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This tutorial review introduces the concepts necessary for understanding the generation of forces

on charged objects in solution by externally applied electric fields. We focus on simple, idealized

cases and conceptual understanding rather than quantitative modeling. We also discuss

experiments in which electrophoretic forces on DNA were directly measured. This review is aimed

at readers interested in the fundamentals of electrophoresis in general, as well as those with more

specific interests in DNA electrophoresis, nanopores and optical tweezers.

1. Introduction

The separation of DNA molecules by gel electrophoresis—the

process of driving the molecules through a dense network of

cross-linked polymer with an applied electric field—counts

among the most important techniques in biochemistry and

molecular biology.1–3 Despite the importance of the applica-

tions of DNA electrophoresis, however, the fundamental

underlying mechanisms responsible for separation have not

been fully elucidated,3 and doing so represents a substantial

challenge. Conceptually, it requires understanding the inter-

play between polymer dynamics, electroosmosis, the topology

of the gel and, in many cases, specific interactions between the

DNA and the gel matrix. Experimentally, elucidating the role

of these different contributions requires probing at or near the

molecular scale. In addition to the fundamental interest from

the point of view of polymer science and soft matter

physics, present attempts to better understand electrophoresis

are motivated by our increasing ability to construct

sophisticated fluidic systems for manipulating DNA and other

macromolecules.4 Such understanding may provide the insight

necessary for developing new separation methods capable of

outperforming the traditional gel.4–6

Because of its emphasis on quantitative understanding, the

contemporary literature on DNA electrophoresis may be

difficult to access for researchers from outside the field. In

particular, it is often difficult to separate the well-understood

basic ideas from further refinements and details aimed at

improving quantitative accuracy. It is the aim of this tutorial

review to introduce some of the basic ideas while concentrating

on conceptual understanding rather than quantitative accuracy.

We focus on a single aspect of electrophoresis, the so-called

tether force. This is the force that is needed to hold a charged

object in place against the action of an externally applied

electric field. This situation loosely corresponds to a

DNA molecule that is temporarily trapped in a metastable

configuration inside a gel. For an overview of gel electrophoresis
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with emphasis on separation and the intricacies of commonly

employed gel systems, we refer the reader to recent reviews in

the literature.1–3

This tutorial review is organized as follows. We first

introduce the key physical concepts in Section 2 using a simple

planar geometry and by making several further assumptions.

This allows simplifying the calculations to a level that is easily

tractable analytically, and we encourage the reader to follow

along by performing the calculations him/herself. In Section 3,

we move away from the simplifications of Section 2 and

discuss some of the additional complexities that arise at high

charge densities and in the cylindrical geometry relevant for

DNA electrophoresis. This section only summarizes key

results rather than providing a full derivation. Finally,

Section 4 briefly summarizes experiments that have explicitly

addressed electrophoretic forces on DNA.

2. Concepts

In order to focus on the key concepts, we first introduce a

system with the very simple geometry illustrated in Fig. 1a.

The system consists of a charged surface with a uniform

surface charge density s separated from a second, parallel

surface that is electrically neutral. For most systems of interest,

s has a negative value; while this is not assumed in our

derivation, the plots in the figures correspond to this case.

The charged surface has a surface area A, and the surfaces

are separated by a distance d. We assume that the lateral

dimensions of the charged surface are sufficiently large that

edge effects can be neglected; under these conditions all of the

relevant equations become one-dimensional. The volume

between the two planes is filled with an electrolyte, which is

in diffusive equilibrium with a bulk reservoir. We take the

electrolyte as consisting of water containing a number density

n0 of a fully dissociated monovalent salt. A good example of

the latter is potassium chloride (KCl), which dissociates into

K+ and Cl� ions in water. This implies that in bulk solution

there is a number density n0 of both positive ions (also known

as cations) with charge +e and negative ions (anions) with

charge �e, where �e is the charge of the electron.z We treat

water as a homogeneous medium with permittivity ew = 80e0,
where e0 is the permittivity of free space. A uniform electric

field with magnitude E is applied parallel to the surface and

permeates the region between the surfaces. The direction

of this electric field is defined as z, while the direction

perpendicular to the planes is x (with x = 0 corresponding

to the position of the charged surface and x = d to that of the

Fig. 1 Charged surface in solution. (a) A negatively charged surface

(left) is immersed in an ionic solution and located a distance d from a

second, uncharged surface (right). A uniform electric field acts on the

charged wall and the ions in solution. (b) Potential f as a function of

distance x from the charged wall with a surface charge s=0.001 C m�2

in 20 mM KCl solution. The potential does not change when the

uncharged wall is moved from d = 25 nm to d = 50 nm (indicated

by the dashed-dotted lines). (c) Distribution of counterions n+(x) and

coions n�(x) as a function of x for d=25 nm and d=50 nm. Again the

distribution remains the same for both cases. There is a net positive

charge at the charged wall near x = 0 which leads to an electroosmotic

flow. (d) The velocity v(x) of the fluid versus position x. This function

differs noticeably when the distance of the plates is d= 25 nm (full line)

or d = 50 nm (dashed-dotted line), in contrast with (b) and (c).
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neutral surface). We will further assume that s is ‘‘small’’ and

that d is ‘‘large’’, as defined more quantitatively in Section

2.1 below.

