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I. INTRODUCTION

Electrophoresis of DNA through gels of agarose or polyacrylamide (PA) has been
one of the most widely used techniques of molecular biology during the past
decade, serving both analytical and preparative purposes. The molecular theory of
this process has been developing slowly over the same period of time as the result
of the efforts of a small but expanding group of people. Initially simple, the theory
has grown in ways that no one anticipated at the beginning, partly in response to
unexpected experimental discoveries. In this review we describe its current state,
including both solved and unsolved problems.

For the theorist interested in polymer-chain dynamics, gel electrophoresis of
DNA presents problems that are in some ways simpler but in others more
challenging than those of the more familiar fields of polymer physics. In
electrophoresis attention is focused on only one moving probe chain surrounded
by the anchored chains of the gel; this simplifies the problem. Complicating
factors are: The energies resulting from the experimental electric fields range from
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Fig. i. Electrophoretic mobility of double-stranded DNA in i % agarose gel as a function of
DNA length and for different electric fields. General form of the graphs from McDonell
et al. (1977), and data points from Hervet & Bean (1987). Field strengths in V/cm, from top
down, o-8, 05, 03, 0-15, 0-05.

small to large in comparison to kB T. The electric fields may be either stationary
or varying in time. The mesh size of the experimentally used gels ranges by a
hundredfold from tightly constraining to very loose, while the lengths of the DNA
probes vary over an even greater range.

We refer to experimental papers only when required in connection with
discussions of theoretical problems or results; the extensive experimental
literature on agarose gels and pulsed-field electrophoresis has been reviewed by
Dawkins (1989), and by Lai et al. (1989). Since Norden et al. (1991) have recently
reviewed the literature on orientation of the DNA as detected by optical means,
we make only passing reference to activity in this field.

When we write DNA in this review we shall mean double-stranded DNA,
unless specifically noted otherwise. (In fact other highly charged polyelectrolytes
behave in similar ways, for example, polystyrene sulphonate (Smisek & Hoagland,
1989, 1990).) The observed steady-field electrophoretic mobility of DNA in an
agarose gel as a function of the DNA chain length and electric field is shown in
Figs. 1 and 2. The straight section in the middle of the graph in Fig. 1 justifies the
common use of this semi-log plot to correlate data. At the short-chain, high-
mobility end the curves approach a common limit, the free-solution value, which
is a constant practically independent of length (Ross & Scruggs, 19640,6; Olivera
et al. 1964). Complications arise at the other end of the graph, where a dependence
on field strength appears and the dependence on molecular length disappears; this
region has inspired substantial theoretical activity, some of which we shall discuss.
Figure 2 shows the effect of field in more detail.
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Fig. 2. Electric-field dependence of mobility of DNA in 1 % agarose, data points from
Hervet & Bean (1987), curves merely to guide the eye. Numbers on curves are DNA lengths
in bp.

The mobility also shows remarkable changes when the electric field is not steady
in time. Unsteady fields have become popular with molecular biologists because
the different behaviours of the different lengths is practically useful in overcoming
the loss of length dependence in steady fields seen at the right of Fig. 1. Figure 3,
adapted from Kobayashi et al. (1990), illustrates the effect of a field that is
periodically reversed in an asymmetrical cycle with more time in one direction
than in the other. The pronounced dip in mobility at one cycling frequency has
been called the 'anti-resonance'. The phenomenon has inspired several computer
simulations, which we shall also discuss.

All current theories of electrophoresis are based on simplified models, and the
nature of the most appropriate model depends on the size of the DNA and the
nature of the gel. The two most common gels differ widely in 'pore size', this
being in the neighbourhood of 3 nm for PA and 100 nm for agarose (more about
this below in Section 7). Since double-stranded DNA has a helix diameter of
about 2'5 nm and single-stranded only somewhat less, it seems that DNA of
almost any length must be closely constrained in PA. Relevant here are two other
characteristic lengths of the DNA. The first of these is the contour length; for the
B-form, the usual form in dilute solution, this is 0-34 nm times the number of base
pairs. Also important is the ' persistence length', a measure of stiffness in bending;
pieces shorter than the persistence length do not bend freely from thermal motion.
The persistence length has a value for the B-form between 50 and 80 nm,
depending on the salt concentration, and is much greater than the pore size of PA
and comparable with that of agarose.

In free solution the electrophoresis of DNA is remarkable mainly in that the
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Fig. 3. Mobility of three different sizes of double-stranded DNA in periodically reversing
electric fields, data from Kobayashi et al. (1990), curves merely to guide the eye. The field
of 154 V/cm was applied in one direction for the period shown on the abscissa, immediately
reversed for a time one third as long, and these cycles then repeated indefinitely. Gel was
1 % agarose. Numbers on curves are the lengths in kbp.

mobility is practically independent of the DNA length (Ross & Scruggs, 1964a, b;
Olivera et al. 1964). This independence is easily understood when one remembers
that in electrophoresis the macromolecule moves through a sheath of counterions
moving in the opposite direction. The thickness of this sheath is approximately the
Debye-Hiickel screening length, which is less than about 10 nm for the salt
concentrations commonly used. The result is that hydrodynamic interactions
between parts of the macromolecule separated by more than the screening length
are effectively cut off by the streaming counterions, so no mechanism exists to
generate a dependence of velocity on length on a scale greater than about 10 nm
(Schellman & Stigter, 1977). Electrophoresis is different from sedimentation or
diffusion, where the counterions are not driven in the opposite direction and long-
ranged hydrodynamic interactions are important. In other words, the friction
coefficient for DNA in electrophoresis is not at all the same as in sedimentation,
as is sometimes supposed. An important practical consequence is that free solution
electrophoresis is useless for analysis of DNA because there is no dependence on
molecular length; this is the reason for using gels.

In agarose, DNA shorter then 100 nm (about 300 base pairs, or bp) should be
able to move in any orientation among the gel fibres, though its motions would be
impeded by collisions with the gel. Motion of this kind is frequently called sieving,
and is probably similar to the motion of globular proteins through PA, a point of
view accepted by Slater & Noolandi (1989). A theory for the sieving of globular
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proteins was outlined by Rodbard & Chrambach (1970) based on the concept of
volume exclusion introduced by Ogston (1958) (see also Giddings et al. 1968). In
this theory the migrating particle is assumed to move freely in the spaces between
the gel fibres, but to be greatly slowed whenever it is in contact with a gel fibre.
Thus the average mobility is a function, usually assumed to be a simple
proportionality, of the fraction of the space that is not excluded to the centre of the
particle by the gel fibres. Ogston's theory assumes a random array of gel fibres and
finds this fraction to have an exponential dependence on the radius of the particle,
assumed spherical, similar to the probability of no collision in a Poisson
distribution of random collisions, so that a plot of the logarithm of the mobility
against the gel concentration becomes linear. Such plots, called Ferguson plots,
are in fact approximately linear for small DNA's over a considerable range of
agarose concentrations (Serwer & Allen, 1984; Stellwagen, 19856). Regrettably,
little has been done to work out the details of a theory of such plots for a fibrous
molecule like DNA.

When the DNA chains are substantially longer than the pore size, a widely used
model called the reptation model, which was originally introduced into polymer
physics by de Gennes (1971, 1978) and Doi & Edwards (1978), becomes attractive.
In this model the moving chain, here DNA, is assumed to move among the chains
of the gel only by creeping along its axis, like a snake through a dense thicket of
bamboo; de Gennes coined the word 'reptation' to describe the motion. The
model is appropriate for PA and DNA longer than about 50 bp, and for agarose
and DNA longer than about 1 kbp, in view of the lengths presented above, and in
much of this review we restrict the discussion to DNA in this size range. The
transition between the so-called Ogston regime and the reptation regime has been
examined by Slater & Noolandi (1989), who consider it to occur when the mobility
is approximately \ of the free-solution mobility. See also Slater et al. (1988, 1989)
for relevant experiments.

In most of the theoretical work in this field the gel is assumed to be an isotropic,
rigid, inert matrix. There is evidence, however, that this is true only to a first
approximation. In the work discussed in Section 5 it was necessary to assume that
the fibres in a PA gel were elastically deformable. Jonsson et al. (1988) found that
a band of DNA in an agarose gel in an electric field compressed the gel at the
leading edge of the band and stretched it at the trailing edge. Stellwagen &
Stellwagen (1989) found that the gel developed orientation when the field was
applied, while Holmes & Stellwagen (1989) found that the agarose fibres could be
oriented by an electric field applied while the gel was setting, and that the fibre
orientation affected the mobility of DNA in a subsequent electrophoresis
experiment.

