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In analogy with crystalline solids around us, Wilczek recently proposed the idea of “time crystals” as
phases that spontaneously break the continuous time translation into a discrete subgroup. The proposal
stimulated further studies and vigorous debates whether it can be realized in a physical system. However,
a precise definition of the time crystal is needed to resolve the issue. Here we first present a definition of
time crystals based on the time-dependent correlation functions of the order parameter. We then prove
a no-go theorem that rules out the possibility of time crystals defined as such, in the ground state or in the
canonical ensemble of a general Hamiltonian, which consists of not-too-long-range interactions.
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Recently, Wilczek proposed a fascinating new concept of
time crystals, which spontaneously break the continuous
time translation symmetry, in analogy with ordinary crys-
tals that break the continuous spatial translation symmetry
[1–3]. Li et al. soon followed with a concrete proposal for
an experimental realization and observation of a (space-)
time crystal, using trapped ions in a ring threaded by an
Aharonov-Bohm flux [4–6]. While the proposal of time
crystals was quite bold, it is, on the other hand, rather
natural from the viewpoint of relativity: since we live in the
Lorentz invariant space-time, why don’t we have time
crystals if there are ordinary crystals with a long-range
order in spatial directions?
However, the very existence, even as a matter of principle,

of time crystals is rather controversial. For example, Bruno
[7] and Nozières [8] discussed some difficulties in realizing
time crystals. However, since their arguments were not fully
general, several new realizations of time crystals, which
avoid these no-go arguments, were proposed [9,10].
In fact, a part of the confusion can be attributed to the

lack of a precise mathematical definition of time crystals.
Here, we first propose a definition of time crystals in the
equilibrium, which is a natural generalization of that of
ordinary crystals and can be formulated precisely also for
time crystals. We then prove generally the absence of time
crystals defined as such, in the equilibrium with respect to
an arbitrary Hamiltonian which consists of not-too-
long-range interactions. We present two theorems: one
applies only to the ground state, and the other applies to the
equilibrium with an arbitrary temperature.
Naively, time crystals would be defined in terms of the

expectation value hÔðtÞi of an observable ÔðtÞ. If hÔðtÞi
exhibits a periodic time dependence, the system may be
regarded as a time crystal. However, the very definition of
eigenstates Ĥjni ¼ Enjni immediately implies that the
expectation value of any Heisenberg operator ÔðtÞ≡
eiĤtÔð0Þe−iĤt in the Gibbs equilibrium ensemble is time

independent. To see this, recall that the expectation value
hX̂i is defined as hX̂i≡ h0jX̂j0i at zero temperature T ¼ 0

and hX̂i≡ trðX̂e−βĤÞ=Z ¼ P
nhnjX̂jnie−βEn=Z at a finite

temperature T ¼ β−1 > 0, where j0i is the ground state and
Z≡ trðe−βĤÞ is the partition function. Clearly, hnjÔðtÞjni
is time independent since two factors of e�iEnt cancel
against each other and hence hÔðtÞi is time independent.
Yet it is too early to reject the idea of time crystals just

from this observation, since a similar argument would
preclude ordinary (spatial) crystals. One might naively
define crystals from a spatially modulating expectation

value of the density operator ρ̂ð~xÞ¼e−i ~̂P·~xρ̂ð~0Þei~̂P·~x.
The unique ground state of the Hamiltonian in a finite

box is nevertheless symmetric and hence ~̂Pj0i ¼ 0, imply-
ing that hρ̂ð~xÞi is constant over space at T ¼ 0. Likewise,

at a finite temperature, hρ̂ð~xÞi≡tr½e−i ~̂P·~xρ̂ð~0Þei~̂P·~xe−βĤ�=Z
cannot depend on position since ~̂P and Ĥ commute. More
generally, the equilibrium expectation value of any order
parameter vanishes in a finite-size system, since the
Gibbs ensemble is always symmetric. This, of course,
does not rule out the possibility of spontaneous symmetry
breaking.
A convenient and frequently used prescription to detect a

spontaneous symmetry breaking is to apply a symmetry-
breaking field. For example, in the case of antiferromagnets
on a cubic lattice, we apply a staggered magnetic field

hsð~RÞ ¼ h cosð ~Q · ~RÞ [ ~Q≡ ðπ=aÞð1;…; 1Þ] by adding a
term −

P
~Rhsð~RÞŝz~R to the Hamiltonian, where ~R’s are

lattice sites and ŝz~R is the spin on the site ~R. One computes

the expectation value of the macroscopic order parameter,
which is the staggered magnetization in the case of an
antiferromagnet, under the symmetry breaking field and
then take the limit V → ∞ and h → 0 in this order. The
nonvanishing expectation value of the macroscopic order
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parameter, in this order of limits, is often regarded as a
definition of spontaneous symmetry breaking (SSB).