2.1 The electrical double layer

A charged surface in solution creates in its vicinity a region

containing a net ionic charge that is equal in magnitude and

opposite in sign to the charge of the surface itself. This induced

charge is said to screen the charge of the surface. The

combination of the charged surface and the screening charge

is known as the electrical double layer and is electrically

neutral. As will become clear in subsequent sections, the

spatial distribution of charge in the double layer directly

influences electrophoresis. We therefore begin our analysis

by describing this charge distribution.

The ion distribution in the double layer is most commonly

described within the so-called Poisson–Boltzmann formalism.

At equilibrium, the average concentration of charged

molecules at position x is assumed to follow the Boltzmann

distribution,

n�(x) = n0e
8ef(x)/kT. (1)

Here f(x) is the local average electrostatic potential, k is the

Boltzmann constant, T is the absolute temperature, and

n+ and n� are the local number densities of cations and

anions, respectively. We have also introduced the convention

that f(x) = 0 corresponds to the bulk reservoir far from any

charged object, where n+ = n� = n0. In this section we will

further assume that f(x) is small such that the condition

|ef(x)/kT| { 1 (2)

holds for all values of x (we further quantify this condition

near the end of the calculation, and discuss what happens

when it is not satisfied in Section 3). In this case, eqn (1) can be

Taylor-expanded to yield a simpler form,

n�(x) = n0(1 8 ef(x)/kT). (3)

In order to determine self-consistently the electrostatic

potential f(x), eqn (3) is combined with the Poisson equation

from electrostatics, r2f(r) = �r(r)/ew. Here ew is the

permittivity of water while r(r) = e[n+(r) � n�(r)] is the

charge density. The result is a differential equation that can be

solved for the electrostatic potential f(x),

d2fðxÞ
dx2

¼ kTew
2e2n0

fðxÞ ¼ fðxÞ
l2

: ð4Þ

In the last step we grouped all of the constants into a single

parameter, the so-called Debye screening length, defined as

l = (kTew/2e
2n0)

1/2. The Debye length depends on fundamental

constants and the salt concentration of the solution. For pure

pH 7 water at room temperature (which contains 10�7 M of

H+ and OH� ions), l E 1 mm. Under typical physiological

conditions (approximately 0.1 M of monovalent salt),

l E 1 nm.

Eqn (4) is known as the Debye–Hückel approximation,

and has the general solution f(x) = Ae�x/l + Be+x/l.

The corresponding boundary conditions, which are easily

derived by applying Gauss’ law at x = 0 and at x = d, are

dfðxÞ
dx

����
x¼0
¼ � s

ew
;
dfðxÞ
dx

����
x¼d
¼ 0: ð5Þ

Combining these boundary conditions with the general

solution for f(x) yields the desired expression for the electro-

static potential,

fðxÞ ¼ sl
ew

e�x=l � e�2d=lex=l

1þ e�2d=l

� �
:

If we restrict ourselves to the most common case, d c l,
the factor exp(�2d/l) becomes vanishingly small and this

expression reduces to the simple form

fðxÞ ¼ sl
ew

e�x=l ðd � lÞ: ð6Þ

The neutral surface is then sufficiently far from the charged

surface that it no longer influences the charge distribution in

the double layer. This situation is illustrated in Fig. 1b. Eqn (6)

thus shows that electrostatic interactions decay to zero in

electrolytes over a characteristic distance l. This result also

allows specifying the conditions under which the Debye–

Hückel approximation is valid: eqn (2) must hold for all values

of x, and f(x) is greatest at x = 0, yielding the condition

|s| { kTew/el. Thus, for a given salt concentration (and its

corresponding value of l), the approximation always holds for

sufficiently small values of the surface charge density, s.
Substituting our result for f(x), eqn (6), into eqn (3) yields

the ion distribution in the Debye–Hückel approximation,

n�ðxÞ ¼ n0 �
s
2el

e�x=l: ð7Þ

The screening charge thus consists of two components: an

excess of ions with sign opposite to that of s (commonly called

counterions) and missing ions with the same sign as s (coions).

