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ABSTRACT A lattice model of protein folding is developed
to distinguish between amino acid sequences that do and do not
fold into unique conformations. Although Monte Carlo simu-
lations provide insights into the long-time processes involved in
protein folding, these simulations cannot systematically chart
the conformational energy surface that enables folding. By
assuming that protein folding occurs after chain collapse, a
kinetic map of important pathways on this surface is con-
structed through the use of an analytical theory of probability
flow. Convergent kinetic pathways, or "folding funnels,"
guide folding to a unique, stable, native conformation. Solution
of the probability flow equations is facilitated by limiting
treatment to diffusion between geometrically similar collapsed
conformers. Similarity is measured in terms of a reconfigura-
tional distance. Two specific amino acid sequences are deemed
foldable and nonfoldable because one gives rise to a single,
large folding funnel leading to a native conformation and the
other has multiple pathways leading to several stable conform-
ers. Monte Carlo simulations demonstrate that folding funnel
calculations accurately predict the fact of and the pathways
involved in folding-specific sequences. The existence of folding
funnels for specific sequences suggests that geometrically re-
lated families of stable, collapsed conformers fulfill kinetic and
thermodynamic requirements of protein folding.

A first functionally important action of any protein is to fold.
Though the general process of protein folding is not fully
understood, it has been known since the ribonuclease refold-
ing experiments of Anfinsen that small globular proteins fold
in the absence of any catalytic biomolecules (1). From this
fact, it was surmised that folded proteins exist in the global
minimum free energy state (1). Soon thereafter, Levinthal (2,
3) used a simple counting argument to demonstrate that
Anfinsen's thermodynamic hypothesis implied a paradoxical
result: a typical protein has far too many conformations to
permit a thorough search for the global minimum.

Since the statement of Levinthal's celebrated paradox,
several groups have attempted to preserve the concept of the
global minimum by arguing that compactness (4) or native
state propensities (5) reduce the effective size of conforma-
tion space. Neither requirement resolves the paradox be-
cause compactness alone lessens but does not eliminate the
conformation counting problem and native state propensities
cannot be justified from amino acid sequence analysis. Ac-
cordingly, a plausible resolution to the Levinthal paradox
might be obtained using a kinetic rather than a thermody-
namic approach to the folding problem. Folded proteins are
not (necessarily) equilibrium entities; rather, they are meta-
stable with lifetimes longer than (or perhaps about equal to)
their functionally significant lifetimes. To overcome the
Levinthal problem, proteins must have a broad conforma-
tional focusing property to direct folding to a unique, locally
stable, kinetically accessible "native" conformation.
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FIG. 1. Schematic representation of the folding process. The
denatured coil (A) collapses to a random dense structure (B),
approximated by a set of maximally compact conformers (C). A
reconfigurational distance is defined between compact states (D) and
is used to sort pairs ofcubes for calculation of the mean first passage
time for interconversion (E). The kinetic structure of conformation
space (F) shows a folding funnel leading to a unique, locally stable,
kinetically accessible state.

Here, we introduce the concept of "protein folding fun-
nels," a kinetic mechanism for understanding the self-
organizing principle of the sequence-structure relationship.
This concept follows from a few general considerations (Fig.
1). (i) Proteins fold from a random state by collapsing and
reconfiguring (4), (ii) reconfiguration occurs diffusively and
follows a general drift from higher energy to lower energy
conformations, and (iii) reconfiguration occurs between con-
formations that are geometrically similar-i.e., global inter-
conversions are energetically prohibitive after collapse-so
local interconversions alone are considered. We define the
folding funnel as a collection of geometrically similar col-
lapsed structures, one of which is thermodynamically stable
with respect to the rest, though not necessarily with respect
to the whole conformation space. Since it is tightly coupled
to the ability of a protein to fold, the existence of a folding
funnel for a given protein depends on its primary structure.
An amino acid sequence having a single sizeable folding
funnel leading to a unique, stable conformation is said to be
"foldable." Conversely, "nonfoldable" amino acid se-
quences have multiple folding funnels and do not exhibit a
single minimum.
Three major simplifications are required to describe the