2. TIGHT-TUBE REPTATION MODEL

By this title we refer to a model in which the moving DNA chain is assumed to
be so tightly confined by the gel that it can move only along its axis as though
confined to a tube, like a worm in its burrow. The concept in a more relaxed form
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was introduced by Doi and Edwards, and is thoroughly described by them (Doi
& Edwards, 1978, 1986). As Doi & Edwards present the model, the chain is
allowed to fold within the tube, but extensive excursions of loops of chain between
gel fibres, that is, through the walls of the tube, are assumed to be forbidden. The
contour length of the tube is assumed to be effectively constant with minor
fluctuations. In the tight-tube model that we discuss here no folding of the chain
back on itself is allowed, so that contour length of the tube is the same as that of
the chain.

With this model it is easy to derive an expression for the mobility as a function
of chain length, using the method of Lumpkin & Zimm (1982). (Lerman & Frisch,
1982, had previously obtained the same result as an extension of the Doi &
Edwards (1978) reptation-theory formula for the diffusion constant.) We take the
contour length of the tube to be L and the total effective charge on the chain to be
Q. Assume an electric field E in the x-direction, and consider a short segment of
tube represented by a vector As. The electric force driving the chain in this
segment along the tube axis, the so-called axial force, is the charge on a segment,
(Q/L) As, times the component of the field along the axis, or

Q-E.As. (1)

The total axial force on the whole chain is then

where i is a unit vector in the x-direction and hx is the x-component of the end-
to-end vector of the tube and chain, equal, of course, to the sum of the x-
components of all the segments As. If the friction coefficient for translational
motion of the whole polymer along the axis of the tube is £, then the axial velocity
is

However, in the usual experiment the observable quantity is the velocity of the
centre of mass, not the velocity along the tube axis. The centre-of-mass velocity,
which on the average is along the field direction, x, is related to i by

Xcm = fhz/L, (4)

a relation which can be obtained as follows. The definition of the position of the
centre of mass, Rcm, is

iWRcm = Smir i , (S)

where M is the total mass of the chain and mi and rt are the mass and position of
the 2th segment of the chain. Using the mass per unit length we can write

mt = MAsJL. (6)
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Fig. 4. Plot of reciprocal of mobility in arbitrary units against molecular weight of DNA,
adapted from Southern (1979). Only a few of the data points of the original figure are shown.
Numbers on lines are concentrations of agarose in percent.

Since we assume that the chain motion is always along the axis of the tube, the
velocity of the ith piece of chain must be

*< = itt, (7)

where tf is the unit vector tangent to the tube at the ith segment. Introducing (6)
and (7) into the time derivative of (5) we get

, (8)

where h is the end-to-end vector of the tube. Equation (4) is the component of
equation (8) parallel to the electric field.

Combining (3) and (4) and averaging, we get the electrophoretic mobility

(9)

If we assume that both Q and £ are proportional to L, as seems reasonable, then
(Q/Q is independent of L. Further, if the tube is a simple random walk, as it must
be when the chain is sufficiently long and the electric field sufficiently small, then
(,h2

xy is proportional to L, so the electrophoretic mobility is proportional to L"1.
Thus we get a simple explanation for the experimental observation that the
mobility decreases with increasing chain length, since we have assumed that the
length of the tube is proportional to the chain length, N, measured in base pairs.
In fact, experiments by Southern (1979), Fig. 4, had already demonstrated the
reciprocal relation between N and mobility before the development of the theory.
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Thus the qualitative result of the theory is correct. Quantitative testing of the
theory is more difficult; comparison of the absolute magnitudes of the mobility
from equation (9) or its high-field extensions to experiment is not a useful test,
mainly because an independent value of the resistance coefficient £ is not available
for motion through a gel. The gel is heterogeneous, reflecting the random growth
processes that gave rise to it, and even though the average structure can be
deduced from electron micrographs (Waki et al. 1982; Attwood et al. 1988), the
moving chain is very likely to select favourable environments whose structure may
be far from average. It is true, however, that the mobility varies as the reciprocal
of the viscosity of the solvent (West, 19876; Hervet & Bean, 1987), as would be
expected from the reptation model. We should also note that the value of the
charge Q is not its formal chemical-structure value because of screening by
counter-ions (Schellman & Stigter, 1977; Stigter, 1991).

3. PROBLEMS WITH THE SIMPLE REPTATION MODEL

Despite the qualitative success just quoted, problems at both ends of the range
shown in Fig. 1 were apparent even as the above simple model was published. At
the short-chain end the model should merge with the free-electrophoresis regime.
In free electrophoresis the mobility is independent of chain length, as discussed
in Section 1. The model can be forced to merge with this regime by assuming that
the DNA becomes too stiff to bend at very short lengths. If the DNA does not
bend, then it is not a random walk, and </?£) is proportional to L2 rather than L1,
and the mobility by equation (9) is independent of L. Unfortunately the degree of
stiffness required is unrealistically great (Hervet & Bean, 1987). The problem no
doubt arises because the reptation model is inappropriate when the DNA is
shorter than the pore size of the gel. Diwan & Schuster (1989) have made a formal
extension of the reptation model to connect it with this regime; see also Slater &
Noolandi (1989). As mentioned above, this is a situation for which more
theoretical work would be welcome.

In Fig. 1 complications are also apparent at the long-chain end in the form of
a dependence on electric field and a loss of molecular-length dependence at the
higher fields. These effects are easy to explain qualitatively by recognizing that the
tube segments should have some orientation induced by the field because the field
biases the direction of the leading end of the chain as it moves to form an extension
of the tube. According to the model the rest of the chain follows the leading
segment, so eventually all the segments of the tube have been formed by the
leading segment, and all have become somewhat oriented. Actually, the
orientation can be measured by optical techniques, as described in the review by
Norden et al. (1991). The tube is now a biased random walk, and its mean-square
end-to-end vector acquires a term in the x-component that varies as L2 as well as
the random-walk term that varies as L. When introduced in equation (9), this new
term leads to a length-independent term in the mobility, equation (9), a term
which grows in relative importance as either L or E is made larger, in agreement
with the experimental situation as shown on the right of Figs. 1 and 2. The ratio
of these length-independent and length-dependent terms can be brought close to
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the experimental values by a reasonable choice of parameters (Lumpkin et al.
1985). The dependence on field strength is qualitatively correct, though the
experiments show more rapid saturation of the mobility with increasing field than
the theory predicts.

Qualitatively this length-independent term is easy to understand. Consider the
hypothetical extreme case where the DNA chain is oriented perfectly parallel to
the field direction. Then the driving force is proportional to the total charge, Q,
which is proportional to L, while the resistance coefficient, £, is also proportional
to L. The mobility is proportional to the driving force over the resistance
coefficient, and the length factors cancel out in this extreme case. On the other
hand, when the chain has the form of a random walk, the local effective force and
the local direction of motion are aligned with the tube axis and not with the field,
and the mobility depends on the projections of these quantities on the x-axis, as
expressed by the factor <(A^)/L2 in equation (9). The dependence of this factor on
L varies from L"1 to L°, depending on the degree of bias in the random walk.

Parenthetically we should note that the extreme case of a chain oriented
perfectly parallel to the field is not achieved in practice. If such orientation were
achieved, the mobility would be Q/£ by equation (9), and would be the same for
the shortest and longest chains. Clearly this is nowhere near the case in Figs. 1 and
2, so we must conclude that the greatest degree of orientation obtained in those
experiments was much less than perfect.