Both components are localized within a distance of order l
from the charged surface, as shown in Fig. 1c. Interestingly,

the total number density of ions, n+(x) + n�(x), is independent

of x; only the ratio of counterions to coions varies, going from

1 : 1 in the bulk to an increasingly asymmetric composition

near the charge surface.

Based on the above, the net charge density in the diffuse

layer is

rðxÞ ¼ � s
l
e�x=l: ð8Þ

Like the potential f(x), the charge density r(x) drops to zero

with increasing distance from the charged surface with a decay

length l. Integration of eqn (8) with respect to x also directly

demonstrates that the total charge in the diffuse layer is equal

and opposite to that of the surface being screened.

2.2 Electroosmotic flow

In the presence of an electric field E, each ion moves with an

average drift velocity v = mE, where m is a constant known as

the mobility. m has a different value for different species of

ions, and it is positive for cations and negative for anions. Ions

in a solvent move at constant velocity and do not accelerate
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like charges in vacuum because they experience drag from the

solvent. By Newton’s third law, each ion therefore exerts a

reaction force �eE on the solvent. Averaged over a micro-

scopic volume of bulk solution large enough to contain several

ions, however, the net force averages to zero since the solution

is neutral and the reaction forces from cations and anions

exactly cancel each other.y
This cancellation does not occur near a charged surface. As

indicated by eqn (8) and Fig. 1c, such a surface induces a

diffuse layer of charge in its vicinity. An electric field thus

exerts a force on the solution in this thin layer near the surface.

This force can cause the fluid to move, a phenomenon known

as electroosmotic flow.

In order to solve the flow problem, we make further

approximations. We are interested in describing flows that

vary on length scales of microns or less. At these length scales

and for typical velocities encountered in electroosmotic flows,

the Reynolds number is very small and all flows are expected

to be laminar. Furthermore, from symmetry the fluid velocity

can only be oriented parallel to the electric field (z-direction)

and can only vary perpendicular to the surface (x-direction).

Under these conditions the Navier–Stokes equations that

describe fluid motion reduce to the simple form

d2vzðxÞ
dx2

þ rðxÞE
Z
¼ 0; ð9Þ

where r(x)E is the force per unit volume exerted by the electric

field on the solution and Z its viscosity. We refer the reader to

the literature for a detailed derivation of eqn (9) (see e.g.

ref. 7).

Given the charge density r(x) from eqn (8), eqn (9) can be

directly integrated to yield the general solution

vðxÞ ¼ Esl
Z

e�x=l þ Bxþ C;

where B and C are constants. Imposing no-slip boundary

conditions for the fluid at the two walls, v(0) = v(d) = 0,

yields the desired flow profile,

vðxÞ ¼ �Esl
Z

1� e�x=l � x

d

� �
: ð10Þ

This result is plotted in Fig. 1d. The fluid velocity increases

steeply from a zero value at the surface to a maximum at a

distance of order l from the surface.z It then decays linearly

back to zero with increasing x. At positions x c l, eqn (10)

reduces to the simpler form v(x) = v0(1 � x/d), where

v0 = �Esl/Z. This is the same flow profile as would be

obtained if the charged wall was moving at constant velocity

v0 in the absence of an electric field.

2.3 Tether forces in electrophoresis

We now have all of the ingredients required to calculate the

tether force Fs
mech that must be applied to hold the charged

surface in place against the action of the electric field. The

relevant forces are illustrated in Fig. 2, where the superscripts

s and 0 refer to the charged and uncharged surfaces, respectively.

The total force applied to the charged surface by the electric

field, Fs
elec, can be decomposed into two components that

always act simultaneously. First, the electric field acts directly

on the charges of the surface. We refer to this component as

the bare force, Fs
bare, since this is the force that would be

experienced by the bare surface if it were suspended in

vacuum. This force follows simply from Coulomb’s law and

is given by

Fs
bare = AsE. (11)

The electric field simultaneously acts on the oppositely

charged screening cloud and sets up an electroosmotic flow,

as discussed in the previous section. Because this flow causes

the fluid to be sheared at the boundary with the charged

surface, it exerts a drag force Fs
drag on the charged surface

whose value is given by Newton’s relation as

Fs
drag ¼ AZ

dvðxÞ
dx

����
����
x¼0
¼ �AEs 1� l

d

� �
¼ � 1� l

d

� �
Fs
bare:

ð12Þ

The drag force is thus comparable in magnitude and opposite

in sign to Fs
bare.