In the case of crystals, we apply a potential vð~xÞ ¼
h
P

~Gv~G cosð ~G · ~xÞ with a periodic position dependence.

Here, ~G’s are the reciprocal lattice of the postulated
crystalline order.
This prescription is quite useful but unfortunately is not

straightforwardly applicable to time crystals. The sym-
metry-breaking field for time crystals has to have a periodic
time dependence. In the presence of such a field, the
“energy” becomes ambiguous and is defined only modulo
the frequency of the periodic field, making it difficult to
select states or to take statistical ensembles based on energy
eigenvalues. Therefore, an alternative definition of time
crystals is called for, and indeed we will propose a
definition of time crystals which is applicable to very
general Hamiltonians.
Time-dependent long-range order.—In order to circum-

vent the problem in defining time crystals using a time-
dependent symmetry-breaking field, here we define time
crystals based on the long-range behavior of correlation
functions. In fact, all conventional symmetry breakings can
be defined in terms of correlation functions, without
introducing any symmetry-breaking field. That is, we
say the system has a long-range order (LRO) if the
equal-time correlation function of the local order parameter
ϕ̂ð~x; tÞ satisfies

lim
V→∞

hϕ̂ð~x; 0Þϕ̂ð~x0; 0Þi → σ2 ≠ 0 ð1Þ

for j~x − ~x0j much greater than any microscopic scales.
One can equivalently use the integrated order parameter
Φ̂≡ R

V d
dxϕ̂ð~x; 0Þ, for which the long-range order is

defined as limV→∞hΦ̂2i=V2 ¼ σ2 ≠ 0. For example, in
the case of the quantum transverse Ising model
Ĥ ¼ −

P
h~r;~r0iσ

z
~rσ

z
~r0 − Γ

P
~rσ

x
~r , the local order parameter

ϕ̂ð~r; tÞ is identified with σz~r or its coarse graining. It has
been proven quite generally that the LRO σ ≠ 0 guarantees
the corresponding SSB, namely, a nonvanishing expect-
ation value of the order parameter in the limit of the zero
symmetry-breaking field taken after the limit V → ∞
[11,12]. While the reverse is not proved in general, it is
expected to hold in many systems of interest.
A crystalline order can also be defined by the correlation

function. Namely, if the long-range correlation approaches
to a periodic function

lim
V→∞

hϕ̂ð~x; 0Þϕ̂ð~x0; 0Þi → fð~x − ~x0Þ ð2Þ

for sufficiently large j~x−~x0j, thesystemexhibitsaspontaneous
crystalline order [13]. Equivalently, limV→∞hΦ̂ ~GΦ̂− ~Gi=V2 ¼
f ~G ≠ 0 signals a density wave order with wave vector ~G,

where Φ̂ ~G ¼ R
V d

dxϕ̂ð~x; 0Þe−i ~G·~x. Note again that hϕ̂ð~x; 0Þi
itself is a constant over space in the Gibbs ensemble, which is
symmetric.Forinstance,weset ϕ̂ ¼ ρ̂ forordinarycrystalsand
ϕ̂ ¼ ŝα for spin-density waves. In terms of the LRO, one can
therefore characterize crystals using only the symmetric
ground state or ensemble, which itself does not have a finite
expectation value of the order parameter [14].
Let us now define time crystals, in an analogous manner

to the characterization of ordinary crystals in terms of the
spatial LRO. Generalizing Eqs. (1) and (2), we could say
the system is a time crystal if the correlation function
limV→∞hϕ̂ð~x; tÞϕ̂ð0; 0Þi → fðtÞ is nonvanishing for large
enough j~xj and exhibits a nontrivial periodic oscillation in
time t (i.e., is not just a constant over time). In terms of the
integrated order parameter defined above, the condition
reads

lim
V→∞

heiĤtΦ̂e−iĤtΦ̂i=V2 ¼ fðtÞ: ð3Þ

When f is a periodic function of both space and time, we
call it a space-time crystal, in which case we have

lim
V→∞

heiĤtΦ̂ ~Ge
−iĤtΦ̂− ~Gi=V2 ¼ f ~GðtÞ; ð4Þ

where f ~GðtÞ is the Fourier component of fðt; ~xÞ. For
example, Li et al. [4] investigated a Wigner crystal in a
ring threaded by a Aharonov-Bohm flux and predicted its
spontaneous rotation, which would be a realization of a
space-time crystal. If this were indeed the case, the density
at (x1; t1) and (x2; t2) would be correlated as illustrated
in Fig. 1.
One might think that we could define time crystals based

on the time dependence of equal-position correlation
functions. Should we adopt this definition, however, rather
trivial systems would qualify as time crystals. For example,
consider a two-level system Ĥ ¼ −Ω0σz=2 at T ¼ 0 and