long-time kinetic behavior of a protein. (i) A lattice model is
used to restrict discussion to the most important degrees of
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conformational freedom. Each residue is located on a vertex
of the lattice. (ii) Consistent with the low-resolution struc-
tural description of the lattice model, the chemical identity of
the protein is depicted in a simplified N-letter hydropathic
code, where some number N of amino acid types is chosen
to enable an arbitrary degree of heterogeneity for residue-
residue interactions. Each residue may represent clusters of
real amino acids. (iii) The dynamics of the folding process can
be treated as a collection of discrete "hopping" processes
between local minima. Since conformational dynamics is
governed by the same residue-residue interactions that drive
the initial conformational collapse, it is possible to divide
motion into two types: relatively fast, sterically constrained
chain motions that do not involve the breaking of many
chain-chain contacts and slow motions across energy barri-
ers associated with larger structural fluctuations and the
breaking of many chain-chain contacts.
The time scale separation proposed for the interconversion

process can be used to divide collapsed conformations into
"compactness cells." Within a compactness cell, conforma-
tions interconvert quickly; between compactness cells, con-
formations interconvert slowly. The rates for slow intercon-
version are found by calculating the average time the protein
spends in any cell before a thermal fluctuation moves the
chain over a conformational barrier into another cell. The
division of conformation space into compactness cells is valid
for any model for protein structure, whether on- or off-lattice.
A difficulty arises when attempting to define compactness
cells for specific sequences. To show how such difficulties
can be managed through an approximation technique, we
now focus on a simple lattice model.

STATEMENT OF MODEL
Lattice Model and Energy Function. A protein is repre-

sented as a 27-unit chain on a simple cubic lattice. The protein
is assigned a chemical identity in the form of a primary
sequence S = {s,, . .. , S27}, where each site i on the chain
is assigned a residue from a list of N residue types, si E {al,
. . . , aN}. The residue types do not correspond directly to the
naturally occurring amino acids but are chosen to provide a
wide range of chemical differentiation. It is not clear how
much heterogeneity is necessary for the careful organization
implicit in the process of folding, but in the present case N =
20, allowing a wide range of residue contact energies.

Folding is driven by nonbonded contact energies, interac-
tions between residues that inhabit adjacent lattice sites but
are not covalently bonded to each other. The energy E of a
given conformation is calculated by summing the values of
the energies over all nonbonded contacts in the lattice:

27

E = EE(si, sj)A(4 - j), [1]

where ri and rj denote the locations of residues i and j and
A(li - lj) = 0 unless residues i andj are on adjacent vertices
of the lattice. Contact energies e(ai, a>) between residue types
ai and aj are chosen to have an average of -2kBT with an
effective deviation of about kBT. Native nonbonded con-
tacts-those contacts observed in the unique, stable, acces-
sible native state-are among the most stable of all non-
bonded contacts with an average energy of -3kBT.
Compactness Cells. Folding begins with a structural col-

lapse from a random coil state to a dense state. Here "dense"
denotes a conformation with few interior vacant lattice sites.
Although the number of dense states is far smaller than the
number of random coil states, dense conformations are still
too numerous to determine computationally. However, the
subset of dense conformations with no internal vacancies-
the so-called "maximally compact conformations"-is
countable. For the 27-mer (Fig. 2), there are 103,346 geo-

C-terminus

FIG. 2. Conformation of the native state of sequence S1 repre-
sented in a four-letter hydropathic code (for calculations a 20-letter
code was used). Two "subdomains" are present as eight-residue 2 x
2 x 2 subcubes in the upper left octant and in the lower right octant.
Subdomains enhance kinetic accessibility by providing a large num-
ber of dense conformations that are geometrically similar to the
native state.

metrically distinct, maximally compact conformations, each
shaped like a 3 x 3 x 3 cube (6, 7).
The maximally compact cubes perform a 2-fold function in

describing interconversion. (i) They act as markers among
the dense conformations. Each dense conformation is as-
sumed to be a structural fluctuation around some specific
cubic conformation. (ii) Maximally compact conformations
are strong candidates for local energy minima. Energy bar-
riers between maximally compact conformations are large
because many contacts must be broken in fluctuating from
one conformation to another. Taken together, the maximally
compact local minimum conformation and its dense affiliates
constitute a "compactness cell."

Folding Process. The picture offolding that emerges can be
stated simply. A collapsed conformation undergoes struc-
tural fluctuations among a series of dense states en route to
the native state. At each moment, the conformation is
assigned to the nearest maximally compact conformation.
Folding is the process of diffusion between distinct compact-
ness cells and can be measured in terms of the number of
native contacts that exist at any given time. Since each
compactness cell contains a maximally compact conforma-
tion, folding may be viewed in lower resolution as discrete
hopping between maximally compact states (Fig. 1).
Here arises the central question: If we can understand the

diffusional relationships between the lowest energy maxi-
mally compact conformations, can we predict if a given
amino acid sequence is foldable? First, it is necessary to
examine the relationship between geometry and interconver-
sion among the maximally compact conformations.