The mechanical tether force follows directly from the above

and is given by

Fs
mech ¼ �Fs

elec ¼ �ðFs
bare þ Fs

dragÞ ¼ �AEs
l
d
: ð13Þ

Fig. 2 Force balance. (a) The electric field pulls the negatively

charged wall towards the bottom of the image with force Fs
bare. The

counterions (not shown) experience a force in the opposite direction.

This leads to drag forces Fsdrag, acting on the charged surface, and F0drag,

acting on the uncharged surface. To hold the system in place, a tether

force Fs
mech (represented by a spring) must be applied to the charged

wall, and an equal but opposite force F0
mech must be applied to the

uncharged wall. (b) When the distance d is increased, the drag force on

the charged wall increases. Correspondingly, the drag force on the

uncharged wall Fs
drag and the tether force F0

mech decrease. This is a

direct result of the higher flow velocity of the liquid through the larger

gap between the walls (see Fig. 1d).

y Note that the forces cancel out even if the cations and anions have
different mobilities m and thus move at different velocities.
z The actual maximum occurs at position x = l ln d/l.
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This result contrasts strongly with what would be expected in

the absence of the drag force induced by the screening charge:

in that case we would expect Fs
mech = Fs

bare = �AEs, which is

larger than the correct answer by a large factor, d/l.
Our calculation thus indicates that drag from the counter-

ions, far from being a minor correction, is in fact a dominant

factor in determining the magnitude of electrophoretic forces.

Furthermore, its influence does not depend solely on local

properties in the vicinity of the charged surface, but instead

encompasses all aspects of the environment that modify the

electroosmotic flow. This is made explicit by the appearance of

d, the distance to the far-away uncharged wall, in our equation

for Fs
mech, eqn (13). It is also manifest in Fig. 1: whereas the

potential f(x) and the ion distributions n�(x) are essentially

independent of d (so long as d c l), the flow profile shown in

Fig. 1d is strongly affected by the value of d.

Further insight can be gained by considering the uncharged

wall. Although the electric field does not act directly on this

wall, the electroosmotic flow does exert a drag force on it since

the shear stress is non-vanishing at x = d. Following the same

steps as above we have for this force

F0
mech ¼ �AZ

dvðxÞ
dx

����
����
x¼d
¼ AEs

l
d
¼ �Fs

mech: ð14Þ

The forces on the two walls are thus equal and opposite, which

may at first appear surprising. It is however easily understood

by considering that the electric field exerts no net force on the

system as a whole since the force exerted on the charged wall is

exactly compensated by the force on its screening charge. Any

external mechanical force on the charged wall must therefore

be balanced by a second external force. Equivalently, one can

consider that the total force on the screening charge, given by

�AsE = �Fs
bare, is transmitted to the two surfaces through

shear in the fluid. The fraction that reaches the uncharged

surface is l/d, while the fraction that reaches the charged

surface is (1 � l/d). It follows directly that Fs
mech = �(Fs

bare +

Fs
drag) = �F0

mech.

Eqn (13) predicts that the tether force Fs
mech goes to zero as

the distance d is increased toward infinity, and therefore that

there is no tether force on a charged surface far from any

boundary. This counterintuitive result is actually an artefact

caused by the approximations that we have made. In parti-

cular, we have neglected edge effects and essentially treated the

charged surface as infinite. For a finite-sized surface, a small

but non-zero force remains due to a back flow of fluid on the

size scale of the surface itself. More generally, we have

neglected inertial effects by using only the Stokes equation

to describe the motion of the fluid. On large enough length

scales, however, inertia becomes relevant and this approximation

breaks down.

2.4 Effective charges

In simple electrostatics, the force on a charged object is

proportional to its charge multiplied by the local electric field.

As we saw in the previous section, on the other hand, the net

tether force on a charged object in an electrolyte is not simply

given by its bare surface charge density, and is instead much

smaller due to an important contribution from the screening

layer. To an observer who is unaware of what is happening in

solution and who simply measures the tether force in response

to a known electric field, however, it is natural to describe the

force as resulting from an effective surface charge density seff,
such that Fs

mech = �AseffE, with |seff| o |s|. Comparing to

eqn (14) directly yields a value for |seff|, namely

seff ¼ s
l
d
: ð15Þ

The effective charge, as introduced above, is a well-defined

quantity, both experimentally and theoretically. Nevertheless,

the authors feel that the use of the concept of ‘‘effective

charge’’ should usually be discouraged. There are several

reasons for this. First, as eqn (15) makes manifest, the effective

‘‘charge’’ does not correspond to a physical charge, but rather

includes factors that depend on the geometry of the hydro-

dynamic environment around the charged object. Second,

because the effective charge is not an intrinsic property of

the charged object, instead depending on geometry parameters

such as d, its value cannot be compared directly between

different experimental configurations. Comparisons between

tether force and electrophoretic mobility experiments are even

more difficult, as the relation between the effective charges that

are commonly defined in these two experimental situations is

model-dependent. Third, the concept of effective charge is

ineffective as a pedagogical tool: it has been our experience

that, upon first encountering it, many readers are left with a

vague notion that the effective charge consists of the bare

charge of the object, minus some countercharge which is

physically immobilized on the object. While this sort of

complexation can certainly be an important contribution in

real systems, thinking about electrophoresis solely in this

manner obscures the fact that the tether force is expected to

be smaller than �AsE even if there are no immobile counter-

charges.