FIG. 1 (color online). Time-dependent correlation. (a) Wigner
crystal of ions in a ring threaded by an Aharonov-Bohm flux, as
proposed in Ref. [4] as a possible realization of a time crystal.
(b) Illustration of the time dependent correlation function, should
the time crystal be indeed realized as a spontaneous rotation of
the density wave (crystal) in the ground state, as proposed. The
density-density correlation function between (x1; t1) and (x2; t2)
must exhibit an oscillatory behavior as a function of t1 − t2 for
fixed x1 and x2.
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set ϕ̂ðtÞ≡ σxðtÞ ¼ eiĤtσxe−iĤt ¼ σx cosΩ0tþ σy sinΩ0t.
The correlation function h0jϕ̂ðtÞϕ̂ð0Þj0i of the ground state
j0i ¼ ð1; 0ÞT exhibits a periodic time dependence e−iΩ0t.
The same applies to the equal-position correlation function
in independent two-level systems spread over the space.
Clearly we do not want to classify such a trivial, uncorre-
lated system as a time crystal. “Crystal” should be reserved
for systems exhibit correlated, coherent behaviors, which
are captured by long-distance correlation functions, be it an
ordinary crystal or a time crystal.
Absence of long-range time order at T ¼ 0.—We now

prove quite generally that time crystals defined above are
not possible in ground states. More precisely, we show

1

V2
jh0jÂe−iðĤ−E0ÞtB̂j0i − h0jÂ B̂ j0ij ≤ C

t
V
; ð5Þ

where E0 is the ground-state energy. Equation (5) holds
for any Hermitian operators Â ¼ R

V d
dxâð~xÞ and

B̂ ¼ R
V d

dxb̂ð~xÞ, where âð~xÞ and b̂ð~xÞ are local operators
that act only near ~x. The constant C may depend on Â, B̂,
and Ĥ but not on t or V. Once we prove Eq. (5), we can
immediately see that fðtÞ in Eq. (3) is time independent, by
setting Â ¼ B̂ ¼ Φ̂ð0Þ and taking the limit V → ∞ for
t ¼ oðVÞ. We can also apply Eq. (5) to space-time crystals
characterized by fðt; ~xÞ. Although Φ̂ ~G may not be
Hermitian, one can always decompose it to the sum of
two Hermitian operators. Applying Eq. (5) for each of
them, one can see all f ~GðtÞ’s, and, hence, fðt; ~xÞ, are time
independent.
To show Eq. (5), we use the trick to represent the change

in time by an integral

jh0jÂe−iðĤ−E0ÞtB̂j0i − h0jÂ B̂ j0ij

¼
����
Z

t

0

ds
d
ds

h0jÂe−iðĤ−E0ÞsB̂j0i
����

≤
Z

t

0

dsjh0jÂðĤ − E0Þe−iðĤ−E0ÞsB̂j0ij: ð6Þ

The integrand can be bounded by the Schwarz inequality as

jh0jÂðĤ − E0Þ1=2e−iðĤ−E0ÞsðĤ − E0Þ1=2B̂j0ij

≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0jÂðĤ − E0ÞÂj0ih0jB̂ðĤ − E0ÞB̂j0i

q

¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0j½Â; ½Ĥ; Â��j0ih0j½B̂; ½Ĥ; B̂��j0i

q
: ð7Þ

Each of Ĥ, Â, and B̂ involves a spatial integration and
introduces a factor of V, while each commutation relation
reduces a factor of V, assuming that the equal-time
commutation relation of any two operators ϕ̂1ð~x; tÞ and
ϕ̂2ð~x0; tÞ can be nonzero only near ~x ¼ ~x0. Hence,

