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Some subtleties and apparent difficulties associated with the notion of spontaneous breaking of time-

translation symmetry in quantum mechanics are identified and resolved. A model exhibiting that

phenomenon is displayed. The possibility and significance of breaking of imaginary time-translation

symmetry is discussed.
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Symmetry and its spontaneous breaking is a central
theme in modern physics. Perhaps no symmetry is more
fundamental than time-translation symmetry, since time-
translation symmetry underlies both the reproducibility of
experience and, within the standard dynamical frame-
works, the conservation of energy. So it is natural to con-
sider the question, whether time-translation symmetry
might be spontaneously broken in a closed quantum-
mechanical system. That is the question we will consider,
and answer affirmatively, here.

Here we are considering the possibility of time crystals,
analogous to ordinary crystals in space. They represent
spontaneous emergence of a clock within a time-invariant
dynamical system. Classical time crystals are considered in
a companion Letter [1]; here the primary emphasis is on
quantum theory.

Several considerations might seem to make the possi-
bility of quantum time crystals implausible. The
Heisenberg equation of motion for an operator with no
intrinsic time dependence reads

h�j _Oj�i ¼ ih�j½H;O�j�i !
�¼�E

0; (1)

where the last step applies to any eigenstate�E of H. This
seems to preclude the possibility of an order parameter that
could indicate the spontaneous breaking of infinitesimal
time-translation symmetry. Also, the very concept of
‘‘ground state’’ implies the state of lowest energy, but in
any state of definite energy (it seems) the Hamiltonian
must act trivially. Finally, a system with spontaneous
breaking of time-translation symmetry in its ground state
must have some sort of motion in its ground state, and is
therefore perilously close to fitting the definition of a
perpetual motion machine.

Ring particle model.—And yet there is a familiar
physical phenomenon that almost does the job. A super-
conductor, in the right circumstances, can support a stable
current-carrying ground state. Specifically, this occurs if
we have a superconducting ring threaded by a flux that is a
fraction of the flux quantum. If the current is constant then
nothing changes in time, so time-translation symmetry is

not broken, but clearly there is a sense in which something
is moving.
We can display the essence of this situation in a simple

model, that displays its formal structure clearly. Consider
a particle with charge q and unit mass, confined to a
ring of unit radius that is threaded by flux 2��=q.
The Lagrangian, canonical (angular) momentum, and
Hamiltonian for this system are, respectively,

L ¼ 1
2
_�2 þ � _�; �� ¼ _�þ �;

H ¼ 1
2ð�� � �Þ2:

(2)

��, through its role as generator of (angular) translations,

and in view of the Heisenberg commutation relations, is
realized as�i @

@� . Its eigenvalues are integers l, associated

with the states jli ¼ eil�. For these states we have

hlj _�jli ¼ l� �; hljHjli ¼ 1
2ðl� �Þ2: (3)

The lowest energy state will occur for the integer l0 that
makes l� � smallest. If � is not an integer, we will have

hl0j _�jl0i ¼ l0 � � � 0: (4)

The case when � is half an odd integer requires special
consideration. In that case we will have two distinct states
j�� 1

2i with the minimum energy. We can clarify the

meaning of that degeneracy by combining two simple
observations. First, that the combined operation Gk of
multiplying wave functions by eik� and changing � !
�þ k, for integer k, in the Lagrangian leaves the dynamics
invariant. Indeed, if we interpret � in L as embodying a
constant gauge potential, Gk is a topologically nontrivial
gauge transformation on the ring, corresponding to
the multiply valued gauge function A ! Aþr�,
� ¼ k�=q. Note that the total flux is not invariant under
this topologically nontrivial gauge transformation, which
cannot be extended smoothly off the ring, so L is modi-
fied. Second, that the operation of time-reversal T, imple-
mented by complex conjugation of wave functions, takes
jli ! j � li and leaves the dynamics invariant if simulta-
neously � ! ��. Putting these observations together, we
see that the combined operation
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~T ¼ G2�T (5)

leaves the Lagrangian invariant; it is a symmetry of
the dynamics and maps jli ! j2�� li. ~T interchanges
jl� �i ! jl� �i. Thus the degeneracy between those
states is a consequence of a modified time-reversal sym-
metry. We can choose combinations j�þ 1

2i � j�� 1
2i that

simultaneously diagonalize H and ~T; for these combina-

tions the expectation value of _� vanishes.
Returning to the generic case: For � that are not half-

integral time-reversal symmetry is not merely modified,
but simply broken, and there is no degeneracy. How do we

reconcile hl0j _�jl0i � 0 with Eq. (1)? The point is that _�,
despite appearances, is neither the time-derivative of
a legitimate operator nor the commutator of the
Hamiltonian with one, since �, acting on wave functions
in Hilbert space, is multivalued. By way of contrast, op-
erators corresponding to single-valued functions of �,
spanned by trigonometric functions Ok ¼ eik�, do satisfy
Eq. (1) for the eigenstates j�i ¼ jli.