3. More complex cases

In the previous section, we made several simplifications so as

to keep the mathematics as simple as possible while retaining

the relevant physical concepts. In this section we point out the

additional complications that arise when some of these

simplifications are lifted. We concentrate mostly on a qualitative

description rather than a full derivation as in the previous

section.

3.1 High charge densities

The calculation in Section 2 holds so long as the surface charge

density is sufficiently small that the condition |s| { kTew/el is

satisfied. At higher surface charge densities, the approximation

made in eqn (2) breaks down and eqn (1) can no longer be

replaced by its linearized version, eqn (3). Combining the full

eqn (1) with Poisson’s equation yields an alternative to eqn (4)

that is valid for arbitrarily large values of s,

d2fðxÞ
dx2

¼ 2en0

ew
sinh

efðxÞ
kT

� �
ð16Þ

This result is known as the Poisson–Boltzmann (PB) equation.

Because of its non-linearity, this equation is considerably more

This journal is �c The Royal Society of Chemistry 2010 Chem. Soc. Rev., 2010, 39, 939–947 | 943



difficult to solve than the Debye–Hückel approximation of

Section 2. When d c l, an analytical solution can nonetheless

be obtained for the geometry of Fig. 1a,8,9

fðxÞ ¼ 2kT

e
ln

1þ ge�x=l

1� ge�x=l

� �
; ð17Þ

where g=�lGC/l+ (1+ l2GC/l
2)1/2. Here we also introduced a

new parameter, lGC = 2kTew/e|s|, which is known as the

Gouy–Chapman length. Qualitatively, lGC is a measure of

the strength of the electrostatic interactions between ions and

the surface, with a small lGC corresponding to strong inter-

actions. Readers interested in a more in-depth discussion of

solutions to the PB equation, including the derivation of

eqn (17), are referred to ref. 8 and 9.

This result for f(x) is plotted in Fig. 3 for a range of values

of the surface charge s. Far from the surface, the potential

decays exponentially with a characteristic length l for all

values of s. For large enough s, however, the potential far

from the surface no longer increases with increasing s. Instead,
its value becomes independent of the magnitude of s and takes

on the form f(x) = �(4kT/e)exp(�x/l). Correspondingly, for
large enough s the distribution of counter- and coions far

from the surface also becomes independent of the magnitude

of s. In this case all of the additional screening charge is

located close to the charged surface, as evidenced by the

continued increase of f(x) with increasing s in this region.

The size of this region is of the order of the Gouy–Chapman

length, lGC. More precisely, at a planar surface and under

conditions of low bulk electrolyte concentration (lGC { l),
half of the counterions reside within lGC from the surface.8 In

water at room temperature, lGC is only 2.4 Å for a high

surface charge density of s = 0.16 C m�2 (corresponding to

1 e nm�2). Although its value scales inversely with s, lGC

remains a molecular scale length for many charged systems.

Qualitatively, the charge screening a highly-charged surface

can thus be thought of as consisting of two components: a

diffuse layer, which extends a few Debye lengths into the

solution, and a more compact layer very close to the surface.

The diffuse layer is composed of more-or-less symmetric

distributions of excess counterions and missing coions,

whereas the more compact layer is composed predominantly

of counterions. The latter results from the non-linearity

inherent in eqn (1): while the coion concentration cannot be

suppressed below zero, the degree of counterion enrichment can

be arbitrarily high. Even for a surface with s = �0.025 C m�2

(corresponding to ef/kT E 2) the ion distributions show an

excess of counterions n+ whereas coions n� are completely

depleted in the screening layer. This is illustrated in the inset

of Fig. 3.