There remain several theoretical problems with the tube model as described
above. The first is the question of how to do the averaging over h2

x in equation (9),
or more precisely, what weighting factor to use. At sufficiently low fields where the
system is close to thermodynamic equilibrium, the weighting is that of the usual
canonical ensemble (Lerman & Frisch, 1982; Lumpkin & Zimm, 1982; Lumpkin
et al. 1985; Slater & Noolandi, 1986), but Slater et al. (1987) found that at the
fields (several V/cm) usually encountered in practice it is necessary to use lifetime
weighting, which is distinctly different from equilibrium weighting. In this kind
of weighting the weight is proportional to the average lifetime that a particular
conformation has in the moving chain. Under these conditions the mobility is
predicted not to be a monotonic function of chain length (Doi et al. 1988; Slater
& Noolandi, 1989; Lumpkin et al. 1989; Dejardin, 1989), instead showing a
minimum at a particular length with both larger and smaller chains moving faster.
This prediction was verified experimentally under some conditions (Noolandi
et al. 1987; Slater et al. 1988, 1989). Actually, the effect had been discovered before
by Bell & Byers (1983) in work mainly devoted to the electrophoresis of branched
DNA, but had been generally overlooked. The non-monotonicity, usually called
'band inversion', seems to appear only in the most dense (high-concentration)
agarose gels. Slater et al. (1987) and Slater & Noolandi (1989) attribute this to the
overlapping of the reptation regime with the sieving (Ogston-theory) regime in the
more dilute gels, with the minimum in mobility being overrun in the transition.
West (1987 c) has pointed out other quantitative discrepancies between the theory
and experiment in the effect of gel concentration.

Another question is how to reconcile the simple derivation given above with the
fact that Brownian motion must be greatly perturbing the system at any instant.
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This concern led to studies of the ' biased reptation model' by Slater & Noolandi
(1985, 1986, 1989), Slater et al. (1987), in which they explicitly introduced
Brownian motion. In effect, however, the same formulas came out as previously.
Presumably the reason is that the effects of Brownian motion, being random,
produce displacements of the DNA that grow as the square root of time, and thus
eventually become negligible compared to the electrophoretic displacement,
which grows as the first power of time. The same reasoning explains the
narrowness of the moving bands in the usual experiment, a narrowness which is
one of the features of gel electrophoresis that makes it so useful for separation and
analysis. The transition from motion dominated by diffusion to motion dominated
by the electric field has been carefully analysed by Adolf (1987).

There are two other serious disagreements with experiment: (1) long molecules
in agarose gels show a remarkably large change of mobility when the field is
switched in strength or direction, and (2) short DNA fragments in PA gels shows
an unexpectedly large sensitivity to the sequence of base pairs. To elucidate these
has required new concepts, and we shall discuss these separately below.

4. SWITCHED FIELDS; NEW APPROACHES REQUIRED

Until recently all DNA gel electrophoresis was done with a steady dc field. This
method works well for small DNA molecules, but, as we have seen, its power to
resolve different chain lengths becomes less and less as the chain length gets larger
and chain orientation sets in, and above about 50 kb it is practically useless. In
1983 Schwartz and Cantor introduced a technique in which the field was
periodically switched in direction, and were able to separate the large DNA's from
the various yeast S. cerevisiae chromosomes (hundreds of kb), a feat which had
previously been impossible (Schwartz et al. 1983; Schwartz & Cantor, 1984).
Several variations of this technique have now been developed which are referred
to by various acronyms, such as OFAGE (Orthogonal-Field Agarose Gel
Electrophoresis) and FIGE (Field-Inversion Gel Electrophoresis). The biased
reptation model predicts that periodically switching the field through 90 degrees
(OFAGE) should disorganize the growth of orientation induced by the field
(Lumpkin et al. 1985; Slater et al. 1987), and thus can account for at least some
of the increased length resolution that this technique yields.

On the other hand, this model is unable to explain a change in mobility
produced by simple periodic reversal of the field (FIGE), since only even powers
of the field enter the mobility expression. The FIGE technique was first described
by Carle et al. (1986), who obtained a separation of the cerevisiae chromosomal
DNA's by applying the field in one direction for a few seconds and then applying
the field in the opposite direction for a time one third as long; this cycle was then
repeated indefinitely. Figure 3 from a recent paper by Kobayashi et al. shows
typical results obtained in this way. At a certain length of period the mobility
drops to a minimum value that is less than the mobility at longer or shorter
periods. The effect is minimal with short DNA's, but becomes dramatic with
larger ones. When the period is suitably adjusted, DNA's too large for steady-field
methods can still be efficiently separated.
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Fig. 5. Successive conformations of DNA moving through a bed of obstacles, from Deutsch
& Madden (1989), by permission. This is a two-dimensional simulation. The electric field is
directed downward, and each dot represents one obstacle. The times (in arbitrary units) for
each frame are: (a) 100, (b) 105, (c) n o , (d) 112, (e) 114, (/) 116, (g) 118, (h) 119.

The inability of the simple reptation model or its biasing extensions to account
for the dramatic field-inversion phenomena exposed serious deficiencies of this
model. Jamil & Lerman (1985), Fesjian et al. (1986), and Jamil et al. (1989) also
showed that the model was not adequate to describe experiments with intermittent
fields. Much of the theoretical work of the last few years in this area has been
devoted to finding and studying these deficiencies. Computer simulations by
Deutsch (1987, 1989), Zimm (1988, 1991 a, b), Duke (1989, 1990a, b), and Shaffer
& Olvera de la Cruz (1989) have agreed in showing that the DNA does not occupy
a tube of fixed length in the gel when the molecule is long and the field is high.
Instead the chain alternately curls up and extends. When the frequency of
alternation between these extremes matches the frequency of field inversion in
FIGE, then the mobility seen in the simulations drops, similar to the experiments.
Thus under these conditions the tube concept has to be modified or even
abandoned.

The computer simulation by Deutsch (1988; Deutsch & Madden, 1989) is
probably the most impeccable methodologically and at the same time the simplest
conceptually of these simulations. Fig. 5 is from this work. The gel is represented
by a two-dimensional bed of regularly spaced obstacles, the dots in the figure,
while the DNA is represented by a chain of beads connected by freely hinged rods.
The chain is moved according to a Langevin equation in which the friction
coefficient of a bead times the velocity of the bead is set equal to the total force on
the bead, a force which is the sum of the tension in the rods, the electric field, a
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repulsion from any nearby obstacles, and a random impulse representing
Brownian motion. The rods are represented by linear-elastic springs, but a special
procedure continually adjusts the tensions to keep the lengths of the rods constant,
so in effect they are inextensible. The repulsive forces between the beads and the
obstacles prevent the chain from crossing over any obstacles, so the chain motion
is entirely between the obstacles. This Langevin equation is integrated
numerically by a Runge-Kutta algorithm.

The eight panels, (a-h), in Fig. 5 show the chain conformation at successive
times midway through the simulation. The electrostatic force is directed
downward. Starting from a conformation, (a), in which the trailing end is
'hooked' over an obstacle, the chain pulls free in (b) but soon piles up on its
leading end in (c) and (d). From the resulting coil three 'pseudopods' extend in
(e) and (/), the one on the right being a chain loop (also called a kink) and the other
two the chain ends. The loop is pulled out by the rest of the chain in (g), and in
(h) the longer arm is pulling the shorter arm over an obstacle in a conformation
similar to (a) in which the sequence began. This cycle repeats with minor
variations.

While the conformations in (a-b) and (g-h) could be thought of a chain in a tube,
at least three events in this cycle violate the simple tube model: (1) the piling up
in (c) and (d), (2) the extension of both ends at once in (e), (3) the extrusion of a
loop in (e). In (c) the chain appears to be still in a tube, but the tube is much
shorter than in (b), violating the constant-length assumption. The loop formation
in (e) violates the assumption that the chain does not move sideways between the
obstacles. This assumption is reasonable when the field is small because of the
reduction in entropy that must occur when the two sides of the loop leave their
separate spaces and move into the same space between obstacles, but the
electrostatic energy of the loop in a higher field can overcome this barrier
(Deutsch, 1987).

Deutsch & Madden (1989) analyse the growth of a loop, or 'kink', by the
diagram of Fig. 6. Here the chain is draped over an obstacle with the part ABC
forming the loop, and the electrostatic force again pulling downward. The part
AB moves with the electric force just balanced by friction, so its resulting velocity
is

vAB = qE/g, (10)

where q and £, are the charge per unit length and friction coefficient per unit length
respectively. The parts BC and CD are being pulled in opposite directions by the
field, so their velocity is determined by the force imbalance, and is

qE(CD-BC)
!)„„ = . ( I I )

ci /~°* n i D / ^ \

where BC and CD represent the lengths of the corresponding part. The rate of
growth of the loop is the difference of these two velocities, and is

zqEBC
UCD + BCy

VAB ~VBC " rmT\ , r>n\ • \l2>



The theory of gel electrophoresis of DNA 183

Fig. 6. A loop, or 'kink', near the trailing end of a chain moving through a bed of obstacles.
The electric field is directed downward, and each circle represents one obstacle. Adapted
from Deutsch & Madden (1989).