Wave functions of the quantized ring particle model
correspond to the (classical) wave functions that appear
in the Landau-Ginzburg theory of superconductivity.
Those wave functions, in turn, heuristically describe
the wave function for macroscopic occupation of the
single-particle quantum state appropriate to a Cooper
pair, regarded as a particle. Under this correspondence,

the nonvanishing expectation value of _� for the ground
state of the ring particle subject to fractional flux maps onto
the persistent current in a superconducting ring.

Symmetry breaking and observability.—The choice of a
ground state that violates time-translation symmetry �
must be based on some criterion other than energy mini-
mization. But what might seem to be a special difficulty
with breaking �, because of its connection to the
Hamiltonian, actually arises in only a slightly different
form for all cases of spontaneous symmetry breaking.
Consider, for example, the breaking of number (or dually,
phase) symmetry. We characterize such breaking through a
complex order parameter, �, that acquires a nonzero
expectation value, which we can take to be real:

h0j�j0i ¼ v � 0: (6)

We also have states j�i related to j0i by the symmetry
operation. These are all energetically degenerate and mu-
tually orthogonal in the appropriate ‘‘infinite volume’’
limit (see immediately below), and satisfy

h�j�j�i ¼ vei�: (7)

The superposition

j�i /
Z 2�

0
d�j�i (8)

is energetically degenerate with all the j�i, and it is
symmetric, with

h�j�j�i ¼ 0: (9)

[Normalization of j�i depends on how the limit is taken. If
we arrange h�j�0i ! �ð�� �0Þ, then the proportionality
constant is ð2�Þ�1.]
Why then do we prefer one of the states j�i as a

description of the physical situation? The reason is closely
related to the emergent orthogonality of the different j�i
states, as we now recall. We envisage that our system
extends over a large number N of identical subsystems
having correlated values of the long-range order parameter
�, but otherwise essentially uncorrelated. Then we can
express the total wave function in the form

��ðx1; . . . ; xNÞ �
YN
j¼1

c �ðxjÞ: (10)

For different values �;�0 we have therefore

h��0 j��i �
YN
j¼1

hc �0 ðxjÞjc �ðxjÞi ¼ ðf�0�ÞN ! 0 (11)

for�0 � � and largeN, since jf�0�j< 1. Similarly, for any
finite set of local observables (that is, observables whose
arguments include only upon a finite subset of the xj), we

have

h��0 jO1ðxaÞO2ðxbÞ . . . j��i / ðf�0�ÞN�finite ! 0 (12)

for �0 � �. Since the off-diagonal matrix elements vanish,
any world of local observations (including ‘‘observations’’
by the environment) can be described using a single j�i
state. Averaging over them, to produce j�i, is a purely
formal operation. Measurement of a nonsinglet observable
will project onto a j�i state.
This analysis, which elaborates [2], brings out several

relevant points. The physical criterion that identifies useful
‘‘ground states’’ is not simply energy, but also robust
observability—that is, relevance to the description of ob-
servations in a world of mutually communicating observ-
ers. Mathematically, that requirement is reflected in the
orthogonality of the Hilbert spaces built upon j�i states by
the action of physical observables. The large N limit is
crucial for spontaneous symmetry breaking. It is only in
that infinite degree of freedom, or (as it is usually called)
infinite volume, limit, that the j�i states and their Fourier
transforms jji / R

d�eij�j�i, with definite charge j, be-
come degenerate, and the former are preferred. Important
for present purposes: The preceding discussion applies,
with only symbolic changes, when we consider possible
breaking of time-translation � in place of phase symmetry.
Soliton model.—After these preparations, it is not diffi-

cult to construct an appropriate model. We consider a large
number of ring-particles with an attractive interaction.
Heuristically, we can expect that they will want to form a
lump and, in view of Eq. (4), that they will want to move.
So we can expect that the physical ground state features a
moving lump, which manifestly breaks �.
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To make contact with the argument of the previous
section, we need an appropriate notion of locality. We
assume that the particles have an additional integer label,
besides the common angle �, and that the local physical
observables are of finite range in that additional label. One
can imagine an array of separate rings, displaced along an
axis, so that the coordinates of particle j are (�, x ¼ ja).
Note that with this interpretation, the basic interaction is
infinitely long ranged, and would have to be specially
engineered. I will revisit this issue below, after describing
the construction.