Reconfigurational Distance. Two maximally compact con-
formations will interconvert through small structural fluctu-
ations if the conformations are geometrically similar. The
greater the geometrical dissimilarity between the conforma-
tions, the larger the structural fluctuation required for inter-
conversion to occur. Thus, it is useful to introduce a quan-
titative measure of geometrical distance between two cubic
conformations. We define a reconfigurational metric to rep-
resent the minimum number of residues that need to move in
order for one conformation to fluctuate into the other given
a set of fundamental lattice moves. In many cases, intercon-
version between conformations requires the motion of resi-
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dues solely to "get out of the way" of other residues. This
definition anticipates the kinetic problem to be faced. The
reconfiguration distance satisfies the criteria of a metric-
namely, p(a, 13) = p(.3, a), p(a, a) = 0, p(a, 3) 2 0, and
p(a, y) s p(a, /3) + p(,3, 'y), where a, 1, and y are three
arbitrary conformations. The reconfigurational distance be-
tween maximally compact conformations a and ( is used to
determine which pairs of low-energy maximally compact
conformations are likely to interconvert.

Sequence-Structure Design Criteria. Sequences S1 and S2

Si: jedfqgicnmhlqoprsjcktbtbars
S2: aeabajampiqrsnajkbpsorqtlfi

were selected from a 20-letter hydropathic residue set to
demonstrate foldability and nonfoldability, respectively, of
primary sequences. [Parameter set e(aj, a>) is available upon
request.] S1 was selected to stabilize a particular conformation
(Fig. 2), which was chosen because 30 other maximally
compact conformations were within a reconfiguration distance
of 10. The native structure of S1 exhibits two 2 x 2 x 2
subdomains in opposite corners of the cube. Each subdomain
has four possible maximally compact arrangements, so the
native structure possesses a high proclivity to local geomet-
rical rearrangement among the 15 neighboring cubic confor-
mations. S1 was picked to stabilize not only the native struc-
ture but also the local conformational permutations of the
subdomains. These other "nearby" maximally compact con-
formations are among the most stable of the overall confor-
mation space, but they are sufficiently unstable with respect to
the native state as to have negligible steady-state populations,
confirming the two-state criterion imposed by calorimetric
studies of folding (8). S1 contains information for both the
"local" thermodynamic stability of the native structure and its
conformational proximity to several other stable states.
Sequence S2 is a random set of monomers drawn from the

same 20-letter set. Although no structural or reconfigura-
tional criteria were used to determine S2, it does have a
distinct global minimum. Thermodynamically, it possesses a
unique structure, but it will be shown that this structure is
kinetically inaccessible.

RESULTS AND DISCUSSION
Lattice Kinetics: Simulations. The kinetic behavior of se-

quences S1 and S2 was simulated at room temperature using
the Metropolis algorithm. During the simulation, single res-
idues on the chain were randomly moved to nearby vacant
lattice sites with the constraint that the covalent chain bonds
remain intact. In addition, pairs of residues were allowed to
move in single 90° rotary motions.

Starting from a random conformation, sequence S1 was
shown to achieve its global minimum conformation in 81 of
200 trials, each lasting up to 500,000 iterations. In only 14
cases, the final conformation had less than half of the native
nonbonded contacts. In all other cases, it is supposed that
longer simulations would have succeeded in folding the
recalcitrant intermediates. S2 failed to achieve its global
minimum conformation even once during 10 trials with
500,000 iterations. None of the final conformations had more
than 14 nonbonded contacts in common with the lowest
energy structure. Thus, in a time frame s 500,000 iterations,
S1 has a unique, stable, accessible conformation and se-
quence S2 does not.

In addition to proving that S1 is a foldable sequence, the
simulations validate the collapse-reconfiguration picture of
folding. The numbers of chain-chain nonbonded contacts and
native nonbonded contacts are plotted versus iteration num-
ber for a simulation in Fig. 3. In the first 1000 iterations, the
collapse phase is evident as total number of nonbonded
contacts increases quickly. In the subsequent reconfiguration
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FIG. 3. Collapse (upper trace) and reconfiguration (lower trace)
of the sequence S1 during a 35,000-iteration lattice kinetics simula-
tion. The protein collapses quickly, establishing most of the 28
possible nonbonded contacts in the first few thousand iterations.
Folding, which is measured in terms of native nonbonded contacts,
occurs more slowly. Just before the protein folds a fluctuation
occurs, breaking all of the incorrect nonbonded contacts. At that
point, the collapse and folding curves merge.

phase (34,000 iteration in this example), the total number of
nonbonded contacts fluctuates as the number of native non-
bonded contacts increases. Maximally compact nonnative
intermediates occur during a large fraction of this time. When
the native state occurs after about 35,000 iterations, it re-
mains stable with minor fluctuations until the trial ends after
5 million iterations.

