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I. Introduction

|

A great deal is known about the static structure of the most important building
blocks of life—proteins and nucleic acids—but relatively little about their mo-
tions. Intramolecular motions are, however, a central feature of the biological
function of biomolecules. Thus there is great potential in new techniques that
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make it possible to study the dynamics of individual biological macromolecules.
A variety of single-molecule experiments, ranging from optical tweezers and
scanned-tip microscopies to single-molecule fluorescence methods, have recently
begun to explore the new territory. Researchers are faced with a multitude of
challenging problems, one of which is noise that sets limits on the resolution of
single-molecule measurement. Instrumentation must be designed with enough
stability to make measurements on nm-length scales, and a thorough understand-
ing of the subtleties of data analysis is necessary to push the limits of detection
and to avoid artifacts. In this chapter we discuss noise issues mainly in the context
of optical tweezers experiments, but much of the discussion applies to other
micromechanical experiments as well.

Optical tweezers, also known as laser trapping, is a micromechanical technique
that is finding increasing use in a broad spectrum of experiments in biology.
Optical trapping of particles uses the momentum transfer from light scattered
or diffracted by an object immersed in a medium with an index of refraction
different from its own (Ashkin, 1992; Ashkin et al., 1986; Ashkin and Gordon,
1983). For objects much larger than the wavelength of light, for which geometric
optics is a good approximation, force is imparted by refraction and reflection,
For very small objects, however, the net force is proportional to the gradient of
light intensity, pointing in the direction of increasing intensity. Three-dimensional
trapping of particles, large or small, can be achieved at the focus of a laser beam
if a strong enough gradient of intensity can be established in all directions. To
achieve relatively large trapping forces, intense laser light is brought to a tight
focus by a high numerical aperture (NA) lens in a microscope; for maximal force,
the particles to be trapped should be roughly matched in size to the laser focus.
To minimize radiation damage in biological samples, near-infrared lasers with
wavelengths of approximately 1 pwm are often used; these have a focus size of
approximately 0.5 pm. Typical forces that can be achieved, using up to 1 W of
laser power, are on the order of tens of piconewtons (pN) (Svoboda and Block,
1994a). In the simplest applications optical traps are used, literally like a pair of
tweezers, to hold and move objects such as chromosomes or organelles, or to
manipulate probes such as latex or glass beads. In such cases considerations of
noise are largely irrelevant. In a growing number of experiments, however, laser
tweezers are used in a quantitative way both to exert or measure small forces
and to measure small displacements of moving objects, with sufficient resolution
to study individual biological macromolecules (DNA and RNA, or proteins).
Ordinary light microscopy, limited by the wavelength of light, usually cannot
provide the nanometer-scale resolution needed to observe the activity of individ-
ual molecules. While spectroscopic and scattering methods do provide molec-
ular information from a large ensemble, they cannot easily examine single-
molecule motions,

Besides optical tweezers only a few recently developed techniques such as
atomic force microscopy (AFM) (Radmacher et al,, 1995; Rugar and Hansma,
1990; Thomson et al., 1996), single-molecule fluorescence microscopy (Funatsu




8. Signals and Noise in Micromechanical Measurements 131

et al., 1995; Sase et al, 1995) or near-field optical microscopy (NSOM) (Betzig
and Chichester, 1993) can be used to observe the dynamics of single molecules
in aqueous conditions and at room temperature. Nonimaging detection, typically
with fast photodiodes, can use intense illumination in many ways to track the
motion of objects with A accuracy (Bobroff, 1986; Denk and Webb, 1990). This,
for example, is how the motion of an AFM cantilever is detected (Rugar and
Hansma, 1990). In the case of optical tweezers, the trapping laser beam itself
can be used for position detection (Svoboda and Block, 1994a). Furthermore,
the trapping forces that can be exerted are on a useful scale for single-molecule
experiments, for example, to stall motor proteins (Svoboda and Block, 1994b;
Svoboda et al,, 1993) or to stretch DNA (Smith et al, 1996; Yin et al., 1995).

In single-molecule optical tweezers experiments, just as with any other highly
sensitive method, (ighting noise in its various forms becomes of foremost impor-
tance. Noise appears in electronic components, but is also unavoidably present
as the Brownian motion of the observed objects, which are typically immersed
in room-temperature aqueous solutions. On the one hand unavoidable noise
sources set fundamental limits to micromechanical measurements. On the other
hand, one can also exploit Brownian motion to calibrate the measuring appara-
tus itself.

This tutorial includes the following parts: Section 1, a basic discussion of
power spectral analysis; Section III, a derivation of the spectral characteristics
of Brownian motion of optically trapped particles and a practical recipe for the
way this motion can be used to calibrate optical tweezers; Section 1V, a discussion
of the fundamental limits of what can be measured by optical traps or other
micromechanical devices; and Section V, a discussion of instrumental design
techniques that will maximize the signal-to-noise ratio.

II. Spectral Data Analysis

In the type of experiments discussed here measurements are usually taken as
a set of time-domain data, for example as a series of voltage measurements
corresponding to the varying light intensity detected with a photodiode (Fig. 1).
Time-domain data are clearly necessary to delect singular events, but a frequency-
domain description of the same data has substantial advantages for interpreting
“continuous™ phenomena, such as oscillations and random noise signals. Experi-
mental or thermal noise is best characterized by its power spectrum, which is a
specific frequency-domain description of an original time-domain signal. Later
discussion in this chapter shows how to calculate the power spectrum numerically.
Further details on the calculation of the power spectrum can be found in the
literature (Press, 1992).

Conceptually, a power spectrum is obtained by passing a signal (such as a
fluctuating voltage from a photodiode detector) through a set of narrow-band
filters and plotting the measured intensities as a function of the filters’ center
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Fig. 1 Time series of data showing the Brownian motion in water of a 0.5-um silica bead within
an optical trap, at a laser power of about 6 mW in the specimen. Bead displacement was detected
using an interferometric technique (Svoboda et al, 1993) with a bandwidth of 50 kHz. Displacement
calibration was obtained [rom the Lorentzian power spectrum (Fig. 4) using the methods described
in this chapter.

frequencies. This process, as contrasted with a simple Fourier transform, does
not preserve the total information content of the original data, as explained later.
To characterize an experiment, it is necessary to know the spectral characteristics
of noise, the signal, and the detection system.