3.2 Cylindrical geometry

In describing the ionic screening of charged, stiff biopolymers

such as DNA, a common approximation is to treat the

molecule as a charged, solid cylinder. Analogous to the

discussion of the infinite plane above, we focus here on a

charged cylinder with radius a and surface charge density s
positioned in the center of a larger, uncharged cylindrical

cavity with radius R. For such a problem with cylindrical

symmetry, the PB equation takes the form

1

r

d

dr
r
dfðrÞ
dr

� �
¼ 2en0

ew
sinh

efðrÞ
kT

� �
� fðrÞ

l2
; ð18Þ

where the last step corresponds to the Debye–Hückel

approximation, |ef(r)/kT| { 1. In this last case and for

R c l, the corresponding Debye–Hückel solution for the

potential is

fðrÞ ¼ sl
ew

K0ðr=lÞ
K1ðR=lÞ

; ð19Þ

where K0 and K1 are the 0th and 1st order modified Bessel

functions of the second kind, respectively. Analogous to the

planar geometry, the potential decays exponentially away

from the charged cylinder.8
For a highly-charged surface, the linearization leading to

eqn (19) is no longer valid and the full PB equation must be

solved. We only note that the resulting solution exhibits the

same qualitative features as for the case of a plane, and once

again the screening charge can be broken into a diffuse layer,

whose size is given by the Debye length, and a compact layer,

characterized by the Gouy–Chapman length. The amount of

charge in the diffuse layer also saturates at a constant value

with increasing s, while the remaining screening charge resides

in the compact layer and consists primarily of counterions.

This separation into two components can be made

more precisely in the special case of a line charge (a cylinder

Fig. 3 Electrostatic potential f(x) (in units of kT/e) versus position x

(in units of l) as given by the solution to the PB equation, eqn (17).

From bottom to top, the curves correspond to values of the surface

charge density s of 0.001, 0.003, 0.005, 0.01, 0.025, 0.05, 0.1, 0.5 and

1.0 C m�2 in 20 mM KCl at 300 K. For low values of s, the curves

follow the Debye–Hückel result, eqn (6). Deviations from this linear

behavior are evident at low x for the four topmost curves. Inset:

counter- and coion distribution for s= �0.025 C m�2 at 20 mMKCl.

The coions are depleted in close proximity to the surface. In contrast,

the number density of counterions is ten times higher than in bulk

solution.

8 Unlike ordinary Bessel functions, which are oscillating functions,
the modified Bessel functions of the second kind decay exponentially
for r/l c 1.
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with R- 0) with linear charge density r and in the absence of

supporting salt (n0 = 0). In this case ions accumulate

(or condense) on the line charge, partly compensating its

charge until its value decreases to a magnitude e/lB (where

lB = e2/4pkTew is the so-called Bjerrum length**). The linear

charge density of the condensed ions is thus (|r| � e/lB), while
the linear density of charge in the diffuse layer is the remaining

e/lB. This result, known as Manning condensation,10,11 often

serves as a first approximation for the composition of the

double layer in more realistic cases. Double-stranded DNA,

for example, has a charge density of 2e per base pair,

corresponding to r = 4.2e/lB. This is well over the critical

threshold for counterion condensation to occur, and as a first

estimate a fraction 1 � 1/4.2 = 0.76 of the charge can be

expected to be screened by condensed counterions.

Because the distribution of screening charge in the vicinity

of a charged cylinder is qualitatively very similar to that near a

surface, our discussion of electroosmotic flows and tether

forces in Section 2 applies directly to the case of a cylinder.

In particular, as illustrated in Fig. 4a, here also the tether force

is due to a combination of bare electrostatic force and a drag

force from the counterions, with the drag force being of

comparable magnitude to the bare force. The cylindrical

geometry only influences our analysis and conclusions at a

quantitative level. For example, Fig. 4b shows the fluid

velocity v(r) as a function of radial position r. Far from the

charged cylinder, v(r) exhibits a non-linear decay with increas-

ing r, unlike our result for surfaces (Fig. 1d), leading to subtle

differences in how the drag force is distributed between the two

surfaces. We refer the reader to the original literature12–14 for a

discussion of these quantitative aspects.

3.3 Limitations of the model

Several properties of real systems are not captured by the

formalism that we have introduced here. Some of the more

flagrant problems include:

KThe PB equation ignores the finite size of ions, instead

treating them as point particles. It predicts that, near a highly-

charged surface, a significant fraction of the counterions

accumulates within a length lGC of the surface. For highly-

charged surfaces, however, the calculated lGC is comparable

to or even smaller than the size of an ion (a few Å). Neither

these steric clashes nor the effect of crowding of the ions near

the charged surface are included in the model.