This is always positive, so such a loop, once formed by surmounting the initial
entropy barrier, grows until it 'swallows' the trailing end, A. Thus the system is
unstable against this kind of loop formation when E > o. When several loops are
present, the above analysis applies only to the one nearest the trailing end, and
then only if the trailing end is not hooked over an obstacle. In the more general
case a loop may grow at first but then decay later as the conformation of the rest
of the chain changes; compare Fig. 5(e-g).

Other simulations have produced similar results, even though the details of the
methods differ considerably. Duke (1989, 19900,6) based his on the 'repton'
theory of Rubinstein (1987). This theory is an extension of reptation theory in
which motions within the tube of loops of chain, called reptons, are explicitly
considered. In the absence of a field the reptons diffuse by random jumps. Duke
considers that when a field is applied the reptons jump preferentially in the
direction of the field, and thus the chain tends to drift down field. Using this
repton motion as the elementary dynamic process, he simulates the motion of
chains of various lengths in field inversion, and finds curves that look very much
like the experimental ones in Fig. 3. The chain conformations resemble those of
Deutsch (1988); because of the small sample published it is not clear whether the
apparent differences in detail are significant. At low fields Duke recovers the
biased-reptation formulas.

With admirable caution Duke explicitly points out three assumptions of his
model and procedures: 'that the motion is governed by local detailed balance; that
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there is no free sliding of the chain around gel fibres; and that there are no lateral
excursions of the chain through the sides of the tube. This limits its validity to low
field strengths. We expect the dynamics to follow from local detailed balance
provided that the chain is never far from equilibrium'.

Certainly, the caution about detailed balance is important but sometimes
forgotten in 'dynamic Monte Carlo' simulations. The assumption is that the
relative rates of various local processes, such as up-field and down-field jumps, are
governed by the Boltzmann factor of their respective energy changes. As Deutsch
& Madden (1989) and Deutsch & Reger (1991) have pointed out, this assumption
can lead to very unrealistic dynamics when forces are strong. (In work in press as
this is written Duke & Viovy (1991) have attempted to extend the repton method
to higher fields by introducing long-ranged jumps of the reptons.)

Deutsch & Maden (1989) also examined the chain conformations predicted by
Rubinstein's repton theory. They found that the reptons, representing chain
folds, tended to concentrate at the tail end of the chain at high fields, but in their
simulations folds tended to concentrate at the leading end, as in Fig. 5 c, while the
trailing end was frequently dominated by a 'hair-pin' conformation, as in Fig. 5^.

Shaffer & Olvera de la Cruz (1989) used a two-dimensional square lattice of
obstacles with the DNA chain interspersed between the lattice points. The chain
moved according to Langevin equations of motion. The obstacles were considered
to be points, so it was not possible to prevent the chain crossing them by a method
like Deutsch's; instead, trial moves were made according to the Langevin formula
including the random-force term, and whenever the chain crossed an obstacle the
move was rejected. The authors express the well-founded concern that this
procedure does not allow chain tension to be transmitted properly between the
two arms of a hairpin at high fields; nevertheless, the chain conformations and
motions found were similar to those of the previously mentioned simulations.

In a series of important papers Baumgartner & Muthukumar (1987),
Muthukumar & Baumgartner (ig8ga,b) have shown by simulation and by
analysis that the zero-field behaviour of polymer chains in fields of obstacles that
are randomly distributed is different from that in regular arrays. The chain tends
to coil up in the larger spaces between the obstacles, and its motion is impeded by
the entropy barriers it encounters when it squeezes between obstacles in course of
diffusion. It is not yet clear to what extent these effects persist when typical
electrophoretic fields are applied. We discuss this further in Section 7 below.

One of us has attempted to reduce the requirements of the above models
for extensive computation by introducing a more coarse-grained model
incorporating some analytic theory (Zimm, 1988, 1991 a, b). A model is proposed
in which the chain can coil freely in spaces between the gel fibres but is
constrained by occasional narrow gates between fibres; this picture is related to
the Baumgartner & Muthukumar random-medium studies just described. We call
the three-dimensional open spaces 'lakes' and the constraining gates 'straits'. A
succession of such lakes and straits in which the DNA lies replaces the tube. Since
the chain can coil in the lakes, the length of the succession of lakes is always less
than the length of the DNA chain, and may at times be very much less, unlike the
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tight-tube model. To distribute the chain among the lakes we balance three kinds
of forces, the electric field and hydrodynamic friction, as in equations (1) and (2),
and, third, tension in the chain. This latter is assumed to arise ultimately from
Brownian motion, and is obtained by calculating the change of the entropy of the
chain when segments are transferred from one lake to another; the result is a
tension function that describes the average pull (or push) exerted on the segment
in a strait by the segments in an adjoining lake. This function, which is closely
related to the kinetic-elasticity function of an ideal rubber, depends on the size of
the lake, on the number of segments in the lake, and on the temperature.

The zero-field, or equilibrium, limit of this model shows the DNA chain of
contour length L' occupying a chain of lakes whose length, L, is shorter than L'
by the factor b/a, where b is the length of the 'Kuhn segment' of DNA and a is
the diameter of a lake. (The Kuhn segment is the length of an individual flight in
a chain of random flights that has the same contour length and the same mean-
square end-to-end length as the real chain. The Kuhn segment is equal to two
persistence lengths.) Since b for DNA is approximately 100 nm and a for agarose,
as judged from electron micrographs (Waki et al. 1982; Attwood et al. 1988), is
about three times larger, a is set equal to 36 for simplicity. Requiring that the
tensions all be in balance leads to each lake being occupied by the same amount
of chain, which is equal to (a/b)2, or about 9, segments. Thus if we equate the tube
to the chain of lakes, the tube is shorter than the chain by the factor b/a. This is
in accord with the form of the tube model originally presented by Doi & Edwards
(1978, 1986), in which they allowed the chain to fold within the tube, as opposed
to the tight-tube reptation model discussed in Section 2. However it was not
immediately clear how to apply the electric field to the original Doi—Edwards
model, since the local directions of the chain and the tube are not the same.

To find out how to apply the field in the lakes-straits model it was necessary to
examine by simulation the motion of the chain through a single lake and to find
the axially effective value of the driving force. In equation (9) this is simply the
projection of the electric force on the tube axis, but the simulation showed that in
a lake much of this force is wasted in pushing segments into collision with the gel
fibres represented by the ' shores' of the lake. In the case of electric fields too small
to drive the number of segments in any lake far from the equilibrium value, the
current of chain flowing through all straits must be nearly the same; in effect, the
chain moves as an inextensible and incompressible string, just as was assumed in
the strict-reptation model. The result for the mobility is

< * > | (13)

which is the same as equation (9) except that L is now a variable that must be
included in the averaging operation, and one of the factors L in the denominator
is replaced by L'. The physical origin of the latter difference is in the calculation
of the axially effective driving force. Nevertheless, the scaling mobility with chain
length remains the same, since the average L is proportional to U.

The picture changes at higher fields, where the electrostatic forces can
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Fig.-~7, Mobility as a function of cycle period in the lakes-straits model, adapted from Zimm
(1991a). Numbers on curves are the chain lengths measured in Kuhn segments (in
parentheses, measured in kbp). The unit of time is approximately 08 ms.

overwhelm the tension function and force the chain to bunch up. For illustration
we can use the Gaussian approximation for a lake containing n Kuhn segments;
the expression for the tension function is then very simple,

(
znb \nb

(14)

where/ is the average force on a segment in a strait due to the tension function.
This function has a very asymmetrical shape, going to indefinitely high positive
values when the chain is stretched (n small), but being able to support only a
limited amount of compressive force before allowing the chain to collapse to an
indefinitely large value of n. In fact, the maximum negative (pushing) value of/
occurs at n = 2(a/b)2, and is only

Jmin
3bkBT

Sa2 •
(15)

Compressive forces generated in the loops of a long chain by modest fields can
easily exceed this limit, with the result that large numbers of segments temporarily
accumulate in some lakes. (These correspond to the bunching seen in the Deutsch
simulations, Fig. 5c, d.)