∥½Â; ½Ĥ; Â��∥ is at most of the order of V3−2 ¼ V
[15,16]. The same is true for ∥½B̂; ½Ĥ; B̂��∥. Therefore,
combining Eqs. (6) and (7), we get the desired Eq. (5).
In this estimate of ∥½Â; ½Ĥ; Â��∥, we assumed the locality

of the Hamiltonian; i.e., Ĥ is an integral of the Hamiltonian
density ĥð~xÞ, which contain only local terms. It is easy to
see that the same conclusion holds even when there are
interactions among distant points, provided that the inter-
action decays exponentially as a function of the distance.
One can further relax this assumption to power-law
decaying interactions r−α (α > 0). When 0 < α < d,
∥½Â; ½Ĥ; Â��∥ can be order of V2−ðα=dÞ and the right-hand
side of Eq. (5) should be accordingly modified to
CtV−ðα=dÞ, where d is the spatial dimension of the system.
When α ≥ d, Eq. (5) holds without any change. In both
cases, as long as α > 0, fðtÞ remains time independent in
the limit V → ∞ for a fixed finite t.
Absence of long-range time order at a finite T.—The

argument presented above cannot directly be extended to
excited eigenstates jni, because ðĤ − E0Þ1=2 in Eq. (6)
would then be replaced by ðĤ − EnÞ1=2 but the latter is not
well defined. Instead, here we employ the Lieb-Robinson
bound [17] to discuss finite temperatures.
The result of Lieb and Robinson is that [17]

∥½eiĤtað~xÞe−iĤt; bð~yÞ�∥ ≤ minfC1; C2e−μðj~x−~yj−vtÞg; ð8Þ

where constants C1;2, μ, and v may depend on â, b̂, and Ĥ.
This bound is valid only for a local Hamiltonian. The
physical meaning of Eq. (8) is that there exists an upper
bound on the velocity at which information can propagate
in quantum systems.
To prove the time independence of fðtÞ in Eq. (3) and

f ~GðtÞ in Eq. (4), let us introduce a new correlation function
defined by the commutation relation

gABðtÞ≡ h½eiĤtÂe−iĤt; B̂�i=V2

¼
Z
V
ddxh½eiĤtâð~xÞe−iĤt; b̂ð~0Þ�i=V: ð9Þ

The Lieb-Robinson bound (8) tells us that jgABðtÞj ≤
½C3 þ C4ðvtÞd�=V for some constants C3;4 that do not
depend on t or V. Hence, as long as t ¼ oðV1=dÞ,
jgABðtÞj → 0 as V → ∞.
On the other hand, we have gABðtÞ ¼ fABðtÞ − fBAð−tÞ,

where fABðtÞ≡ heiĤtÂe−iĤtB̂i=V2. By inserting the com-
plete set 1 ¼ P

njnihnj, it can be readily shown that

fABðtÞ ¼
Z

∞

−∞
dωρABðωÞe−iωt; ð10Þ

gABðtÞ ¼
Z

∞

−∞
dωð1 − e−βωÞρABðωÞe−iωt; ð11Þ
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where ρABðωÞ is defined by

X
n;m

hmjÂjnihnjB̂jmie−βEm

ZV2
δðω − En þ EmÞ: ð12Þ

Since limV→∞gABðtÞ ¼ 0 for any given real value of t,
ð1 − e−βωÞlimV→∞ρABðωÞ ¼ 0. Combined by the sum ruleR
dωρABðωÞ ¼ fABð0Þ ¼ hÂ B̂i=V2, we find

lim
V→∞

ρABðωÞ ¼ δðωÞ lim
V→∞

hÂ B̂i=V2: ð13Þ

Therefore, fABðtÞ, as a function of finite t in the thermo-
dynamic limit V → ∞, can be at most a finite constant that
does not depend on time. Thus (space-)time crystals do not
exist at a finite temperature either.
Grand-canonical ensemble.—Let us discuss systems

with variable number of particles. The equilibrium of those
systems can be described by a grand-canonical ensemble. It
is given by the Boltzmann-Gibbs distribution with respect
to Ĥ ¼ Ĥ − μN̂, where μ is the chemical potential deter-
mined by the property of the particle reservoir. Namely, the
expectation value of an observable X̂ is given by
hX̂iμ ≡ trðX̂e−βĤÞ=Zμ, where Zμ ≡ tre−βĤ. Although the

statistical weight is given in terms of Ĥ, the time evolution
of the Heisenberg operator Ψ̂ðtÞ is still defined by Ĥ, i.e.,
Ψ̂ðtÞ≡ eiĤtΨ̂ð0Þe−iĤt. This mismatch can produce some
trivial time dependence as we shall see now. If we define
Ψ̂μðtÞ≡ eiðĤ−μN̂ÞtΨ̂ð0Þe−iðĤ−μN̂Þt and assume ½N̂; Ψ̂ð0Þ� ¼
−qΨ̂ð0Þ with q a real number that represents the U(1)
charge of Ψ, then Ψ̂ðtÞ ¼ Ψ̂μðtÞe−iqμt. Therefore, even if
fμ ¼ limV→∞½hΨ̂μðtÞΨ̂†