A. Interpretation of the Power Spectrum

In general, going back and forth between time- and frequency-domain repre-
sentations is accomplished by performing Fourier transforms. The Fourier trans-
form of a set of real numbers (time-domain data points) gives a set of complex
numbers, preserving all the information inherent in the original data. Often,
however, it is more convenient to sacrifice some information content (the phases)
and calculate the power spectrum or power spectral density (PSD), denoted here
by S(f). For practical purposes, S(f) is obtained by taking the squared magnitude
of the Fourier transform. This function, however, is extremely erratic: The stan-
dard deviation of each point is typically equal to its mean value, To obtain a
smoother curve, many data sets must also be averaged (Press, 1992). It is this
smoaother curve, in the limit of infinitely many data sets, that shows the true
spectral characteristics of the observed process. To understand the statistical
meaning of the power spectrum, consider a set of data points, x,: The total
spread in this set of numbers is given by its variance, Var(x). One way of looking
at the power spectrum is as a breakdown of this signal variance in components
at frequencies £ The function S(f) assigns a “‘power” to every frequency £, and
all of the powers for nonzero frequencies add up to give exactly Var(x).
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In practice, two important concepts are needed to correctly interpret S(f) as
calculated {rom a data set. These are aliasing and windowing (Press, 1992).

1. Sampling, Aliasing, and the Nyquist Frequency

2. Windowing

If data is taken, ideally, as a series of instantancous samples at a frequency
[ the highest frequency component that can be unambiguously measured in the
data is equal 10 fnyg = f/2. This fyyq is called the Nyquist frequency. A wave
with frequency fyyq can have exactly one data point taken on its crests and one
in its troughs. As illustrated in Fig. 2A, any wave of a frequency higher than
JInyq €an be erroneously interpreted as having a frequency lower than fiy,. In the
power spectrum S( f,,), power spectral density at frequencies above fiyq will be
folded back to lower frequencies f,, below the Nyquist frequency, as shown in
Fig. 2B. Such folding back of power into low frequencies is called aliasing, and
the way to avoid it is to low-pass filter the signal before sampling it, with a cutoff
frequency just at the Nyquist frequency (Horowitz and Hill, 1989).

A Fourier transform of a set of N data points, used to compute the power
spectrum, implicitly treats the data set as if it wrapped around periodically (ie.,
mathematically xy is implicitly followed by x,). This can create a problem. If the
data consist of, say, a pure sine wave, a narrow peak ideally is expected to
appear in S(f) at the wave’s frequency. But the implicit wrapping around in the
calculation causes the wave to appear discontinuous unless the time window is
an integer multiple of the period (Fig. 3A). This discontinuity causes side lobes
on the peak, as shown in Fig. 3A, which can obscure features in the power
spectrum, especially close to strong lines. No perfect cure for this is possible,

N NN e fua

Fig. 2 (A) Schematic illustration of aliasing. A sinusoidal signal (solid curve) has a frequency that
is 4 of the sampling frequency f; (arrows), This will falsely contribule to the power spectrum at a
{requency fi/4 because the sampled data (solid circles) appear as if they were produced by a wave
of frequency f/4 (dotted curve). (B) For a continuous spectrum, the part of the power spectrum
that continues past the Nyquist frequency fuyy = 0.5 f; is folded back (curve 1) and added to
frequencies below it (curve 2) to produce the aliased spectrum (curve 1 + 2).
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Fig. 3 Windowing of data. (A) The bottom part of the graph shows a sinusoidal signal (solid)
that is measured over a time T. Outside this interval, the sinusoidal signal may continue forever.
The Fourier transform algorithm, however, applied to the finite interval implicitly treats this data
set as if it repeated itself with a period T (dotted curves). The artificial discontinuities and phase
shifts introduced by this periodic continuation determine the width of the peak in the power spectrum
(top) and create oscillations. (B) Windowing the data, that is, multiplying the data by an envelope
that approaches zero at the ends of the interval (bottom), removes the oscillations in the power
spectrum (top). The width cannot be reduced much,

but to minimize the effect, a “window” is applied to the data before transforming
it (Fig. 3B): This means that each x, in the data set is multiplied by some function
B(n) that goes to 0 at the ends of the data set. B(n) should also be normalized
so that the sum of all the B(n)? is equal to 1. In this way the variance of windowed
data on average will be equal to the variance of unwindowed data (although for
any particular data set, windowing changes the variance). The window shape
can be optimized for specific situations but is not terribly important for relatively
smooth specira such as those discussed later. Possibilities include a parabolic

hump (Welch window) or a simple triangle (Bartlett window) (Horowitz and
Hill, 1989).

B. Calculation of the Power Spectrum

The following discussion shows how to obtain the power spectrum via a Fourier
transform. From a set of N discrete data points x, separated by 8¢, we obtain N
independent fourier components X(f,,), which are complex numbers given by

N
X(f;ﬂ) = E_:]X,,ezﬂinm/N’ (1)
where each resuiting X(f,,) corresponds to the frequency
f;u = me,
— N2 =m = NI. .

Before calculating X{( f,,) in Eq. (1), one already would have multiplied the x,
by a windowing function as described earlier, The Fourier transform in Eq. (1)
is, for large data sets, greatly accelerated by use of the fast fourier transform
(FFT) algorithm (Press, 1992). However, to use this algorithm, the number of
data points must be an integer power of 2, a fact that should be taken into
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account when collecting data. Software written to calculate power spectra may
revert to much slower algorithms when the data set is not a power of 2.
The frequency resolution is determined by the total length of the measurement:

1
= — 3
If, as commonly is the case, the x, are real numbers, the components X(f,,) and
X(—fw) are complex conjugates, and have the same modulus. The power spectrum
S(fw) is calculated from the squares of these moduli. To work with positive
frequencies only, the so-called one-sided power spectrum is calculated as follows:

() = Fa XU

0 <m < NI2,
S(f = 0) = FazKOF,
S(fun) = N%EJX(]CNQ)P- 4)

The highest frequency in the PSD is fy;, the Nyquist frequency. The power
spectrum consists of N/2 independent numbers running from S(0) to S(fan),
even though there were N original data points: Half the original information
(concerning phases) is therefore lost in the process of calculating the PSD.

From Egs. (1) and (4) it follows that S(0)&f is equal to the square of the
average of the measured signal x,:

S(0)of = ¥2, %)

and that the sum over the power spectrum is equal to the average of the squares
of the signal data:

NIR .
2 S(f)Sf = X2. (6)

n=l)

Thus we obtain the relationship to the variance as mentioned earlier;

N2

2 S(f)8f = ¥ = ¥ = Var(x). 9

From Eq. (7) the units of S(f,,) can be read off: They are [x]*/Hz. It is important
to keep track of numerical factors (N and 2, etc.) so that S(f,,) is properly
normalized to fulfill Eq. (7). There is considerable variety in the literature and
in software written to calculate power spectra. It is therefore a good idea to
check the normalization by directly computing the variance of a data set (after
multiplication by the windowing function) and comparing it with Eq. (7).
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III. Brownian Motion of a Harmonically Bound Particle

For the types of microscopic systems discussed here (e.g., small optically
trapped particles in a solution), the theory of Brownian motion is relatively
simple because linear response theory can be used, which assumes that deviations
from equilibrium positions are small. In this case, the fluctuation-dissipation
theorem (Landaun et al, 1980; Reif, 1965) states that thermal fluctuations, such
as diffusion, are governed by the same parameters that apply to larger scale
motions, such as sedimentation. Furthermore, in systems with a low Reynolds
number (e.g., small particles moving not too fast, in a viscous medium) viscous
drag is dominant over inertial forces (Happel and Brenner, 1983).