Lattice Kinetics: Interconversion Calculations. The tempo-
ral dominance of the reconfiguration phase evident in Fig. 3
suggests that during the slow stage of folding all motions
occur as interconversion between collapsed conformations.
It is possible to simplify the complex set of trajectories onto
a discrete number of compactness cells.

Before the kinetic map of compact conformation space can
be drawn, individual rates between neighboring compactness
cells must be calculated. These rates are determined through
a probability flow equation formulated for the microscopic
motion of the chain (the master equation). Using pairs of
maximally compact conformations as the starting and ending
points-or reactant and product pairs-diffusion between
compactness cells is calculated assuming the same micro-
scopic kinetic rules used by the lattice kinetic simulation. The
intermediate states are given by explicit local conformations
of the chain as it fluctuates between reactant and product
conformations.
The intermediate states are determined through an exhaus-

tive enumeration of "loop structures" (Fig. 4). Loops con-
sisting of fewer than 10 residues and 500 intermediate loop
structures are considered. Longer loops are ignored because
global interconversions are not thought to participate in
compact reconfiguration. Loop intermediates with more non-
bonded contacts in common with the reactant's maximally
compact conformation are assigned to the reactant's com-
pactness cell. Similarly, the product's compactness cell con-
sists of loop intermediates containing a majority of product
cube's nonbonded contacts. The initial distribution of prob-
ability in the reactant compactness cell is chosen to obey a
thermal distribution. When half of the probability seeps over
the barrier into the reactant compactness cell, the average
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FIG. 4. Interconversion between two maximally compact con-
formations requires the enumeration of all microscopic loop struc-
tures. Here, 48 loop conformations ofan 8-mer segment ofthe native
conformation of S1 (Fig. 2, residues 3-10) are explicitly drawn.
Boxed conformers represent loop packings for the native state of Fig.
2 and another maximally compact conformation at a reconfigura-
tional distance of 5. All other conformers are local fluctuations
around these two "cubic" states. The shaded domain corresponds to
the compactness cell of one cubic conformer. All other conformers
constitute the compactness cell of the native loop conformer. The
interconversion calculation is performed by permitting probability to
diffuse along all possible connections between and within the com-
pactness cells. Starting from a thermal distribution of probability
over each compactness cell, the mean first passage time is defined as
the period in which half of the probability seeps from one compact-
ness cell to the other.

time for interconversion has elapsed. Details of the calcula-
tion for average reaction times are given in Appendix.

Folding Funnels. For sequences S1 and S2, rates between
pairs of the 1000 lowest energy maximally compact confor-
mations were calculated. In Fig. 5, the maximally compact
conformations are represented by dots organized by energy
along the y axis and listed by arbitrary conformer number
along the x axis. The global minimum is conformer number 1.
Interconversion times between these conformations are <1
ms. Solid (dashed) lines between the maximally compact
conformers indicate the likelihood for interconversion from
the higher (lower) energy to the lower (higher) energy con-
former.
A single deep folding funnel dominates the interconversion

diagram for S1. For S2, a myriad of smaller and shallower
folding funnels appears. Thus sequence S1 will fold and S2
will not. These predictions are consistent with the simulation.
The lowest energy conformation of S1 exhibits structural and
energetic similarity among the several other most stable
conformations. A close comparison of the lattice kinetics
simulation (Fig. 3) and the folding funnel calculation (Fig. 5A)
shows that simulated folding trajectories diffuse down the
folding funnel (Fig. 6). The longest dwell periods occur in
conformations relatively close to the native conformation.
For sequence S2, however, the "nearest neighbor cubes" are
of substantially higher energy (Fig. SB) so the conformational
energy landscape appears more like a volcano than a funnel.