An appropriate Hamiltonian is

H ¼ XN
j¼1

1

2
ð�j � �Þ2 � �

N � 1

XN
j�k;1

�ð�j ��kÞ

� XN
j¼1

1

2
ð�j � �Þ2 þ Vð�1; . . . ; �NÞ; (13)

with the understanding that H acts on periodic functions,
so the � interaction is well defined. (Here the discrete index
appears as a subscript.)

We work in the mean field approximation, taking a
product ansatz

�ð�1; . . . ; �nÞ ¼
YN
j¼1

c ð�jÞ; (14)

and solving an approximate one-body equation for c . To
get such an equation, we define an effective potential

Veff:ð�1; . . . ; �NÞ ¼
XN
j¼1

;

Wð�jÞWð�jÞ ¼
Z Y

k�j

d�kc
�ð�kÞVc ð�kÞ;

(15)

so that

h�jVeff:j�i ¼ h�jVj�i: (16)

Then the effective Schrödinger equation for �,

i
@�

@t
¼

�XN
j¼1

1

2
ð�j � �Þ2 þ Veff:

�
�; (17)

reduces to the one-body nonlinear Schrödinger equation

i
@c

@t
¼ 1

2
ð�� � �Þ2c � �jc j2c (18)

for c .
Consider first the case � ¼ 0. Eq. (18) can be solved for

a stationary state in terms of the Jacobi dn elliptic function,
with

c ð�; tÞ ¼ e�iEtc 0ð�þ �Þ; c 0ð�Þ ¼ rdnðr ffiffiffiffi
�

p
�; k2Þ;

E ¼ �r2�

�
1� k2

2

�
; (19)

with � a disposable parameter. To fix the parameters k, r
we must impose 2� periodicity in � and normalize c 0.
Those conditions become

Eðk2Þ ¼
ffiffiffiffi
�

p
2r

; Kðk2Þ ¼ �r
ffiffiffiffi
�

p
(20)

in terms of the complete elliptic integrals Eðk2Þ, Kðk2Þ. We
can solve Eðk2ÞKðk2Þ ¼ ��

2 for k2, given �. The minimum

value of the left-hand side occurs at k ¼ 0 and corresponds
to � ¼ �

2 . Here dnðu; 0Þ reduces to a constant, and

E ¼ �1=4. As � increases beyond that value k rapidly
approaches 1, as does Eðk2Þ. dnðu; k2Þ ! sechu and
E ! ��2=8 in that limit. Of course the constant solution
with E ¼ ��=2� exists for any value of �, but when �
exceeds the critical value the inhomogeneous solution is
more favorable energetically. These results have simple
qualitative interpretations. The hyperbolic secant is the
famous soliton of the nonlinear Schrödinger equation on
a line. If that soliton is not too big it can be deformed,
without prohibitive energy cost, to fit on a unit circle. The
parameter � reflects spontaneous breaking of (ordinary)
translation symmetry. Here that breaking is occurring
through a kind of phase separation.
Our Hamiltonian is closely related, formally, to the Lieb-

Liniger model [3], but because we consider ultraweak
(� 1=N) attraction instead of repulsion, the ground state
physics is very different. In general low-dimensional
models of spontaneous symmetry breaking are subject to
derangement by fluctuations [4]. Since our extremely inho-
mogeneous approximate ground state does not support
low-energy, long-wavelength modes (apart from overall
translation, but note that the mass of the lump is growing
with N), it has no serious infrared sensitivity. It would be
interesting to the model with attractive couplings more
deeply, and at finite coupling. In any case, it is not difficult
to realize the same ideas in higher-dimensional models, such
as the Wigner crystal briefly mentioned below (and now
analyzed in depth as a proposed experiment [5]). In finite
systems the correlation time will be finite, of course, but in
interesting cases it becomes very long. Its growth with
system size might, by analogy with more familiar cases
[6], be algebraic rather than exponential for some low-
dimensional systems.
Now since nonzero � can be interpreted as magnetic flux

through the ring, we might anticipate, from Faraday’s law,
that as we turn it on, starting from� ¼ 0, our lump of charge
will feel a simple torque. (Note that since Faraday’s law is a
formal consequence of the mathematics of gauge potentials,
its use does not require additional hypotheses.) We can also
apply ‘‘gauge transformations’’, as in the discussion around
Eq. (5). These observations are reflected mathematically in
the following construction: For any l, we solve

i
@c l

@t
¼ 1

2
ð�i@� � �Þ2c l � �jc lj2c l; (21)
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with

c lð�; tÞ ¼ e�il� ~c ð�þ ðlþ �Þt; tÞi @
~c

@t

¼ 1

2
ð�i@�Þ2 ~c � �j ~c j2 ~c þ ðlþ �Þ2

2
~c : (22)

As in the noninteracting ring particle model, the lowest
energy is obtained by minimizing l0 þ �, for integral l0.