KThe PB equation only includes electrostatic interactions

between ions and the average electrostatic potential, but ions

can also have affinity for particular sites on the charged

surface. Such specificity modifies the composition of the

electrical double layer, and in particular its compact part,

compared to the purely electrostatic case. This can be

investigated by molecular dynamics simulations15 or X-ray

diffraction on DNA in solution.16

KThe calculations deal with perfectly smooth surfaces with

uniform charge densities, but matter is intrinsically rough and

charges are discrete on the molecular scale. To what extent this

affects the validity of using continuum equations at this length

scale remains somewhat unclear. Recent molecular dynamics

simulations observe an effect of the roughness on the tether

forces.17

Ultimately, most of these difficulties come down to our

limited ability to describe ionic systems on the molecular

length scale. Although substantial work has been carried out

toward resolving them (see e.g. ref. 18), no consensus exists at

this time on how best to address these issues in an analytical

theory. It is likely that this situation will not change signifi-

cantly until more microscopic experimental evidence can be

brought to bear.

4. Experiments

The considerations above strongly suggest that hydrodynamic

interactions—and their modification by the local environment

inside a complex environment such as a gel—represent one of

Fig. 4 Force balance for DNA in the center of a nanopore with radius

R. (a) Left: the balance of forces is qualitatively identical to the case of the

surfaces in Fig. 2. Briefly, the electric field pulls the negatively charged

DNA towards the bottom with a force Fsbare, whereas the counterions

experience a force in the opposite direction. This leads to drag forces Fsdrag,

acting on the DNA, and F0drag, acting on the nanopore wall. The latter

force is ultimately transferred to the rest of the experimental setup to

which the pore is rigidly attached. The DNA is stalled by a tether force

Fsmech applied to the DNA, while an equal but opposite force F0mech acts

on the uncharged nanopore. Right: when the nanopore radius R is

increased, the drag force on the DNA also increases. Correspondingly,

the drag force on the nanopore F0drag and the tether force Fsmech decrease.

(b) The flow velocity v(r), calculated by numerically solving eqn (18) and

combining the result with the Stokes equation.14 The maximum flow

velocity depends on the nanopore radius R.

** The Bjerrum length represents the distance between two ions at
which the electrostatic energy equals kT.
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the major ingredients for understanding electrophoresis. In

particular, although great care is usually taken in gel or

capillary electrophoresis applications to minimize large-scale

hydrodynamic flows, we have seen that the forces experienced

by a molecule undergoing electrophoresis are intrinsically

linked to the geometry of its hydrodynamic surroundings.

But while there exists a vast array of measurements of the

mobility of macromolecules in gel electrophoresis (see e.g. the

recent review by Stellwagen and Stellwagen3), the electro-

phoretic forces on the molecules cannot be directly extracted.

One clever solution to measure forces in bulk solution is the

use of steady-state electrophoresis.19–23 Here, charged bio-

molecules are driven against a semi-permeable membrane

by an electrical field. The membrane lets ions pass but

is impenetrable for anything larger. The macromolecules

therefore become concentrated near the membrane until a

steady state is reached in which diffusion away from the

membrane exactly cancels the driving force. In this case

the distribution of the molecules as a function of distance

from the membrane yields the force. Laue et al. also used this

technique to measure electrophoretic mobility in bulk

solution.20 This is probably one of the best techniques to

study the free-solution electrophoretic properties of charged

molecules. To our knowledge, however, this approach has not

so far been applied inside gels.

Conceptually, a much simpler alternative for experimentally

testing the theoretical ideas described above is to directly

measure the tether force. In doing so one faces two main

challenges: (i) a means must exist for detecting the small forces

involved, and (ii) the geometry of the microscopic environment

near the molecule should be controlled or at least well

characterized. Advances in single-molecule techniques over

the last two decades provide the ideal tools for performing

this sort of measurement and probing the mechanisms of

electrophoresis in confined geometries.

It is instructive to first estimate the magnitude of the forces

expected during the experiments. This requires knowledge

about the polyelectrolyte molecule to be investigated.

Double-stranded (ds) DNA is the ideal candidate due to its

long persistence length of 50 nm in physiological conditions,

well-characterized structure, high charge density, broad avail-

ability, and the existence of an extensive molecular biology

toolkit for manipulating it. The diameter of dsDNA in its

B-form is about 2 nm, and the distance between base pairs is

l = 0.34 nm. At pH = 8.0 the phosphate backbones are fully

deprotonated, yielding two elementary charges per base pair.

As noted above, this corresponds to a linear charge density of

4.2e/lB. The typical potential difference DV used for the electro-

phoretic translocation of DNA through a membrane is 0.1 V.

The corresponding maximum electrophoretic force (ignoring all

drag contributions) is thus Fsbare = 2eDV/l = 100 pN for

DV = 0.1 V applied across a straight segment of DNA.24

The optimal experimental tools for measuring forces of this

magnitude are optical tweezers. These have a typical spatial

resolution in the single nanometre range and pN or even

sub-pN force sensitivity.25,26 Optical tweezers use tightly

focused laser light to trap and manipulate dielectric particles

in aqueous solution. The most common force transducers

are antibody-coated polystyrene microspheres which are

commercially available. dsDNA with one receptor molecule

can be assembled by standard biochemical techniques and a

single dsDNA is then easily attached to such a colloid. A

commonly used receptor–ligand pair is streptavidin–biotin.