PERSPECTIVE AND CONCLUDING REMARKS
The existence of folding funnels in simple lattice models of
folding suggests that directed self-assembly ofproteins can be

FIG. 5. Folding funnels for the foldable sequence S1 (A) and
nonfoldable sequence S2 (B). Line segments indicate submillisecond
connection kinetic pathways between compactness cells (dots) as-
sociated with maximally compact conformations. Solid (dashed)
lines correspond to diffusion from higher (lower) to lower (higher)
energy conformations. Arrows indicate the lowest energy maximally
compact conformations. The folding funnel of S1 is evident in the
convergence of kinetic pathways to the maximally compact confor-
mations with energy -81 kBT. S2 shows no such self-organizing
property. The reconfigurational distances between conformations in
the S1 folding funnel and the S1 lowest energy structure are <14. The
reconfigurational distances between the low energy S2 conforma-
tions and its lowest energy structure are >20.

predicted using enumeration as well as simulation tech-
niques. The occurrence of folding funnels contradicts previ-
ous notions that folding must follow a specific pathway to
overcome the Levinthal counting problem (9). Rather, fold-
ing may well proceed as a convergence of multiple pathways
among families of interconvertible dense conformations, as
suggested by the jigsaw model (10).

This work is related to several perspectives on folding that
have been put forth in recent years (4, 6, 11-14). In a mean
field spin model of protein folding, Bryngelson and Wolynes
(15, 16) showed that, during the last stages of folding,
conformational energy replaces conformational entropy as
the dominant repository of free energy. To give their mean
field spin model a kinetic interpretation, they mandated that
every spin state or "conformation" of the protein be kinet-
ically connected to a state of greater polarization or "fold-
ing," which they called the principle of minimal frustration
(15). The kinetic interpretation of minimal frustration applied
to polymers is not obvious. Here, we submit that minimal
frustration of proteins is defined by the existence of a folding
funnel: an amino acid sequence has a large number of dense
conformations that are kinetically connected to conforma-
tions of greater folding.

Recently, Shakhnovich et al. (17) reported that 3 of 33
randomly interacting heteropolymers of length 27 with stable
global minima were kinetically foldable. The parameter re-
gime for nonbonded contact energies used here is identical;
however, our perspective differs considerably on the issue of
sequence specificity: we present two amino acid sequences
based on a 20-letter hydropathic code-the foldable sequence
possesses relationships between sequence and structure,
whereas the nonfoldable sequence exhibits no such concor-
dance.
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Number of Conformer

where p(t) is an n-dimensional time-dependent probability
vector (Y-Pn = 1) and W is the n X n transition matrix
satisfying detailed balance. The microscopic transition rates
Witas from structure P to a are assumed to be dominated by
the energy difference AE = Ed - Ea.

Wa=- Roexp kT ) 0[oo - -(a, A)], if AE 0°; [A2]

LROE[oIT -o-(a, 1)], otherwise.

The function o-(a, 1) denotes the sum of the squares of the
differences between a and 13 coordinates, and O[oaO - cr(a, /3)]
is a step function that sets the matrix element Wa p = 0 when
a(a, 13) is larger than a cutoff oo = 4. 0 requires structural
transitions to be local. The master equation is designed to
mimic the restricted set of "moves" allowed in lattice
dynamics simulations. The constant Ro imposes an arbitrary
time scale and is chosen to be 1011 s51 for the numerical
examples cited.100

FIG. 6. The final steps of the folding trajectory of Fig. 3 are

mapped onto the compactness cells (large dots a-g) from the funnel
diagram from Fig. 5A. The simulated diffusive trajectory passes

between these compactness cells in the order: (b, d)-(a, e, g)-(e,
g)-g, where the parentheses indicate when particular noncompact
conformations are assigned to a few compactness cells simultane-
ously. Conformations c and f are seen in the final stages of other
simulations. The simulation results substantiate the predictions of
the interconversion calculations that diffusive reconfiguration
"down the funnel" is the mechanism of folding. The reconfigura-
tional distances between the funnel conformations and its lowest
structure are shown inside of the circles.

Folding funnels contain the key thermodynamic and ki-
netic requirements for folding: convergence of families of
diffusion pathways to a unique, locally stable, kinetically
accessible state. With further development of the reconfig-
urational metric, effective extension of these methods to
larger proteins heretofore treatable only by simulations (18)
is foreseeable.

APPENDIX

The kinetics of structural fluctuation between compactness
cells is given by a continuous-time master equation in which
each microscopic chain state of the interconverting segment
of the loop is treated as an independent probability site. Rates
for interconversion between compactness cells are calculated
by designating the product cell's chain sites as absorbing
sites. When the chain diffuses into an absorbing site, the
interconversion reaction is said to have occurred.
The rate is given by the inverse of the mean first passage

time for absorption into the product states. The quantity is
derived from the master equation:

ap~t)
= Wp(t), [Al]
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