This will supply appropriate ~c . If � is not an integer
c l0ð�; tÞ will be a moving lump, and time-translation sym-

metry will have been spontaneously broken. If � is half an
odd integer, then its ~T symmetry is spontaneously broken too.

This example exhibits several characteristic features of
natural � breaking [1]. The lump moves along a constant
energy trajectory. The parameter �, which parameterizes
an orbit of (ordinary) translation symmetry, changes at a
constant rate; both � and translation symmetry are broken,
but a combination remains intact.

Now let us return to address the conceptual issues alluded
to earlier, around locality. Our model Hamiltonian was
nonlocal, but we required observables to be local. That
schizophrenic distinction can be appropriate, since the
Hamiltonian might be—and, for our rather artificial dynam-
ics, would have to be—carefully engineered, as opposed to
being constructed from easily implemented, natural observ-
ables and interactions, which are local. However it is not
unlikely that the assumption of all-to-all coupling, adopted
for mathematical convenience, could be relaxed, in particu-
lar, by locating the rings at the nodes of a multidimensional
lattice and limiting the couplings to a finite range.

Were we literally considering charged particles confined
to a common ring, and treating the electromagnetic field
dynamically, our moving lump of charge would radiate.
The electromagnetic field provides modes that couple to all
the particles, and in effect provide observers who mani-
festly violate the framework of Eq. (12). That permits, and
enforces, relaxation to a jki state. Simple variations can
ameliorate this issue, e.g., use of multipoles in place of
single charges, embedding the system in a cavity, or simply
arranging that the motion is slow. A more radical variation,
that also addresses the unrealistic assumption of attraction
among the charges, while still obtaining spatial nonuni-
formity, would be to consider charged particles on a ring
that form—through repulsion—a Wigner lattice.

Imaginary-time crystals.—In the standard treatment of
finite temperature quantum systems using path integral
techniques, one considers configurations whose argu-
ments involve imaginary values of the time, and imposes
imaginary-time periodicity in the inverse temperature
� ¼ 1=T. In this setup the whole action is converted, in
effect, into a potential energy: time derivatives map onto
gradients in imaginary time, which is treated on the same
footing as the spatial variables.

At the level of the action, there is symmetry under
translations in imaginary time (iTime). But since iTime

appears, in this formulation, on the same footing as the
spatial variables, it is natural to consider the possibility that
for appropriate systems the dominant configurations in the
path integral are iTime crystals. Let the iTime crystal have
preferred period �. When � is an integer multiple of � the
crystal will fit without distortion, but otherwise it must be
squeezed or stretched, or incorporate defects. Periodic
behavior of thermodynamics quantities in 1=T, with period
�, arise, and provide an experimental diagnostic. In-
tegration over the collective coordinate for the broken
symmetry contributes to the entropy, even at zero tempera-
ture. Inspired by the spatial crystal—iTime crystal analogy,
one might also consider the possibility of iTime glasses
(iGlasses), which would likewise have residual entropy,
but no simple order, or iQuasicrystals.
Comments.—(i). It is interesting to speculate that a

(considerably) more elaborate quantum-mechanical sys-
tem, whose states could be interpreted as collections of
qubits, might be engineered to traverse, in its ground
configuration, a programmed landscape of structured states
in Hilbert space over time.
(ii). Fields or particles in the presence of a time crystal

background will be subject to energy-changing processes,
analogous to crystalline Umklapp processes. In either case
the apparent nonconservation is in reality a transfer to the
background. (In our earlier model, Oð1=NÞ corrections to
the background motion arise.)
(iii). Many questions that arise in connection with any

spontaneous ordering, including the nature of transitions
into or out of the order at finite temperature, critical di-
mensionality, defects and solitons, and low-energy
phenomenology, likewise pose themselves for time crys-
tallization. There are also interesting issues around the
classification of space-time periodic orderings (roughly
speaking, four dimensional crystals [7]).
(iv). The ac Josephson effect is a semimacroscopic

oscillatory phenomenon related in spirit to time crystalli-
zation. It requires, however, a voltage difference that must
be sustained externally, so it is not a ground state effect.
(v). Quantum time crystals based on the classical time

crystals of [1], which use singular Hamiltonians, can be
constructed by combining the ideas of this Letter with
those of [8,9]. The appearance of swallowtail band struc-
tures in [10], and emergence of complicated frequency
dependence in modeling finite response times [1], as in
[11], suggest possible areas of application.
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