A. Power Spectrum of Brownian Motion

A particle that can move freely in a viscous fluid performs a random walk
(Brownian motion) due to the continuous bombardment by the solvent molecules
(i.e., it diffuses through the fluid). In accordance with the fluctuation—dissipation
theorem, the diffusional motion can be predicted once the hydrodynamic drag
coefficient, -y, for steady motion is measured. This is the Einstein expression for
the free diffusion coefficient D (Reif, 1965):

kT

In terms of D, each coordinate x(¢) of a diffusing particle is described by

Var(x] = x2 — X% = 2D¢. (9)

For three-dimensional diffusion, squared distance from the origin grows as
#(t)* = 6 D¢ because * = x* + y?> + z2 The random excursions of the particle
from its starting point grow larger and larger as time goes by. Such random
diffusion, according to Eq. (8), is proportional to the absolute temperature T
In contrast, a particle in an optical trap feels not only random forces from
solvent molecules, but also a restoring force confining it within the trap and
preventing long-range diffusion. As a compromise the particle will wiggle in
the trap with an average amplitude that depends on the trap strength and the
temperature. Near the stationary point of the laser tweezers, the trapping force
will be proportional to displacement, as for a harmonic spring. Taking, for exam-
ple, a 0.5-um silica bead, the effective spring constant can be increased from 0
to approximately 1 pN/nm by varying the laser power to a maximum of approxi-
mately 1W. The position of the particle within the trap can be monitored with
A accuracy using photodiode detection (Svoboda er al,, 1993). At these scales
of force and distance, random Brownian motion is easily visible (Fig. 1). Thermal
fluctuations are characterized by an energy on the order of k3T (kpis Boltzmann’s
constant), a fact that can be used to estimate the size of Brownian motions. For
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the case of a harmonic potential or linear restoring force, the prediction is precise:
A particle trapped with a spring constant « will have its position x(f) vary
according to a Gaussian distribution, with a displacement variance (Reif, 1965):
kpT
e

Var(x) = x2 — x* = (10)
At biological temperatures, k5T is approximately 4 X 1072'N nm. In a trap with
a stiffness of 1 X 107? pN/am, according to Eq. (10), a particle moves randomly
with an root mean square amplitude of approximately 20 nm. Therefore, the
well-defined characteristics of Brownian motion can be exploited to calibrate
the viscoelastic parameters of microscopic measurement devices (e.g., the spring
constant of optical tweezers).

The power spectrum of the motion of a particle in an optical trap can also
be calculated, which turns out to have a Lorentzian shape (Wax, 1954). An"
approximate equation of motion for the position x(t) of the trapped particle is
a Langevin equation. With a random thermal force F(f) (see Reif, 1965 for a
general discussion of Langevin equations),

dx

Y

Equation (11) states a balance of forces, in which a drag force (friction times

velocity) and a spring force (spring constant times displacement) are balanced

by the random force F(t) from the solvent bombardment. This is an approxima-

tion, with subtleties hidden in the random force and the friction coefficient (Wax,

1954), but in practice it describes the Brownian motion of micrometer-size objects

in water very well. The random force F(r) has an average value of 0, and its
power spectrum Sx(f) is a constant (i.e., it is an ideal white noise force):

F(t) = 0 and Sp(f) = |F(f)* = 4yksT. (12)

Here F(f) denotes the Fourier transform of F(r). In writing Sr(f) = |[F(f)?, and
throughout the following derivation, we do not explicitly show the averaging
needed to obtain Sk(f) without encountering infinite integrals. From the
Langevin Eq. (11), the power spectrum of the displacement fluctuations S(f)
of a trapped object can be derived. If the Fourier transform of x(f) is X(f):

+ kx = F(1). (11)

x(t) = fw X(Pe~ s, (13)

then the transform of dx(¢)/dt is —2mifX(f). The Fourier transform of both sides
of the Langevin Eq. (11) gives accordingly,

2my (fe = if) X(f) = F(f), (14)

where we define f. = k/2my; f. is the characteristic frequency of the trap. Both
sides of Eq. (14) are complex expressions. By taking their squared modulus and
writing S, (f) = |X(f)P and Se(f) = |F(f)? it will be found that
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4y (f2 + f)SUf) = SKf). (15)
Inserting Eq. (12), the power spectrum of x(¢) is

ICBT
ya? (fz + f3)

Equation (16) shows that a Lorentzian function describes how fluctuations
are distributed over different frequencies f. The characteristic frequency (or cor-
ner frequency) f, divides the Brownian motion into two regimes. For frequen-
cies f << f, the power spectrum is approximately constant, S, (f) =~ Sy =
dykT!i, which reflects the confinement of the particle. At higher frequencies,
f>> f., S(f) falls off like 7/f%, which is characteristic of free diffusion. Over
short times the particle does not “feel” the confinement of the trap.

S:(f) = (16)

B. Trap Calibration from a Power Spectrum

Both the effective spring constant « of an optical trap and the drag coefficient
v of the particle within it can be determined from a recording of Brownian
motions and the calculation of their power spectrum. In practice, the time resolu-
tion of the detection device has to be better than the inverse of the corner
frequency f,. For typical trap strengths, this excludes video rate detection. For
a laser power of 50 mW (at a wavelength of 1064 nm) in the specimen, and a
0.5-um silica bead in room-temperature water, a typical spring stiffness is about
1.5 % 107 pN/nm, which results in a corner frequency of f, ~ 500 Hz. Fig. 4
shows an experimental power spectrum in a double logarithmic plot.

The Lorentzian Eq. (16) depends on two parameters, « and vy, which can be
obtained by fitting Eq. (16) to the data by using, for example, the Levenberg-
Marquardt algorithm (Press, 1992). Curve-fitting algorithms are implemented in
many data graphing software packages (e.g., Origin for PC, Kaleidagraph for
Mac, or XMGR for Unix). However, it is often convenient to roughly estimate
these parameters by hand from a log-log plot of the Lorentzian spectrum:

1. The low-frequency portion of the log-log spectrum should be horizontal,
but S(f) may become large at the lowest frequencies due to drift and low-
frequency vibrations. First, draw a horizontal line that ignores such effects
and call its height S,

2. The high-frequency portion of the spectrum should be a line of slope approx-

imately —2. Draw this line and extend it to intersect the horizontal S, line;
this intersection determines f,, the “corner frequency.”