These accumulations favour another process, 'loop overflow', that is, the flow
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of a loop of chain out between the fibres constituting the side of a lake. As
discussed in connection with Deutsch's simulation, such flow is inhibited by an
entropy barrier, but the barrier can be overcome by the field, given enough time.
Loop overflow is unlikely when the tension in a lake is positive, as it is when the
lake contains only a small number of segments, but becomes much more likely
when the tension is negative, that is, when the lake is under compression, as it is
when n > (a/b)2. Thus overflows frequently spill out of lakes with large
accumulations of segments, in analogy to Fig. 5e,f. Once started, an overflow
tends to grow until it swallows the trailing end of the chain. The eventual result
is a configuration like Fig. 5 h, where two arms of the chain are pulling against each
other and attempting to go down separate paths.

Just as in the Deutsch simulation, in steady field the chain cycles repeatedly
through a series of conformations from bunched up to hung up to extended.
However, if the field is cycled as in FIGE, the mobility can be markedly decreased
if the period of field cycling matches that of the spontaneous bunching cycle.
Figure 7 shows data from a number of computer runs of this lakes-straits model
of chains of various lengths. The similarity to the experimental data of Kobayashi
et al. (1990) in figure 3 is noteworthy. Just as in the data, a minimum in the
mobility appears at a certain cycle period, and the minimum gets deeper as the
chains get longer. See also similar experimental data by Heller & Pohl (1989), and
by Crater et al. (1989).

Including the loop-overflow process made the minima in the mobility deeper
and more dramatic, but minima were nevertheless obtained even without loop
overflows, thus agreeing with Duke's simulations. Apparently the loop-overflow
process exaggerates tube-length fluctuations that arise in any case from the
inability of the chain to support strong compressive forces.

While at these fields the chain is clearly not moving as an inextensible and
incompressible string, still the corresponding formula for the mobility, equation
(13), works remarkably well if the actual values of h\ and L observed during the
simulation are used (Fig. 15 in Zimm, 1991a). This formula thus seems to
describe the average dynamics in spite of the large fluctuations in chain
conformation. To use this formula to predict mobility, however, we would have
to find some way of predicting the average of the ratio of h\ and L, since these
quantities can be far from their equilibrium values at high fields.

This model relieves another problem encountered with the biasing extensions
of the simple-reptation model. In those models orientation of the chain came only
from orientation of the leading segment as it entered new spaces between gel
fibres, with the result that the amount of orientation increased with increasing
field but was independent of chain length; this was in contradiction to experiment.
In the lakes-straits model the chain in any lake can be oriented by tension applied
through the chain in the adjoining straits, so the amount of orientation in this lake
is sensitive to the pull of the field on other pieces of chain. The average amount
of such pulls increases with chain length, leading to an increase of average
orientation with chain length, as was observed in linear dichroism experiments by
Holzwarth et al. (1987) and by Jonsson et al. (1988).
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Because the overflow process is delayed by the entropic barrier, there is usually
an accumulation of segments at the downfield end of the chain. This accumulation
is actually visualized in some remarkable micrographs by Schwartz & Koval
(1989), Smith et al. (1989), and Gurrieri et al. (1990). In this procedure the DNA
in the gel is labelled by a fluorescent dye and illuminated with light of frequency
in the excitation band of the dye. (For an overview of the technique see
Bustamante, 1991.) Because of the limited resolution of the visible-light
microscope only details larger than about | of a micrometer can be seen, but this
is sufficient to show many interesting things with DNA molecules longer than
about 50 kb (about 25 fim). Among these is the cycling between bunched and
extended forms as predicted by the simulations.

Other preliminary theoretical and simulation approaches to the cycling problem
were made by Viovy (1988) and by Noolandi et al. (1989).

While the simulations are very informative, a quantitative and complete
analytical theory has so far been lacking. There have been several approaches.
Deutsch (1989) proposed a simple model in which the chain cycles between
straight, bunched up, and U-shaped conformations according to some simple
quantitative rules. He called this type of motion 'geometration', in analogy with
the looping motion of the larvae ('inchworms') of geometrid moths. The
conformations, of course, were inspired by the simulations. When this model was
subjected to computer simulation in inverting fields (FIGE) it showed the same
deep minimum in mobility as the full simulation, and as seen in Figs. 3 and 7. The
model seems simple enough to allow an analytical theory, but this is not yet
available. Deutsch & Madden (1989) proposed a differential equation that
incorporates a friction coefficient that increases where the chain becomes bunched
up, and found that the solutions of the equation showed a bunching instability like
the simulations. The mobility could only be obtained by numerical solution.
Lumpkin (1989) introduced an abstract chain model consisting of three beads
connected by two springs. The unique feature of the model was making the
friction coefficients of the beads depend on the amount of stretch in the adjacent
springs, becoming large when the springs were short and small when they were
stretched, much the same physical idea as in the Deutsch & Madden (1989) theory
just mentioned. While analytical formulas could be developed for steady field and
for very rapid field reversals in FIGE, it was necessary to resort to numerical
solutions of the equations for intermediate switching periods. The mobility
showed a deep minimum as a function of cycle period, again like the experiments
and simulations.

In summary, the various simulations are in remarkably good agreement with the
field-inversion mobility experiments, the field-inversion orientation experiments,
and the microscope images at high fields. (When we use the phrase 'high fields',
it must be understood that the important quantity is really the product of the field
and the charge Q; the fields can actually be very modest, of the order of a Volt per
centimetre, since the charge on the DNA molecules of interest is thousands or
even millions of electron equivalents.) From the point of view of reptation theory,
the main lesson is the need to take account of the great fluctuations in tube length
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that occur with long chains at high fields, and the dominance in this case of
distinctive conformations, extended, bunched up, and hung up, that are very
different from the typical random walk, differences that are more than just biasing
of individual steps. Simple theoretical models incorporating these conformations
are successful in showing the same qualitative behaviour as the simulations and
the experiments.

Relatively little theoretical work has been done so far to explain the OFAGE
experiments, though we should mention a simple model put forward by Southern
et al. (1987), and a recent computer simulation by Duke & Viovy (private
communication).

5. BENT D N A AND TIGHT GELS

Polyacrylamide (PA) gels are routinely used to separate double-stranded DNA
fragments in the size range from approximately 50 bp to 1000 bp and single-
stranded DNA fragments from about 4 bp up to 300 or 400 bp. As is the case with
typical separations in the useful molecular weight range of agarose gels, the
mobility of DNA is observed to be approximately a decreasing linear function of
the logarithm of the molecular weight (McDonell et al. 1977; Stellwagen, 1985 ft).
There are important exceptions to this rule, however. Marini et al. (198201,6)
observed that some DNA fragments isolated from the kinetoplast body of
unicellular parasites migrated in native PA gels with dramatically lower mobilities
than electrophoretic standards of similar molecular weight. This anomalous
behaviour was more pronounced in PA gels of high percentage than in less
concentrated PA gels and was apparently absent in 2 percent agarose gels. Further
physical characterization of these fragments showed that the anomalous fragments
undergo accelerated rotational diffusion in solution relative to electrophoretically
normal DNA molecules of identical molecular weight, implying that the
anomalous fragments have an unusually compact conformation in solution. This

behaviour was best explained by postulating the presence of an intrinsically bent
region of helical structure in the kinetoplast DNA molecules, a conclusion that has
been borne out by a considerable body of experimental evidence since then (for
review, see Hagerman 1990).