μð0Þiμ=V2� is time independent as

we proved above, fðtÞ ¼ limV→∞½hΨ̂ðtÞΨ̂†ð0Þiμ=V2� has a
trivial time dependence fðtÞ ¼ fμe−iqμt. This is consistent
with the well-known fact that the order parameter of a
Bose-Einstein condensate has the trivial time dependence
[18] as hψ̂ð~x; tÞi ¼ ψ0e−iμt. This type of time dependence
has been discussed [19] also in the context of time crystals
[20,21]. However, Volovik pointed out that this kind of time
dependence cannot be measured as long as the particle
number is exactly conserved [22]. Indeed, the overall phase
of condensate cannot be measured unless one couples the
condensate to another one. We will discuss this phenome-
non in the following section.
Spontaneous oscillation of nonequilibrium states.—In

order to extract the time dependence of the condensate
order parameter, the system has to be attached to another
system to allow change of the number of particles. As a
simplest setup, we may prepare two condensates with
different chemical potentials μ1; μ2 and measure their
time-dependent interference pattern ∝ e−iðμ1−μ2Þt in terms
of the current between the condensates, or, equivalently,
the change of the number of particles in each condensate.

This is nothing but the ac Josephson effect. In fact, in
Ref. [9], a proposal of time crystal based on this effect
was made.
However, in order to observe the ac Josephson effect, the

initial state simply must not be in the equilibrium. In order
to see this, it is helpful to use the mapping of the ac
Josephson effect in two coupled condensates to a quantum
spin in a magnetic field. For simplicity, let us consider
condensates of bosons without any internal degree of
freedom, and suppose there is only one single-particle
state in each condensate. Then the system can be described
by the two set of bosonic annihilation-creation operators,
a; a† and b; b†. The effective Hamiltonian of the system, in
the limit of zero coupling between the two condensates, is
given as H¼ μ1a†aþμ2b†b¼ðμ1−μ2Þa†a−b†b2

þ μ1þμ2
2

N,
where N ¼ a†aþ b†b is the total number of particles in
the coupled system. Let us assume that the coupling to the
outside environment is negligible in the time scale we are
interested in. N is then exactly conserved and can be
regarded as a constant. As a consequence, the second term
in the Hamiltonian proportional to N can be ignored.
With N being exactly conserved, this system of coupled

condensates can be mapped to a quantum spin model
by identifying the bosons as Schwinger bosons. The
Hamiltonian now reads H ¼ BSz þ const, where B ¼ μ1 −
μ2 and Sz is the z component of the quantum spin with
the spin quantum number S ¼ ðN − 1Þ=2. Similarly, the
current operator between the two condensates is given by
J ∝ −iða†b − b†aÞ ¼ 2Sy. The ac Josephson effect, in the
quantum spin language, is just a Larmor precession about
the magnetic field. The oscillatory behavior of the current
in the ac Josephson effect just corresponds to the oscillation
of the excitation value of Sy in the Larmor precession.
In order to observe the Larmor precession, the initial

state must have a nonvanishing expectation value of the
transverse component (Sx or Sy). This excludes the ground
state, in which the spin is fully polarized along the magnetic
field in the z direction, as well as thermodynamic equilib-
rium at arbitrary temperature. In Ref. [9] it was argued that,
by taking the limit of weak coupling, the dissipation can be
made arbitrarily small. While this is certainly true, the
lack of dissipation does not mean that the system is in an
equilibrium, as it is clear by considering the spin Larmor
precession in a magnetic field. Our result, which is valid for
equilibrium, of course does not exclude such spontaneous
oscillations of nonequilibrium quantum states. The latter,
however, are well known and should not be called time
crystals without a further justification.
Discussion.—In this Letter, we proposed a definition of

time crystals and proved their absence in the equilibrium.
The present result brings back the question: why there is no
time crystal, even though there surely exist crystals with a
spatial long-range order? We should recall that Lorentz
invariance does not mean the complete equivalence
between space and time: the time direction is still
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distinguished by the different sign of the metric. This leads
to a fundamental difference in the spectrum: while the
eigenvalues of the Hamiltonian (the generator of translation
in time direction) is bounded from below, the eigenvalues
of the momentum (the generator of translation in a
spatial direction) is unbounded. Moreover, the equilibrium
is determined by the Hamiltonian and the system is
generally not Lorentz invariant in the thermodynamic
equilibrium. Therefore, as far as the equilibrium as defined
in standard statistical mechanics is concerned, it is not
surprising to find a fundamental difference between space
and time.
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