Once §, and f, are measured, the trap stiffness can be calculated as

2kpT v
= -, 17
« WS(ch ( )
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Fig. 4 The Lorentzian power spectrum of the Brownian motion of a 0.5-m silica bead moving
within an optical trap at a laser power of 6 mW in the specimen, obtained from a time serics (partially
shown in Fig. 1) of voltage readings from an interferometric detector (bandwidth 50 kHz). About
30 spectra from independent intervals of the original time series were averaged. The corner frequency
is f, = 60 Hz and the plateau power S, = 0.028 V2/Hz. In this case, the theoretical drag coefficient
of the sphere (Eq. 20) was used lo determine the trap stiffness, k = 1.7 X 1073 pN/nm, and Lo
calibrate the response of the detector (32 nm/V).

and the drag coefficient vy of the particle is
kyT _
NS (18)

If v is known from first principles (see later), « can be calculated directly from
the corner frequency f.:

Kk = 2 myf.. (19)

By using Eq. (10), an attempt could be made to estimate k = kp7/Var(x) directly
from the variance of the data set without examining the power spectrum. But
this is risky because very low-frequency noise from drift, vibrations, or other
sources will often artificially inflate Var(x). The advantage of plotting the power
spectrum is that such effects are often easily recognizable; estimating S, and f.
generally gives a better value for k. When « has been determined from S, and
f., a better estimate for Var(x) can, if needed, be calculated from Eq. (10).
Similarly, instrumental noise at high frequencies may eventually cause the sloping
spectrum to level off again, but this usually bappens at an amplitude low enough
not to affect the fit parameters.

C. Hydrodynamic Drag

It is often desirable to calculate the viscous drag coefficient -y of a particle
from first principles, for example to compare with values estimated from a
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thermal-noise power spectrum, Using Eq. (8), the object’s free Brownian motion
can also be predicted when vy is known. The hydrodynamic drag coefficient also
needs to be known for calibrating trapping forces by sweeping the trap through
the fluid and observing the particle displacement within the trap (Svoboda and
Block, 1994a). ‘

To calculate vy theoretically, a hydrodynamic problem must be solved. This is
usually difficult, even when inertia is negligible at a low Reynolds number. The
most important practical case was solved long ago and has a simple result: It is
the Stokes drag on a small sphere far from any surface (Reif, 1965):

y = bana. (20)

Here 7 is the dynamic viscosity of the solvent and a is the radius of the sphere.

There are many exact and approximate formulas giving y for various particles
in unbounded solutions (Happe! and Brenner, 1983), and these apply to trapped
particles as well. A complication often arises in microscopy experiments when
the observed object is close to a sample chamber surface, For a particle close to
a surface—at a distance similar to or less than its diameter (a)—the unbounded-
solution drag coefficients are no longer correct and cannot be used to predict
Brownian motion. Drag near a surface is due largely to shear between the particle
and the wall, which is a different hydrodynamic situation from shear flow around
a free particle. This remains true when flow is induced above a surface (so that
velocity increases in proportion to the height above the surface); an unbounded-
solution y cannot be combined with a local velocity to obtain the drag force.

For a sphere in the vicinity of a surface, but still with a/h < 1, the correction
to first order in a/h to Eq. (20) is

y = 6nna(1 + 1—96-%) (1)

which applies to horizontal motion (parallel to the wall) with the sphere center
at a height 4. Moving vertically, toward or away from the wall, the factor in Eq.

(21) becomes (1 + (9/8)a/h). Equation (21) is known as the Lorentz formula
(Happel and Brenner, 1983).

IV. Noise Limitations on Micromechanical Experiments

Micromechanical experiments measure forces and displacements produced by
microscopic objects. Such measurements are typically done by monitoring small
deformations or displacements x,(t) of an elastically suspended probe as it inter-
acts with the object (Fig. 5). One example of such a probe is a particle in an
optical trap in which, typically, probe motion is followed as a function of time.
In atomic force microscopy (AFM) experiments, surfaces are imaged by scanning
a sharply pointed, elastically suspended tip laterally across the surface and then
converting the time series data of tip deflection into a spatial image. In an optical
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Fig. 5 Schematic representation of two prototypical micromechanical experiments. In an optical
trap, the probe (triangle) is a trapped diclectric particle; the anchor point (square) represents the
position of the center of the trap, which is controlled through feedback; and K, represents the trap
stiffness. In atomic force microscopy, the probe is the scanning tip; the anchor point is the base of
the cantilever (controlled via feedback); and K, represents the cantilever stiffness. The probe interacts
with the sample through a force that, in general, changes with distance and time. (A) Position-clamp
experiment to measure force. The absolute probe position is monitored with high precision, and the
anchor point is moved to keep the probe stationary, From the changing distance between the probe
and the anchor point (the probe strain), the changing force on the stationary probe can be deduced.
(B) Force-clamp experiment to measure position. The probe position is again monitored, and the
anchor point is moved to keep the probe strain, and thus the force on the probe, constant. The
anchor motion then reflects how the sample moves under a fixed, constant force. The probe response
is low-pass filtered by the dynamic response characteristics of the probe as described in Section 1V,
C of this chapter. If the probe is scanned along a surface (AFM), a constant-force contour, within
the limitations of the probe dynamic response, is traced by the anchor motion,

trap, the displacement Ax of the particle away from the trap center x,(f) is
measured (i.e., Ax(t) = x,(f) — xy where x,(¢} is the instantaneous position of
the probe). In AFM, a tip displacement Ax represents the distortion of the
elastic cantilever that supports the tip. In either case, we can call the relative
displacement Ax(t) the probe strain. 1f the stiffness K, of the elastic element
(the probe stiffness) has been calibrated, the suspension force on the probe is
inferred as

F(t) = K,Ax(¢). (22)
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In scanned-tip AFM experiments and in some optical tweezers applications,
teedback is used in conjunction with position detection; the anchor point of the
“spring” holding the probe (e.g., the base of the cantilever or the center of the
trap) can be moved quickly and precisely. There are then two prototypical
experiments that can be performed—although actual experiments, or experi-
ments done without feedback, may be intermediate between these two cases. In
one case, force is measured (i.e., probe strain Ax(¢) is monitored) while feedback
keeps the probe at an absolutely fixed position x,(f) = constant. This is a position
clamp or isometric experiment. The other prototypical experiment measures
probe motion at an absolutely constant force: Feedback keeps the probe strain
Ax constant as the probe itsell is moved by its interaction with the object. This
is a force clamp or isotonic experiment, Force clamps and position clamps may
seem to be unattainable idealizations, but, in fact, present technology, using
piezoelectric actuators (in AFM) or acousto-optic or electro-optic modulators
(with optical tweezers), can approximate ideal conditions quite well up to high
frequencies. In both the position clamp and the force clamp, the anchor point
of the probe assembly is moved by the feedback circuitry, but according to
different criteria, keeping x,(f) constant in the first case and Ax(f) constant in
the second case. Different types of detectors are nccessary for these two types
of experiments. We next discuss how in these two cases the sensitivity of micro-
mechanical measurements is limited by thermal noise.