The feature of the DNA sequence responsible for the anomalous behaviour has
been identified as a repeating motif of a tract of oligo (dA)-oligo (dT), dAs-
6/dT5-6, repeated in phase with the helical repeat of DNA (Koo et al. 1986).
Experiments in which the centre of this sequence element was permuted with
respect to the ends of the molecule, yielding a set of DNA fragments of identical
molecular weight but with differing average dimensions in solution, showed that
the reduction in mobility is correlated with the reduction in molecular dimensions
(Wu & Crothers, 1984; Levene et al. 1986). Thus molecules with an intrinsic bend
near one end have nearly normal electrophoretic properties, whereas those
fragments with the bend located near the centre of the fragment have the lowest
mobilities relative to standards. The principle that reduced mobility correlates
with a reduction in molecular dimensions among a set of circularly permuted



190 B. H. Zimm and S. D. Levene

isomeric fragments has been used extensively as a basic assay for the presence of
intrinsic bends, due either to structural polymorphism in DNA or induced by the
binding of specific proteins (for example, see Gartenberg & Crothers, 1988).

Explanations for the effect of circular permutation of intrinsically bent regions
on mobility often invoke the proportionality of mobility to </ẑ > as predicted by
simple tube-reptation models, equation (9). This logic leads to serious
contradictions, however. Because the conformation of the tube is assumed to be
rigidly fixed in space and determined entirely by the random fluctuations in the
orientation of the leading segment independently of the orientation of all other
segments, the presence of an intrinsic bend near the centre of the chain should not
have any effect on the chain's mobility. In fact, the only position in which an
intrinsic bend would be expected to have any effect according to this model would
be at the position of the leading segment. Thus, new concepts need to be
introduced in order to explain the anomalous mobility of intrinsically bent DNA
fragments. We have introduced (Levene & Zimm, 1989) a modified tube-reptation
model that takes the elastic energy of the chain into account and predicts effects
of an intrinsic bend on the mobility even when the bend is located near the centre
of the chain. This model accounts semi-quantitatively for the effects of PA
concentration on the relative mobilities of intrinsically bent DNA fragments.

Measurements of the mobilities of spherical proteins in PA gels suggest that the
'mean pore diameter' ranges from approximately 1 to 8 nm and depends on the
concentration of acrylamide monomer and cross-linking reagent in the gel
(Chrambach & Rodbard, 1971). The characteristic length that measures the
stiffness of double-stranded DNA is the persistence length P, which is known to
be about 50 nm in solutions above 10 mM monovalent ion concentration. These
values imply that the mean length of a tube segment in the reptation picture is
anywhere from slightly more than one-sixth to as little as one-twentieth of the
DNA persistence length, with the lower limit of the length of a tube segment
assumed to be equal to the diameter of the DNA double helix, or 2-5 nm. This
situation stands in contrast to that in agarose gels, where the mean interfibre
spacing is similar to or greater than P. In a tight gel in which the interfibre spacing
is appreciably smaller than P, the DNA chain is subject to elastic deformations as
it moves around the obstacles in the gel. The new tube conformations that are
generated by the succession of random fluctuations in the orientation of the
leading segment depart in varying degrees from the chain conformation of
minimum elastic energy; thus the elastic energy of the chain is expected to
fluctuate during electrophoresis in tight gels.

We calculate by the 'dynamic Monte Carlo method' (Baumgartner, 1984) the
effect of the chain's elastic energy on the motion of the chain undergoing reptation
in a tube. Since the original publication was necessarily condensed (Levene &
Zimm, 1989), we describe the methods in some detail here. Reptation is treated
as a series of discrete steps of length a along the tube axis subject to the electric
field force, bending forces, and Brownian motion. The conformation of a chain
confined to a tube of N segments of length a is specified by N— 1 pairs of angles,
6t and <f)u the usual polar and azimuthal angles between the tube segments i and
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i— 1, respectively. If the chain is isotropically elastic, then the energy of the chain
confined in the tube, Uel, is given by the Hooke's law expression

Uel = B S (di — di)2, (16)
i=i

where B is one-half the bending-force constant for the chain and 8°t is the
equilibrium value of the bend angle between segments i and i— 1. The value of the
force constant is related to the intrinsic flexibility of the chain through the ratio of
the tube segment length, a, to the persistence length, P through the equation
(Schellman, 1974)

a/P= i-<cos(9>, (17)

where (cos#) is the Boltzmann average of the cosine of 6 for a pair of adjacent
segments with an equilibrium bend angle of zero. The value of B is determined
numerically by computing (cos #) using an initial estimate for B, substituting this
value into equation (17), and then using a root-locating procedure (such as the
false-position method) iteratively until the desired value of a/P is obtained within
a specified tolerance. With the expression for the elastic energy of the chain in the
tube completely specified, it is possible to use the algorithm described below to
simulate the conformation and position of the tube as a function of time.

During a single step in the simulation, the chain is moved by creating a new
leading segment of the tube and removing the trailing segment. The new leading
segment is chosen from a distribution of orientations that is random with respect
to the field but has the Gaussian distribution of polar angles with respect to the
previous orientation of the leading segment that is characteristic of the wormlike
chain (Schellman, 1974). The azimuthal orientation of the new leading segment is
chosen from a uniform distribution over the range o to 2n. The use of the
Gaussian distribution to generate the new value of Qi instead of a uniform
distribution from o ton improves the efficiency of the calculation enormously, but
leads to a bias in the distribution of conformations that must be removed. This is
a common approach in Monte Carlo simulations, called importance sampling.
The bias is removed by calculating the statistical weight corresponding to a given
configuration and multiplying the results from each step by the reciprocal of this
statistical weight. This procedure was checked by comparing even moments of the
tube end-to-end length calculated with the simulation in the absence of a field and
comparing the results with exact values calculated from the Porod—Kratky
wormlike chain formulas (Flory, 1969).

We now consider the motion of a characteristic point on the chain. For
convenience, this point is chosen to be the end of the leading segment of the chain,
although we could choose any fixed point on the chain contour. At time t = o, the
position of the chain end inside the tube segment, s, is uniformly distributed inside
the segment boundaries, namely over the interval —a/2 ^ s < a/2. The direction
of motion, either with or against the field, is chosen with equal probability in the
simulation. The configuration of the new leading segment is chosen and a trial
move is executed. The chain is considered to have advanced a distance a along the



192 B. H. Zimm and S. D. Levene

tube when the end of the chain passes one of the segment boundaries at 5 = — a/2
or a/2. Following the approach taken in dynamic Monte Carlo simulations
(Baumgartner, 1984), the transition probability, the probablity that the chain
undergoes the trial move in unit time, is calculated. The transition probabilities
for a downfield move, d, or upfield move, u, in time t are given by

u\ \rDt\a±vt . (a + vt\ 1 /
> = — • — ertc — • — — exp

d) a UVDi \2VDi) V" \

-(a±vt)'

vt , / +vt \
f ~+ ̂ = e r f c p ^ = +^-exp — ^ - , (18)

where D is the diffusion coefficient of the chain along the tube axis, v is the
instantaneous drift velocity of the chain, and erfc is the complement of the error
function. We outline the derivation of these equations in what follows.

We begin with the solution of the one-dimensional diffusion equation in a frame
moving with velocity v,

where C(s, t; s0) is the fraction of chains initially at s0 at time t = o that arrive at 5
at time t. The initial position, s0, is uniformly distributed between —a/2 and a/2.

We wish to find the fraction of chain ends that have left the tube segment; the
fraction of chains that have moved out of the leading tube segment in the
downfield direction, g+, and upfield direction, g_, are found by integrating
equation (19) over the intervals a/2 ̂  s ̂  00 and — 00 ^ 5 ^ —a/2, respectively.
This yields

g+j 2 I 2VDI )

The distribution of chain ends is uniform at t = o, but becomes Gaussian with
time. The peak of this distribution moves gradually downfield. Equation (20)
gives the fractions of chains moving in either direction that were initially located
at s0, but because we want the solution for chain ends that are uniformly
distributed in the leading segment at time t = o; we average g+ and g_ over the
initial uniform distribution, obtaining

1 fa/2 g
- \ 8-(x0,t)dx0. (21)
aj_a/2g+

Evaluating the integrals leads to the expressions given in equation (18). We now
consider the form of the drift velocity, v, and the value of the time increment in
the simulation.