Optical tweezers can be used to measure the electric force

acting on this molecule through the displacement of the

trapped sphere from its equilibrium trapping position. For

small displacements Dx, the optical trap behaves like an ideal

spring following Hooke’s law, F= kDx, where k is the stiffness

of the optical trap. In other words, the trapped colloid

provides the mechanical handle which will be used to insert

the dsDNA into a desired environment and to measure the

force on the molecule when an electric field is applied.

The second requirement for any successful experimental

test of the above models is the precise control over the

experimental geometry the DNA is residing in. One obvious

choice is the gel matrix used for electrophoretic separation.

Bustamante et al. realized this by developing a sample cell in

which DNA bound to a colloid could be electrophoretically

stretched either in open solution or in a gel.27 In these

experiments it was shown that the force on DNA increases

by a factor of four when the molecule is in the gel compared to

open solution. This indicates that hydrodynamic interactions

affect the force on the molecule substantially, as the force

increases along with the level of hydrodynamic coupling, as

expected from the analysis above. A quantitative inter-

pretation of these data is however complicated by the complex

structure of the gel matrix.27

An unambiguous comparison between the model and

experimental measurements requires confining the DNA in a

simple geometry with precise control of the dimensions on the

nanometre scale. One way to achieve this is by employing

state-of-the-art nanotechnology to machine solid-state nano-

pores, holes with radii of sub-nm to tens of nanometres in

ultra-thin (20 nm) insulating membranes using focused ion28

or electron beams.29 In combination with the optical tweezers,

these solid-state nanopores provide a highly controlled

platform to test the influence of hydrodynamic interactions

on a single charged polyelectrolyte molecule in a well-defined

geometry.

Using this combination, the tether force on dsDNA in a

nanopore was recently measured.14,24,30 In these experiments a

single dsDNA molecule was inserted into a nanopore with

an independently determined radius. The tether force was

measured in pores having radii between 3 nm and 50 nm.

These experiments showed that the tether force on dsDNA is a

factor of two larger in a small pore with radius 3 nm compared

with the force in a pore with radius 50 nm, while keeping the

salt concentration and pH value of the solution constant.

These results confirm the importance of hydrodynamic inter-

actions unambiguously and on the single-molecule level. They

also directly show the limitations of the effective charge

for parameterizing electrophoretic forces since its value is

explicitly found to depend on the experimental configuration.

We further note that nanopore translocation experiments

illustrate another profound result that follows from the

non-linearity of the PB equation. The voltage difference applied

over a nanopore to drive the dsDNA through the pore also

gives rise to an ionic current that can be independently
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measured. At high salt concentrations, inserting a dsDNA

molecule through a nanopore causes the ionic current to

decrease. This can be easily understood by considering that

the DNA molecule occupies a finite volume and therefore

expels some salt ions from the nanopore, causing the latter’s

ionic conductance to decrease. Counterintuitively, however, at

salt concentrations below 300 mM, a dsDNAmolecule threading

through the nanopore causes the current to increase.31–34 This

additional current is believed to be carried by the excess

counterions that screen a highly-charged object, as discussed

in Section 3.1. The inset of Fig. 3 shows the distribution of

co- and counterions for a surface with s= �0.025 C m�2. The

clear asymmetry between the two ionic species leads to an

effective increase of the ion concentration in the double layer.

In practice, only the high charge density of dsDNA enables

the detection of a single molecule in nanopores with 450 nm

radii.35 The reason for this limitation is that a macromolecule

with a low charge density (below the critical threshold for

non-linear counterion accumulation) would be expected to

exhibit only very weak enhanced conductance, if any, since in

that case the co- and counterion distributions are symmetrical

(Fig. 1c) and the number of charge carriers thus remains

constant.ww The latter prediction has to our knowledge not

been probed experimentally, however.

5. Closing remarks

This tutorial review has provided an overview of the concepts

behind the generation of forces in electrophoresis, and in

particular of the central role played by hydrodynamics. These

concepts have long been well-understood, yet their surprisingly

subtle interplay can often lead to important misconceptions

in interpreting new experiments. Developing an accurate

intuition of the forces at work in electrophoresis represents

an important prerequisite for developing a full understanding

of the complexities of practical gel systems. More tentatively—

but also perhaps more excitingly—it may provide the spark

that leads to new electrophoresis-based science and technology

when combined with advances in nanofluidic techniques.4,5
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