A. Position-Clamp Experiments

First we consider pure force measurements by means of position clamping, in
which one wants to measure a time-varying force signal F,(r) on the probe. This
would not normally be done with an AFM, but in an optical trap, for example,
the force production of a molecular motor tied to a stationary load can be
measured. When the varying force generated by the object begins to displace
the probe, the equilibrium position x,(f) is quickly changed by moving the trap,
changing the probe strain Ax(f) = x, — xy(t) to balance the varying force and
keep the probe at a fixed position, x,. The total time-dependent force exerted
on the probe is found from the observed Ax():

Ftal(t) = K/)Ax(t)' (23)

Assuming that feedback control of the probe position is perfect, the fundamental
limitation in measuring the force the object exerts on the probe comes from the
presence of a white-noise thermal force that acts on the probe in competition
with the force to be measured. From Eq. (12}, the power spectrum of this thermatl
force is

SH(f) = dykyT, (24)

where 7y is the frictional drag coefficient on the probe. In optical trapping, all
friction comes from hydrodynamic drag on the trapped particle; in AFM, y




8. Signals and Noise in Micromechanical Measurements 143

includes all friction opposing the motion of the tip (i.e., drag on the tip and on
the cantilever).

The practical implication of Eq. (24) is that the relative noise level can be
decreased by low-pass filtering of the strain signal Ax(z) with a cutoff frequency
greater than the fastest rate of change in the signal. Because the force noise is
distributed evenly over all frequencies, such filtering can increase the signal-to-
noise ratio substantially. This argument assumes that the detection is fast enough
to follow the force signal in the first place. How accurately can Fy,(f) be deter-
mined at any particular time? As a concrete example, assuming fast enough
detection, consider a force signal Fy,(f) produced by a molecular motor: the
slower the true signal varies, the better it can be resolved; the lower the permissi-
ble cutoff frequency of the low-pass filter, the more noise is removed. The
remaining uncertainty AF(t) = F,(f) — Fy,(r) with a properly chosen filter
frequency f; corresponds, on average, to the integrated noise power below f;,
which is equal to the constant noise spectral density in Eq. (24) multiplied by
the frequency range, 0 to f,, passed by the filter,

AF,-,,,_,- =V m =V 47kliTﬁ (25)

Equation (25) states the fundamental resolution limit of a pure force measure-
ment. It shows that the measurement can be optimized by either reducing the
drag vy on the probe or keeping the rate of change of the true force signal f, as
low as possible (e.g., by scanning slowly with an AFM). Note that the stiffness
of the elastic probe suspension is not relevant in principle. However, in practice,
the noise in the strain detector electronics limits how small a strain in the probe
can still be detected. Therefore, a softer probe allows measurement of both a
smaller force change and a smaller absolute force. As a rule of thumb, the
sensitivity of a detector is large enough or its noise contributions are low enough
when the thermal motion of the probe can be detected. Increasing the sensitivity
beyond this point brings no advantage.

Making sure that the force signal varies slowly, that is, reducing f; in Eq. (25),
may not always be possible. Nevertheless it is always advantageous to low-pass
filter the signal to the lowest possible frequency. For static forces, f, = 0 can, in
principle, be measured to arbitrary precision with correspondingly long measure-
ment times. In practice, however, measurements of static or very slowly varying
forces are limited by drift in the apparatus, not by Brownian noise. In some
cases the detection system is intrinsically slower than the variation of the signal.
This typically happens when video recording and image processing is used for
displacement detection. In that case it must be remembered that the detected
position is a time average and may not reflect the true excursions of the probe.

B. Force-Clamp Experiments

Now we consider pure probe position measurements at constant force. The
probe strain Ax is kept constant, corresponding to a constant suspension force
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Fy. = K, Ax on the probe that is balanced by the force of interaction with the
sample. With an AFM it is possible, for example, to trace a surface or the shape
of a biological macromolecule as defined by its constant-force contours. In an
optical trap, the motion of a molecular motor under a constant load force can
be followed.

We neglect, for the moment, viscous drag effects, which are treated in part
C. In other words, we assume that the sample and the probe move very slowly.
If thermal noise were absent, a force-clamp apparatus would allow a force value
to be dialed in, and the probe would always exert exactly that force on the
sample. The probe position x,(t) would exactly trace a constant-force contour
of the object (in AFM) or follow exactly the motion of the motor protein under
constant load (with optical tweezers). In reality, with thermal noise the force
exerted by the elastic suspension of the probe (i.c., the optical trap or the
cantilever) is balanced by the sum of sample interaction force and the fluctuating
thermal force on the probe. The probe position x,(f) is then only an estimate
for the true constant-load position corresponding to the dialed-in force.

There are two experimental goals that need to be distinguished at this point.
Figure 6 illustrates the situation with a hypothetical interaction force profile
between probe and sample. For example, this could be a plot of how the repulsive
force increases when the tip of an AFM gets closer to a surface, or a plot of
how the attractive force in the elastic linkage between a probe bead and a
molecular motor increases with increasing distance. Thermal noise imposes dis-

B F |

e —
Axrm5= o

Fig. 6 Force-clamp experiments al high force and at low force (edge detection). The solid curve
is an instantaneous force profile /(x,) as a function of probe position x,. An uncertainty AF,,, in
force measurement results from thermal forces on the probe. (A) The goal is to monitor changes
in F(x,) with time, or equivalently to measure a spatial constant-force contour with a scanned probe
(AFM). The apparatus is operating in a constant-force mode at values F,,, well above the force
uncertainty Fy,, >> AF,,, The force uncertainty translates, via the slope K of F(x,), into an
uncertainty in locating the position x(#,) on the force profile corresponding to the set force. The
force resolution AF,,, of the apparatus is given by Eq. (27). (B) Locating the “edge™ of a profile
in the least invasive manner (i.e., using the smallest possible foree). In any real system the interaction
force will smoothly approach zero at some distance. The smallest possible set force is Fiy = AF,,.
1If Fi. approaches AF,,, the position uncertainty diverges to infinity.
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tinct limitations in two experimental situations: (a) It limits the accuracy with
which a high-force spatial response can be determined, and (b) it sets a minimum
force at which a spatial response can be obtained at all. We consider each of
these cases in turn.

1. Displacement Measurements with Force Clamp at Large Forces

To be specific, one might want to challenge a molecular motor with a load
close to its stalling force or to image the underlying substrate of an AFM sample.
The displacement response to a strong force may, of course, include some defor-
mation of the object under study. Note that the quantity being recorded is always
the probe position x,(¢) for the set interaction force F,. Which property of
the sample this reflects varies from case to case. It could, for example, report
conformational changes in a motor protein in the case of our optical tweezers
example, or local differences in the surface chemistry for the AFM example. In
any case, what we mean by “large” force is that Fj, is large compared to the
root-mean-square thermal force on the probe F,,, >> AF,,, (see Eq. 25). The
position uncertainty in the experiment is caused by the force uncertainty AF,,,
(Fig. 6A). If the local stiffness of the probe sample interaction is K (i.e., the
local slope of F vs. x in Fig, 6), then

VdykyT§

A'YI‘II 15 = K
s

(26)

This is the fundamental limit of a pure position measurement at a relatively
large constant force. Again, the stiffness of the trap or cantilever does not enter
directly, but, instead, the characteristics of the force between probe and object
are determining the error. For example, in measuring the displacement x,(f)
caused by the action of a molecular motor, Eq. (26) shows that the uncertainty
AX,.s can be very small if the stiffness K of the bead motor linkage is high. The
thermal noise can be further reduced by decreasing the drag coefficient of the
probe. It is also still true that static displacements against a finite load can be
measured better the longer one takes to measure them (reducing f;). In practice,
though, mechanical drift is encountered again at long times.