We make the usual assumption of steady-state motion, that is, we are interested
in processes that occur on a time scale that is much slower than the relaxation of
the chain's velocity. The velocity is then given by v = F/£,, the ratio of the
instantaneous force acting on the chain, F, to the friction coefficient for
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translation along the tube, £. F is composed of the force due to the electric field,
QE\hx\/L, from equation (2), and an additional force that is derived from the
change in the chain's elastic energy, AU/a. The velocity v is therefore given by

If we restrict our treatment to relatively low-molecular-weight DNA fragments,
molecules with small values of the Coulombic charge, the electric field is a small
perturbation, and the dynamics of the chain can be treated in terms of weakly
biased diffusion. It is therefore convenient to take as the unit of time in the
simulation the time TD for the chain to diffuse an average distance a in the absence
of electrical and bending forces. This diffusion time is given by TD = a2/2D, where
D is the diffusion coefficient of the chain along the tube axis. The friction
coefficient for diffusion, equal to kB T/D, is probably similar to but not identical
to the value for electrophoresis, £; however for simplicity we assume that these
values are the same. Substituting v and TD into equation (18), we obtain
expressions for the probability that the chain makes an upfield or downfield step
of length a, one interfibre distance along the tube, in the time TD driven by an
electric field and under the influence of bending forces,

d) 1 \ V )

^ J-\ + V^7"exp(— 1 , (23)

where V = QEa/kB T, X = \hx\/L, AU is the change in the elastic energy of the
chain in units of kB Tand the upper and lower signs correspond to the expressions
for u and d, respectively.

In the simulation a trial step in either the downfield (with the field) or upfield
(against the field) direction is chosen with probability \. The trial step is accepted
if the transition probability dor u is greater than a random number selected at that
point from a uniform distribution between o and 1; otherwise the step is rejected.

Figure 8 shows the calculated effect of an intrinsic bend on the mobility of a
chain as a function of the intrinsic bend angle at the centre of the chain. The mean-
square end-to-end length, (/z2), is also plotted and shows less dependence on bend
angle than the calculated mobility. With decreasing values of the reduced
interfibre spacing, a/P, the mobility of the bent chain diverges more from that of
unbent chain, implying that the mobility reduction of a bent chain relative to an
unbent control will be larger in a concentrated gel than in a dilute gel. This
behaviour reproduces an observed property of bent DNA molecules: these
molecules migrate anomalously in concentrated gel systems, such as 8%
polyacrylamide, but have normal mobilities in dilute gels such as 1*5% agarose.
The gel-concentration effect is due to the coupling of the motion to the elastic
energy in this model; the transition probabilities given by equation (23) depend
approximately exponentially on the elastic energy and thus are quite sensitive to
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Fig. 8. Calculated results for bent chains; mobility (solid line) and hi (dashed line) as
function of bend angle. From Levene & Zimm (1989).

the value of the bending elasticity modulus B appearing in equation (16). This
constant increases linearly with the value of P/a in the limit of large P/a.

Following the moment-by-moment progress of the chain and the chain
conformation revealed distinct differences between the mechanisms of motion of
the bent and unbent chains (Levene & Zimm, 1989). In the case of the unbent
chain, the velocity fluctuated rapidly in time and large jumps in the centre-of-mass
position generally coincided with large values of h\. This response contrasted with
that of the intrinsically bent chain, where the centre-of-mass velocity was weakly
correlated with h\. The intrinsically bent chain experienced long periods where
there was little net motion despite relatively large instantaneous values of h2

x; these
intervals corresponded to situations in which the chain was trapped in local free-
energy minima. The tendency for the chain to fluctuate about favourable tube
conformations accounts for the major difference in the behaviour of intrinsically
bent and intrinsically straight chains in this model. A single intrinsic bend
imposes a large barrier to the motion of a chain if the tube conformation is close
to the minimum free-energy conformation of the chain.

When the mobilities calculated using this model are compared with measured
values for a set of circularly permuted kinetoplast DNA fragments, the mobility
as a function of the position of the centre of the intrinsic bend agrees quite well
with the data, provided that the value of B is made much smaller than the value
estimated from a/P based on the mean interfibre spacing in polyacrylamide gels
and the free-solution values of P. This low apparent value of B can be rationalized
as an artifact of our highly idealized model of the gel as an array of rigidly fixed
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obstacles. Polyacrylamide gels are elastic media; we have assumed that the
network forces the DNA molecule to bend, but the DNA chain can also deform
the network. The actual elastic-energy barriers that the DNA chain encounters in
tight gels are probably much smaller than those predicted assuming rigid fibres;
hence the low effective value of B.

6. ANOTHER VIEW

In a recent paper Calladine et al. (1991) have proposed a very different approach
to the theory of gel electrophoresis, based on an extensive set of new experiments
with a variety of gels, including polyacrylamide as well as unusually high
concentrations of agarose.

From their experiments they make log—log plots of velocity, v, against double-
stranded DNA length, N, at various gel concentrations of agarose, 'Nu-Sieve'
agarose, and PA, and at fields from 0-5 to 8 V/cm. At the short-length side, down
to N = 10 bp, all plots have same shape, with velocity, v, approaching a limit, / ,
at short lengths. This limiting velocity at small AT is proportional to field and
practically independent of gel concentration; it is reasonably interpreted as the
free-solution velocity of the DNA, which is known to be independent of N
(Olivera et al. 1964). By translating the log-log curves along the axes they can
superpose those of different voltage gradients and gel concentrations; they call the
resulting curve the 'master curve'. On the high-Af side individual plots break
away from the master curve and level off to a high-field v plateau that depends on
voltage and gel concentration and is practically independent of DNA length. The
short-length, master curve region is called 'region 1' and the other, the plateau,
'region 2'. (It is stated that preliminary data show single-stranded DNA
conforming to the same picture.) Region 1 corresponds to the unique curve at the
left side of our Fig. 1; region 2 to the multiplicity of high-voltage curves at the
right side.

The master curve of region 1 is characterized by the value of No.&, which is the
value of N at which v equals f/2. The master curve for all gels is empirically
represented in terms of the reciprocal of a unique third-degree polynomial,

v/f= i/(i+N' + o-oiN'3), (24)

where N' = N/N0.b. N' ranges from a few tenths up to more than 30. Different
gels, which can give quite different mobilities, are thus distinguished in region 1
only by their values of AT0.5. This master curve is notable in that it has a i/N'
dependence like Southern's (1979) data (Fig. 4) over a limited domain but then
steepens to approximately 1/N'3. The steepening itself is apparently a new
discovery. The steepening occurs at low fields, ^ roV/cm, and at high gel
concentrations, w ^ 0-015 with agarose and w ^ 0-08 with PA, where w is the gel
concentration in mass/volume. A problem is how to reconcile this steepening with
Southern's very convincing \/N plots in the region w = 0-004 *0 0-028 agarose at
about roV/cm (see Fig. 4). In the data of Calladine et al. (1991) at lower gel
concentrations and higher fields the break-away to region 2 occurs before the



196 B. H. Zimm and S. D. Levene

steepening, and a i/N' fit to the data looks reasonable; this may help
reconciliation with Southern's data.

Calladine et al. (1991) interpret the master curve by considerations of the
Ogston type involving the probabilities of the DNA being in contact with either
one, or a pair, or a triple of randomly spaced obstacles; they have to introduce three
empirical parameters corresponding to the amount the velocity of the DNA is
lowered while in these contacts.

Region 2, the plateau, begins at a transition velocity, vT, which is close to but
higher than the high-AT limiting velocity. (It is actually denned as the velocity at
which the experimental curve crosses the master curve translated to the right by
log (2).) For agarose itself they find that the relative velocity vT/f varies as
(E/w)1&; for Nu-Sieve agarose and PA there is such a slight breakaway effect that
it is hard to identify vT.

Calladine et al. (1991) have a very original theory for region 2, which we
paraphrase as follows. Suppose that the gel is made up of cubic cells with edge
length, a. If we represent the gel fibres as rods much longer than a lying along the
edges of the cubic cells, then by computing the volume of a cell we find that a
varies as w~*. The DNA is supposed to move freely across a cell with velocity /
until the leading end encounters the cell wall at time a/f, at which point the DNA
starts to pile up on the cell wall. It piles up until the pile exerts enough force to
either rupture or bend the gel, and then it breaks through the cell wall. The
amount in the pile at breakthrough is /, and the time to accumulate it is /// . To get
the net velocity, vT, we add the times of free movement and of piling up and get
a/vT = a/f+l/f, which gives

(25)
/ i+l/a

At break the bending moment of a beam is proportional to force times the span,
so if we assume that the gel fibre is a beam, the moment is Ela, giving

I/a = k/{Ea\ (26)

where k is a material-dependent constant. This gives the relative velocity, vT/f,
varying as E at low fields where I/a is large compared to unity and becoming
constant, 'saturating', at high fields where I/a becomes small. If the gel fibre is
considered to bend instead of break, we get a similar result but with a3 or a4

instead of a2, depending on whether the displacement of the fibre necessary to pass
the DNA is assumed to be proportional to a0 or a1. Since a is assumed to vary as
HTS, these translate into f/vT — 1 = I/a varying as w/E in the 'break' case and as
vfl/E or w2/E in the 'bend' case. As noted above, empirically vT/f varies as
(E/w)lb, which lies between the above extremes if we assume that f/vT is large
compared to unity, as it usually is. In any case by this model in region 2 the
velocity at a given field is independent of chain length.

