. E is greatest when ¢ = 4 as in figure 3b.

The ratio )
B, rate of dissipation when waves are in phase

B, * rate of dissipation when waves are in opposite phase

sinh kh cosh kh — lch}
sinh kh cosh kh +kh)

The way in which Z,/E, depends on kA is shown in figure 4. It will be seen that E, is
much less than E, when k# is small. The point X in figure 4 refers to the sheets shown
in figures 3a and b. In figure 3a,b and ¢ the sheets are separated by a distance A. It

— tanh? kh( (47)

will beseen thateven at this distance there is a very large difference between &, and .
For 2h/A = 44, which corresponds with the waves shown in Gray’s drawing, figure 2,

E,[E, = 8 x 104 The effort required to make the tails wave in unison is in this case
only one-thousandth of that necessary to make them wave if out of phase.

10—
0-8l—

0-6—

5|5

1-0 15 2{'0 2"5 3.'0 3{5 4}-0
I T | I
0 0-2 0-4 06 0-8 1-0 1-2

upper scale, kh lower scale, 2h/A

Ficure 4

The reduction in the rate of dissipation of energy when the waves on the two sheets
get into phase is very striking when k% is small, but without knowledge of the internal
mechanism which moves the tail it is not possible to say with certainty that the
tails will in fact get into the position where least energy is dissipated. On the other
hand, it seems that whatever that mechanism may be, it is likely that a component
of pressure which is in phase with the displacement of the sheet y, will tend to
decrease the frequency of oscillation, while a component which is in the opposite
phase will increase it. When the two sheets are so far away from one another that they
do not influence one another the relationship between pressure and displacement of
each sheet is that expressed by (1) and (13) so that the phases of p, and y,, differ by
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4m. The reaction of the fluid therefore does not exert any direct force tending to
increase or decrease the frequency. This must not be taken to imply that it has no
effect. The work done by the sheet may have a great indirect effect on the frequency
which the internal mechanism of the tail of a living object may be able to excite.
When /% is not large the sheets influence one another through the medium of the
fluid. Comparing (43) with (36) it will be seen that it is only when & = g that y, is
exactly out of phase with p,. To find whether the direct effect of pressure is to increase

or decrease the frequency of the sheet ¥, it is necessary to find the sign of ¥, p,. The
direct effect of the viscous stress would be to increase or decrease the frequency

according as y, p, is negative or positive.
Writing (43) in the form

Py _
Sulbr C cos (;+¢+e), (48)
C*=0o%+p* and tan(¢+e)= gtan @. (49)

Since from (44) #> o and by definition 0 < ¢ < 37, (49) shows that e is positive.
The mean value of y, p, is ' ‘

Yy = 2ukb?0C(~}sine),
so that y, p; is negative. The direct effect of pressure is therefore to tend to increase
the frequency of the sheet y,. At the sheet y = — & +y,, the condition that the direct

effect of pressure shall be to increase frequency is that y, p, shall be positive (a positive
pressure presses ¥, in the positive direction and ¥, in the negative direction).
Using (42) the pressure p, at the sheet y, is

Do
2ukbo

= —acos¢pcosz—fsingdsinz
= —Ccos (z—¢—e), (50)
where «, £ and ¢ have the same meaning as before and

tan (¢ +e¢) = gta,n ?,

so that € also has the same meaning as before. From (36) and (50)

YoP2 _ _ e
Sukbo jsm ( ¢) cos(z—¢—e), (51)
8o that YoPo  _ _ :
Sulkb®c {Csine. (52)

Since € is positive, y,p, is negative. Thus the direct effect of pressure on the sheet y,
is to decrease its frequency. Since the phase of %, lags behind that of y,, the direct
effect of the reaction between the two sheets is to increase the velocity of the waves
in sheet y, and decrease that of the waves in y,. In other words, the direct effect of
the reaction of one sheet on the other through the viscous medium is to make the
waves get into phase as illustrated in figure 3a. '

In conclusion, I should like to express my thanks to Professor James Gray and
Lord Rothschild for calling my attention to this problem.
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Studies of nuclear collisions involving 8 MeV deuterons by
the photographic method

I. The experimental method

By H. B. Burrows, University of Liverpool
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University of London
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An improved apparatus for the study of disintegrations produced by high-energy particles
accelerated in a cyclotron has been constructed. The instrument employs the photographic
method of detecting charged particles, and allows the numbers and energy of the scattered and
disintegration products to be determined—at any angle with respect to the primary beam, in
the interval from 15 to 165°—as a result of a single exposure.

By means of a slit system, the spread in energy of the deuteron beam from the Liverpool
cyclotron has been reduced to 60 keV, and the angular divergence of the beam to +3°.
‘Targets’ composed of gases or thin foils have been used. The @-values of the resulting
nuclear reactions which lead to the emission of protons and «-particles can, in the refined
conditions provided by the instrument, be determined to within + 0-08 MeV ; separate proton
groups with a difference of energy of 0:08 MeV can be resolved.

1. INTRODUCTION

Previous experiments

In 1940-1 experiments were made on the scattering by various light elements of
4-2 MeV protons and 6-3 MeV deuterons accelerated in the Liverpool cyclotron;
a specially designed ‘scattering camera’ was used, and the photographic emulsion
technique was employed for the detection of particles. The construction of the
‘camera’ and the details of the experimental method were described in a paper
(Chadwick, May, Pickavance & Powell 1944), which will be referred to as A, and
the results of the investigations were given i a series of papers published in 1947
(May & Powell 1947; Heitler, May & Powell 1947 ; Guggenheimer, Heitler & Powell
1947).

These early experiments proved the photographic technique to be a powerful
and reliable method for studying nuclear processes, and especially for establishing
the existence of nuclear energy levels and determining their characteristics. The
early results were of value in the interpretation of nuclear phenomena; but they
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