2. Edge Detection

In some situations it is necessary to detect the edge of a force profile without
disturbing the object. This is crucial, for example, in imaging soft biomolecules
by AFM, when it is desirable to follow the lowest possible force contour. This
situation is illustrated in Fig. 6B, in which the object force F,(f) is shown as a
curve. In any real system the interaction force between probe and sample will
smoothly approach zero at some distance as shown in the figure. Again neglecting
viscous drag, the suspension force on the probe F,, is always balanced by both
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the sample-probe interaction force and the random thgrmal force AF(.z) given
by Eq. (25): Fy + AF(0) + Fop(1) = 0. The therm_al noise now determines the
lowest force contour that can be tfollowed. Consider, fOr.example, how the
feedback system operates for an AFM probe (?lose toa repglswg surface. Assume
that a thermal AF(¢) pushes against the probe in the same direction as the surface,
The feedback will move the probe farther away from the surface, decreasing
F,(t) to compensate. Now, if F,, is s0 lqw thz_lt Fy + AF(t) can become negative,
the feedback will try to move the probe infinitely far away from the surface (i.e.,
it cannot compensate). In practice, this means that lo locate the “(?dge” of a
force profile, at least a force Fy,, = AF =V 4'yk,.;Tfs must be ?pphed.

For noise reduction, as in a position-clamp experiment, the primary goals are
to reduce the drag on the probe and the filter frequgncy e Surprisingly, probe
stiffness again is not a direct consideration in avmdmg.sanr.lple deformation, In
practice, however, detector resolution in the feedback circuit may become limit-
ing, in which case a lower [orce clamp is possible with a less stiff probe such as
a softer cantilever.

C. Dynamic Response of the Probe Interacting with a Sample

There is an important dynamic limitation for force-clamp experiments that we
neglected so far and which is closely related to the preceding noise discussion.
Even if feedback is perfect and the suspension force is held constant, the probe
cannot respond instantaneously to the motion of the sample because of the
viscous drag y on the probe. For example, if an AFM scan is made at too high
a scan rate, the probe will not follow a compliant surface, but will simply plow
through a nearly constant height, yielding little information. Alternatively, if a
motor protein performs a fast conformational change, the bead that holds the
motor cannot instantaneously follow the change. Consequently, a force clamp
cannot, in principle, follow motion perfectly if the probe has any drag at all. The
probe motion is a low-pass filtered version of the object motion, and the force
on the object deviates from the set value.

Assume that by using a probe with no drag (y = 0), an “ideal” constant-force
probe motion could be measured; call this x,o(£). In an actual measurement with
probe motion x,(f), however, the drag force on the probe is —ydx,(r)/dt, which
causes the actual motion to be different from x,(¢). If the local stiffness of the
probe-object interaction is K, drag force is balanced by an additional sample
deformation force, which is Ky (x,(f) = x,,(¢)). This balance can be written as

Y00 + Kar) = Kt @)

In a procedure similar to that following Eq. (11), it is found from Eq. (27) that

the power spectrum S,(f) of x,(f) is related to the power spectrum S, f) of the
ideal signal x,(r) by
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I
So(f) = =L S (f).
) = g S () (28)
The signal is cut off above a characteristic probe-sample frequency f,, = K,/2my.
This means that signal frequencies higher than f,, will be suppressed by the
probe response and will be unmeasurable in practice.

For example, in experiments measuring motor protein forces, the stiffness K,
of the motor-bead linkage may be variable, between 0.01 and 0.1 pN/nm (Coppin
et al., 1996; Kuo et al., 1995; Meyhofer and Howard, 1995; Svoboda and Block,
1994b; Svoboda et al., 1993), which for 0.5-um beads implies a cutoff frequency
on the order of 1 kHz. In contrast, AFM probes against protein surfaces, which
typically have elastic moduli of several GPa (Gittes et al., 1993), show effective
spring constants K, on the order of 10*pN/nm, which for a low-drag probe could
lead to very high cutoff frequencies.

V. Sources of Instrumental Noise

Optical trapping experiments are most often combined with some form of
light microscopy, so that the laser and the special optics required are added to
a commercial microscope or integrated into a custom-built microscope (Kuo and
Sheetz, 1993; Molloy et al., 1995, Simmons et al., 1996; Smith et al., 1996; Svoboda
and Block, 1994a; Svoboda et al., 1993). Nanometer-scale position detection,
usually of a trapped latex or silica bead, is commonly the primary measurement.
From the displacement, appropriate calibration of the trapping force provides a
measure for the force exerted on the bead. Several sources of instrumental noise,
depending on the specific detection method, will affect the primary displacement
measurement and limit both its spatial and temporal resolution.

It is often easiest to use an existing standard video system to determine
bead position from its video image via fluorescence or a contrast-enhancing
transmitted-light imaging method such as phase contrast or differential interfer-
ence contrast microscopy (DIC). In this case, temporal resolution is limited to
the video half-frame rate of 60 or 50 Hz, depending on the video system used.
This usually is not sufficient to resolve dynamic processes on the level of single
molecules. Spatial resolution is limited, in a complicated way, by the optics, the
camera, the video storage device, the image processing method, and so forth
(Gelles et al., 1988; Inoue, 1986; Schnapp et al., 1988). In practice it is very hard
to achieve a position resolution as low as 10-20 nm for an object such as a
0.5-um silica bead. For these reasons, most quantitative experiments are per-
formed using nonimaging detection systems based on photodiodes. We discuss
these systems in more detail.