Actually, in Hervet & Bean's (1987) data at low fields (Fig. 2) the mobility goes
as a constant plus an E2 term. In any physically reasonable theory the mobility
must depend only on even powers of the field at low fields, since the mobility must
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not reverse sign when the field is reversed. The E1 region theoretically predicted
or the E1& empirically seen must correspond to the inflexion region in Hervet &
Bean's data where saturation is starting to appear at higher fields. (A dependence
on the first power of E is also seen in Stellwagen's (19856) data over a limited
range of E.) Presumably, we have to say that this region-2 model of Calladine
et al. (1991) applies only when the field is above a certain threshold, and their
region-1 model takes over below this threshold.

An important new result of this work is the discovery that one master curve fits
the data on three very different kinds of gels in region 1, and that this curve
includes a region of steep dependence on the length of the DNA, approaching
N~3. A new theoretical departure is the attribution of the levelling of mobility at
high fields and chain lengths exclusively to the DNA breaking through the gel
rather than to chain orientation, as has usually been done hitherto (Section 3).
(The idea of piling up and breaking through also has an important part in the
lakes-straits model discussed in Section 4, and that model also leads to a levelling
of the mobility at high fields and chain lengths, although it is not clear whether the
levelling is due only to the mechanism of piling up and breaking through.) A
problem in the Calladine et al. (1991) model is the lack of a quantitative theory of
the transition between regions 1 and 2; that is, at what DNA size, gel
concentration, and electric field does the DNA case to slide around gel fibres and
start to bend or break them ?

7. MISCELLANEOUS

In all of this the problem of gel structure is a fundamental concern. The fact that
the measured pore sizes of PA and of agarose are so different though the volume
concentrations are within a factor of ten of each other brings up the question of
whether both gels can be represented as random arrays of fibres. For PA with low
degree of cross-linking the fibres should be simple acrylic-polymer chains; from
the chemical structure we get a length to mass ratio of 284 Daltons per nanometre,
which gives A, the length of fibres per cubic centimetre in a gel of concentration
w, as 21 x iouw centimetres. By the Ogston method (Rodbard & Chrambach,
1970; Giddings et al. 1968; Lumpkin et al. 1985) we can then calculate the mean
pore size, («) , for a gel of 8 % concentration:

= i-2 nm.

The measured values compiled by Chrambach & Rodbard (1971) range from 1-5
to 2-3 nm for lightly cross-linked gels, so the theoretical model is not bad. At
I 5~ 2 5% cross-linker the pore sizes range up to 3̂ 5 nm, reflecting the great
inhomogeneity of highly cross-linked dilute polymers (Zimm et al. 1958).

On the other hand, a similar calculation for agarose, assuming that the agarose
fibres are bundles of twelve helices, as suggested by small-angle X-ray scattering
(Djabourov et al. 1989) gives a value of approximately 14 nm for a 1 % gel, in wild
discordance with the measured values of 100 nm or more. Nevertheless, Waki et
al. (1982) found that the agarose fibres are distributed approximately randomly,
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depending somewhat on the salt concentration, with a spacing of the order of
ioo nm. Attwood et al. (1988) found similar spacing in their electron micrographs.
Righetti et al. (1981), Serwer & Allen (1983), and Griess et al. (1989) found similar
numbers using charged spherical particles of known size as electrophoretic probes.
Griess et al. (1989) analysed their results using Ogston theory and Ferguson plots
(mobility against gel concentration). Agarose gels are precipitation gels (Leone
et al. 1987), which perhaps accounts for their coarse structure. West (1987 a, c,
1988) has discussed the geometrical problems of gel structure.

So far we have discussed only linear DNA. Actually, circular molecules, both
covalently closed circles which form supercoils and nicked circles which do not,
usually migrate similarly to linear molecules though at somewhat different
velocities. An exception is the behaviour of nicked circles larger than about 20 kb
which migrate very slowly. This has been attributed to a 'hoop-and-stick effect'
(Mickel et al. 1977) in which the open circle gets caught on a projecting gel fibre.
Periodic reversal of the field eliminates the effect (Levene & Zimm, 1987), as
might be expected.

A complication that has not received the attention that it probably deserves is
the effect of randomness in the gel structure. It is known that diffusion in random
media can be anomalous; for review see Havlin & Ben-Avraham (1987).
Naghizadeh & Kovac (1986) made a computer simulation of random-flight chains
diffusing with no applied field in a random array of rods and found a tendency for
the chains to occupy selectively the larger spaces between the rods. Baumgartner
& Muthukumar (1987) made a similar simulation with a random array of cubic
obstacles and compared the results to a simulation with a regular array of the same
obstacles on a cubic lattice. They found very different results in the two cases. In
the regular array the usual random-flight statistics for the radius of gyration were
valid, and motion followed the reptation formula, diffusion constant proportional
to the reciprocal of the chain length squared. (This corresponds to electrophoretic
mobility varying as reciprocal length to the first power; mobility varies as length
times the diffusion constant.) In the random array longer chains diffused much
more slowly, diffusion constant varying approximately as the reciprocal cube of
the length, and at the same time the chains became compressed so that their radius
of gyration did not increase with chain length. Both phenomena were attributed
to the chains becoming trapped in the larger spaces in the obstacle array.

By a scaling argument, reinforced by the simulation, Baumgartner &
Muthukumar concluded that these effects were functions of the universal variable,
N% 1 — p), N the number of Kuhn segments in the chain and p the fraction of space
not occupied by the obstacles. Significant effects of the obstacles appeared when
this variable was greater than unity. Putting in numbers, assuming that a Kuhn
length is 0-4 kbp, and taking o-oi as the concentration of the gel, we find that the
variable reaches unity at a length of 4000 kbp. This is in fact near the upper limit
of successful agarose-gel electrophoresis of DNA; molecules larger than the limit
do not migrate through the gel.

The high exponent in the length dependence suggests a possible connection
with the steep part of the master curve of Calladine.
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Further simulations of random-obstacle fields have been reported by
Muthukumar & Baumgartner (1989 a, b) and by Honeycutt & Thirumalai (1990).
The analytical theory has been developed further by Edwards & Muthukumar
(1988) and Muthukumar (1989) using field-theoretic techniques, and by
Honeycutt & Thirumalai (1989, 1990) using a simple mean-field approach. Only
a preliminary study by simulation of the electrophoretic problem has been made
(Melenkevitz & Muthukumar, 1990), but in this simulation, which had a strong
electric field, the chains frequently broke out of the traps and moved in a way that
was superficially similar to the other simulations described above.

8. CONCLUSION

If we now stop for an overview of the theory of the electrophoresis of DNA
through gels, we see a decidedly mixed picture with some problems solved but
some challenges unmet. The lack of a comprehensive and detailed theory for
electrophoresis of molecules too small to be described by reptation is a major gap
in our understanding. At the other extreme of molecular sizes, there is at present
no explanation of why DNA molecules larger than about 10 000 kb do not migrate
through gels at all.

For molecules of intermediate size the theory is more satisfactory but still
appears incomplete. The randomness of the gel structure may not have been
satisfactorily incorporated. For some purposes it appears necessary also to
consider the elastic properties of the gel. At low fields the by now 'classical'
reptation theory has held sway, but is being challenged for molecules larger than
a gel-dependent critical size by the random-obstacle results described in the last
Section. At higher fields there seems to be general agreement that reptation theory
is insufficient and more attention must be paid to the processes of trapping,
breaking out of traps, and climbing over barriers.
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