A. Noise from Electronics

The amplifier design to be used with photodiodes depends on the conditions
of the experiment. Good introductions can be found in the literature (Horowitz
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and Hill, 1989; Sigworth, 1995) and in photodiode manufacturer’s catalogs [e.g.,
UDT Sensors, Inc. (Hawthorne, Ca), Advanced Photonics, Inc. (Camarillo, Ca),
Hamamatsu (Hamamatsu City, Japan)]. If speed and linearity are important,
and if the light levels are not extremely low, photoconductive operation with a
reverse bias is best (Figure 7A). A low-noise operational amplifier acts as a
current-to-voltage converter, so that the photodiode is operated as a pure current
source. We now discuss sources of noise for this case. The responsivity of silicon
photodiodes varies between 0.2 and 1.0 A/W for light with wavelengths between
350 and 1100 nm, with a maximum at about 1000 nm. Light levels as low as pW
can be detected, at the cost of poor time resolution (i.e., low bandwidth; see
later). In practice, intensities more than approximately 100 uW in typical optical-
tweezers experiments result in a signal-to-noise ratio of better than 1 X 10° at
a bandwidth of 100 kHz. At the high end, the maximum intensity that can be
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Fig. 7 (A) A typical circuit diagram for operating a photodiode in photoconductive mode with a
reverse bias (current-to-voltage converter). (B) Equivalent circuit for the purpose of noise discussion.
Noise sources that in reality are internal to the operational amplifier are represented by an equivalent
voltage source ¢, and a current source i, acling at the inputs to the op-amp. The photodiode is
replaced by an equivalent circuit including the junction capacitance, the shunt resistance, and an
ideal current source.
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1. Shot Noise

measured depends on both the area of the detector and the width of the light
beam. Deviations from linearity, to maximum intensities of approximately
1 mW/cm?, are typically below 5%, but by 10 mW/cm? the response is strongly
nonlinear. Linearity is improved at high light levels by using a large reverse bias
in photoconductive operation.

Most of the noise sources discussed here are, at least approximately, white
noise (i.e., the noise power spectrum of each is approximately constant for all
frequencies). If the bandwidth (i.e., the Nyquist frequency) is given, each of
these noise contributions can be calculated as a mean-squared noise current and
added together—assuming they are statistically independent-—to give the total
mean-squared noise current. The square root of this quantity can then be com-
pared to the photocurrent to obtain a relative noise contribution. Figure 7B
shows an equivalent model circuit highlighting the noise sources discussed in
the following.

Photons are absorbed in the diode, creating electron-hole pairs and, eventually,
a flow of current in the external circuit. Measuring this current amounts to
counting elementary charges, which like other random counting processes (Pois-
son processes) results in a statistical variance equal to the number of counts,
An? = 7. This gives rise to a counting noise, known as shot noise, as follows
(Horowitz and Hill, 1989). Suppose there is an average photocurrent /,, which
we want to measure with a certain time resolution Af (i.e., we count the number
of electrons arriving within each sampling window Ar). As discussed earlier, a
sampling time A¢ corresponds to a bandwidth (Nyquist frequency) of B =
1/(2 Ar). The number of electrons counted in each bin, and therefore the variance
in the number of counts, is Ang = n, = Atl/q., where g, is the elementary
electronic charge of 1.6 X 107" C, and I, is the photocurrent. Therefore the
variance in the current (Fig. 8) is

s
ALy = %—Qﬁ = 2q.1,B. (29)
This result shows that shot noise is a white noise: It has a constant spectral
density of 2¢.l,. The minimal current I, entering this equation at the lowest
light levels is the dark current of the photodiode, which for low-noise diodes is
approximately 50 nA (for a 100-mm? diode at 10 V bias voltage). Shot noise is
usually the dominating noise source if the electronics are designed carefully,
using low-noise components. As an example, assume a photocurrent of [, =
5 mA, corresponding to a light intensity of 12.5 mW at a responsivity of 0.4 mA/
mW. With a bandwidth of B = 100 kHz, the root-mean-square shot-noise current
from Eq. (29) is I, = 12.6 nA, a relative contribution of 2.5 ppm in the
5 mA photocurrent.
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Fig. 8 The origin of shot noise. (A) A current I(t) due to the independent passage of clementary
charge carriers through a point in the circuit (such as through the photodiode p-n junction) consists
of a series of very narrow spikes. (B) Measuring current with a small window size Ar, and thus a
large Nyquist frequency fiuyq = 1/(2At), means that a small number of spikes are counted in each
sampling time. The measured current thus has a large variance, which is the shot noise superposed
on the DC current value. (C) Measuring current with a larger window size, and thus a smaller
Nyquist frequency, means that proportionally more charges are counted in each sampling time, The
random noise superposed on the DC current value is smaller. As shown in this chapter, the variance
of this random noise is proportional to the Nyquist frequency.

2. Johnson Noise

Any resistor produces noise, called Johnson noise, through the thermal motion
of its electrons. This noise appears as a fluctuating voltage across the terminals
of the resistor, or as a fluctuating current if the terminals are connected by other
circuitry (Horowitz and Hill, 1989). This random voltage is exactly analogous to
the random force in Brownian motion, and the voltage power spectrum S, i
given by Eq. (16) except that the drag coefficient is replaced by the resistance
R: S, = 4kpTR. Because S, is a constant, Johnson noise is white noise. In our
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circuit (Fig. 7B), the shunt resistance Ry, and the feedback resistor Rpy each
contribute a mean-squared current that is their mean-squared Johnson voltage
divided by the respective R Multiplying by bandwidth B, gives the mean-squared
Johnson current;

5 _ 4kpTB
ATZ = —-—’;—E——-. (30)

Assuming Ry, = 5 MQ and Rp,, = 1 kQ, and a bandwidth of 100 kHz will
give root-mean-square noise currents of Al(Ryy,) = 18pA, and AL(Rpx) =
1.3 nA respectively, both smaller than the shot noise. Also, depending on material
and construction, resistors produce some excess noise in addition to their Johnson
noise. It is important to choose low-noise resistors, typically metal-film resistors,
for al least the input stages of the amplifier.

3. Amplifier Noise

Operational amplifiers produce their own noise because of the shot noise and
resistor noise that originate from their internal elements. It is common (e.g., in
data sheets for op-amps) to express these noises as input equivalent voltage and
current, that is, voltage and current at the input of an ideal op-amp that would
produce the same noise at the output (Horowitz and Hill, 1989), as shown in
Figure 7B. Data sheets for op-amps usually state an ‘“‘equivalent root-mean-
square input noise voltage™ e, and an “‘equivalent root-mean-square input noise
current” i, which actually are the square roots of the power spectral densities
of noise voltage and current and must be multiplied by the bandwidth B to
obtain the actual root-mean-square guantities. Because in our application we
want to compare all noise contributions to the photocurrent, we need to convert
the amplifier noise voltage into a current using the feedback resistor Rpyx and
the photodiode capacitance Cp and add it to the input current noise i to find
the total amplifier noise:

AT, = [E%{; + (an)zC%] 2B + i2B. 31)

Taking data from a typical appropriate operational amplifier, AD743 (Analog

Devices, Norwood, MA), ¢, =~ 3 nV/Hz'?, i, = 6.9 fA/Hz'?, ignoring the slight

frequency dependence of the noise voltage, assuming Rpy = 1 k{}, C, =
300 pF, and again assuming a bandwidth of 100 kHz, we calculate Al,,, =

1.0 nA. This an upper limit because we just used the smallest reactance of the

diode (at 100 kHz) for the whole frequency range. Compared to the shot noise

(12.6 nA, in our example) op-amp noise currents are negligible, although this

may not be the case if low-quality components are used, or if the band width

must be higher. The next stages in amplification usually contribute less noise

than the input stage.
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The relative error can, of course, change dramatically when the difference
between two photodiode signals is computed. This is usually the case in position
detection using, for example, a quadrant diode. It is then more meaningful to
express the noise level asa minimal measurable displacement. In the displacement
detection system in our laboratory, we end up with electronic noise corresponding
1o about 0.5A in displacement of a 0.5-um silica bead at 100 kHz bandwidth,

As a final stage of the electronic detection, if the measurements eventually
are read into a computer, digitization errors need to be considered. The resolution
of an analog-to-digital converter (ADC) is given in bits: A 16-bit ADC translates
the maximal analog voltage for which it is designed (typically 10 V) into the
integer number 216 = 65,536, Besides simple rounding error, imperfections in
the circuitry usually cause the least significant bit to fluctuate between 1 and Q.
If this error is independent for each sampled voltage point, the result will be
white noise with root-mean-square variation of 1/65,536 =~ 15 ppm, but spread
out to the Nyquist frequency. Bandwidth reduction in general will decrease this
error. However, ADC noise is complicated and sometimes is not even limited
to the last bit, depending on the type of converter and the computer environment,
In case of doubt it is best to measure the converter noise directly. ADCs with
relatively few bits or an input signal not using the full dynamic range of the
ADC obviously present problems.

B. Other Noise Considerations

With enough light intensity, as described earlier, photodiode detection can be
used to monitor the motion of wm-size beads, with A resolution, at bandwidths
up to 100 kHz. A laser is commonly used to achieve sufficient intensity focused
on a bead. In using optical tweezers, this laser can be the trapping laser itself
or a separate laser. The advantage of using the trapping laser is that the detection
system is intrinsically aligned with the trap and a relative displacement is mea-
sured. If absolute position needs to be measured while the trap is moved, a
separate laser is needed. By using a laser focused on the trapped object, a number
of new noise problems are created, Lasers show fluctuations in laser power,
beam pointing, and frequency. Intensity fluctuations are usually a few percent
of the maximal power and are not critical as long as the laser is operated at a
relatively high power and intensity regulation for trapping or detection is per-
formed farther down the line (e.g., with polarization optics). Most lasers are also
extremely sensitive to backreflections, which can cause large-amplitude intensity
oscillations. The most efficient but costly way to avoid these is to use a Faraday-
effect type of optical isolator (Optics for Research, Caldwell NJ; Conoptics Inc.,
Danbury CT; Electro-Optics Technology, Inc., Traverse City MI). Alternative
low-cost approaches are (a) placing the first reflecting surface at a distance from
the laser that is larger than the coherence length of the laser; (b) Using a neutral
density filter (tilted to the beam) to attenuate the transmitted and the back-
reflected beam, which is only practical if there is laser power to spare; and (c) using
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the combination of a linear polarizer and quarter-wave plate, which produces
circularly polarized light if the polarizer is oriented at 45° to the fast axis of the
quarter-wave plate. Light back-reflected off a mirror has the sense of its circular
polarization inverted and is blocked by the polarizer after being converted back
to linearly polarized light by the quarter-wave plate. In practice this method is
limited in its effectiveness because back-reflections can have phase changes other
than what a plane mirror produces at normal incidence.

Beam-pointing fluctuations are a more serious problem. They are caused
mainly by changing thermal gradients inside the laser. Different types of lasers
show different amounts of these fluctuations. Large-frame noble gas lasers usually
show fewer fluctuations than solid state lasers (Siders et al., 1994). For diode
lasers, data were not available from manufacturers. Among the solid state lasers,
which are most often used for optical trapping, the crystalline substrates vary in
thermal conductivity. Thermal lensing, caused by thermal gradients in the laser
rod, is in some designs used intentionally for gain increase. Neodymium : yttrium
lithium fluoride (Nd:YLF) has a large thermal conductivity and therefore
less beam-pointing instabilities than neodymium:yttrium aluminum garnet
(Nd:YAG). It is best to request detailed information from design engineers at
the manufacturer. Beam-pointing instabilities for solid state lasers are typically
up to 50 urad, and the beam usually does not pivot around a fixed point. For
trapping, the beam usually is expanded by a factor of about 5, which decreases
angular fluctuations by the same factor. Assuming a typical focal length of 1.5 mm
in a high-magnification microscope objective, a laser with pointing fluctuations of
10 prad in the back focal plane of the objective will cause lateral fluctuations of
the trap by about 15 nm. Using this laser for position detection would thus
severely limit the resolution. The pointing fluctuations are typically quite slow,
on the order of 1 Hz and slower, so that fast displacements still can be detected
with better resolution. Single-mode polarization-preserving optical fibers have
been used to stabilize the beam (Denk and Webb, 1990; Svoboda et al, 1993).
The reduction in beam-pointing fluctuations can be on the order of 10-fold, but
fibers introduce their own noise problems, acting as microphones for vibrations
and changing their output mode pattern with small temperature fluctuations, We
find in our laboratory that even with maximal precautions, the output of such a
single-mode fiber still has beam-pointing fluctuations on the order of 10 urad.
Depending on the specific experimental situation, this can be unacceptable.
Fibers are also costly, produce coupling losses, and need careful alignment.
Therefore, fibers do not always solve the problem. Active feedback-controlled
beam-pointing stabilization is possible and may well be the best way to increase
resolution for slow processes (Grafstrom et al., 1988; Siders et al., 1994),

Care also must be taken to prevent additional beam-pointing noise by beam-
steering devices that are used to move the laser trap into the field of view of
the microscope. Galvanometer mirrors, for example, exhibit thermal jitter in the
range of 10 to 100 urad. If acousto-optic modulators (AOM) are used to control
beam pointing, frequency stability of the controller is crucial. Piezoelectrically
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actuated mirrors show creep and hysteresis effects that need to be controlled by
feedback circuitry.

Finally there are always vibrations and drifts in the microscope, in the laser,
and in the detection setup. Building vibrations can be cut off by using an optical
bench on vibration-isolated supports. These devices eliminate vibrations faster
than a few Hz, but still let slow vibrations pass. Acoustic vibrations are also
coupled through the air, making it necessary to eliminate strong noise sources.

VI. Conclusions

We have provided a basic tutorial on noise issues in micromechanical experi-
ments that should be helpful for the nonspecialist in designing experiments.
Single-molecule experiments are difficult, and it may save a lot of time to be
aware of fundamental facts as well as tricks of the trade that can often be
unexpected and counterintuitive. Power spectral analysis is a powerful method
much used in physics, but often not appreciated in biological applications. There
are some universal recipes to reduce noise in micromechanical experiments, such
as low-pass filtering and reducing viscous drag on the probe, but probe stiffness
does not play a direct role. For fast motions, viscous drag forces on the probe
need to be taken into account, with the consequence that a true constant force
experiment is not possible in principle. Finally, we have presented a selection of
instrumental design criteria that should be of particular relevance to quantitative
optical trapping experiments.
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