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The interaction between two neutral but polarizable systems at separationR, usually called the van
der Waals force, is discussed from different points of view. The change in character from 1/R6 to
1/R7 due to retardation is explained. ©2001 American Association of Physics Teachers.
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I. INTRODUCTION

The interaction between charged particles via the C
lomb interaction is one of the most important features
physics and is familiar to any student of the subject. The w
in which electrons and protons bind to form the hydrog
atom is also well known and is a staple of any quant
mechanics course.1 However, less familiar is the interactio
between such bound systems at separationR, which is the
so-called van der Waals force and is of a completely diff
ent character from its Coulombic analog.2 That this must be
the case is clear from the fact that the hydrogen atom
neutral, so that to lowest order there is no interaction. On
other hand the system is polarizable, and thus can inte
with the other polarizable system, leading to a short-ran
attraction which varies as 1/R6, and this feature is discusse
by a number of quantum mechanical references.3,4 Somewhat
less well known is the fact that at larger distances the ch
acter of the interaction changes and varies
1/R7—discussion of this feature can be found, e.g., in
quantum field theory book by Itzykson and Zuber.5 It is clear
that the origin of this change is retardation, i.e., the fin
propagation time of signals connecting the two systems,
the precise way in which this modification comes about
not so easy to calculate and is not generally presented.

The nature of the van der Waals force is quite topica
present due to the possible importance of such effects for
interactions of small color dipoles such as charmonium
bottomonium,6 so it is useful to examine the physics of th
effect. In the next section, then, we review the usual textb
discussion leading to the London;1/R6 interaction.7 Then
in Sec. III, we show how retardation effects modify the ch
acter of the force and change its asymptotic dependenc
the Casimir–Polder form;1/R7.8 In a brief concluding sec-
tion we summarize our findings and discuss the relevanc
modern particle and nuclear physics.

II. STANDARD VAN DER WAALS INTERACTION

The basic physics of the van der Waals force can be
derstood from a simple one-dimensional model of the at
which consists of electrons bound by harmonic oscilla
forces to heavy protons at fixed separationR in addition to
Coulomb interactions between the four charges9

H5H01H1 ,

with ~see Fig. 1!
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H05
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2m
p1

21
1

2
mv0

2x1
21

1

2m
p2

21
1

2
mv0

2x2
2,

~1!

H15
e2

4p S 1

R
1

1

R1x12x2
2

1

R1x1
2

1

R2x2
D .

Assuming that the atomic separation is large compare
the size of the atom (R@x1 ,x2), we can approximate

H1'22
e2x1x2

4pR3 ~2!

and the system can be diagonalized in terms of coordin
x65(x16x2)/&, yielding

H5
p1

2

2m
1

1

2 S mv0
22

2e2

4pR3D x1
2 1

p2
2

2m

1
1

2 S mv0
21

2e2

4pR3D x2
2 , ~3!

i.e., in terms of independent harmonic oscillators with shift
frequencies

v65Av0
27

2e2

4pmR3

.v07
e2

4pmv0R32
e4

32p2m2v0
3R6 1¯ . ~4!

The van der Waals potential is simply the shift in the grou
state~zero point! energy due to the Coulomb interaction an
is found to be

V~R!5
1

2
v11

1

2
v222S 1

2
v0D.2

e4

32p2m2v0
3R6 . ~5!

We can write this result in a more familiar form by notin
that when an external electric field is applied to this syste
the leading order Hamiltonian becomes

H5H0~x1 ,x2!1eE0x11eE0x25H0~z1 ,z2!2
e2E0

2

mv0
2

~6!

with zi5xi1eE0 /mv0
2, and corresponds to an induced ele

tric dipole moment

d52
dH
dE0

5
2e2E0

mv0
2 . ~7!

Defining the electric polarizabilityaE in the conventional
fashion, viad54paEE0 , we find aE52e2/4pmv0

2 so that
441p/ © 2001 American Association of Physics Teachers
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the van der Waals interaction can be written in the ‘‘Lo
don’’ form7

V~R!52
aE

2v0

8R6 . ~8!

One can also derive Eq.~8! via simple second-order per
turbation theory

DE25V~R!5 (
nÞ0

^0uH1un&^nuH1u0&
E02En

. ~9!

Since for a simple one-dimensional harmonic oscillator

^ l uxu0&5d l ,1A 1

2mv0
, ~10!

Eq. ~9! becomes

V~R!5S 2e2

4pR3D 2

(
n1 ,n2

dn1,1dn2,1u^1,1ux1x2u0,0&u2

~n11n2!v0

5S 2e2

4pR3D 2SA 1

2mv0
D 4

21

2v0
52

e4

32p2m2v0
3R6 ,

~11!

in agreement with Eq.~5!.
It is useful to spend a bit of time examining the ‘‘physics

of this result. The form of the interaction potential, Eq.~2!,
can be understood in terms of the energy of the dipole m
ment of ‘‘atom’’ #2 (d252ex2) in the electric field created
by the dipole moment of ‘‘atom’’ #1,

H1;2d2E2~d1!5ex2

2ex1

4pR3 52
e2x1x2

4pR3 . ~12!

Of course,̂ x1&5^x2&50, i.e., there exists no average dipo
moment, so this energy change vanishes in first-order pe
bation theory

DE15^c0uH1uc0&50.

However, thereis a shift at second order since at any giv
instant of time there exists an instantaneous dipole mom
in, say, atom #1. The corresponding electric field at the
sition of atom #2 generates a correlated electric dipole m
ment due to its electric polarizability,

Fig. 1. Simple one-dimensional model of interacting hydrogen atoms
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d254paEE1~R!54paE

ex1

4pR3 . ~13!

The electric field generated bythis electric dipole moment
then acts back on the original atom, yielding an energy

DEvdW;2d1E2~R!52
e2x1

2aE

4pR6 , ~14!

which is the van der Waals interaction. What makes t
work, then, is the point that one can use the instantane
position of one atom to provide an action at a distance c
relation with a second atom in the vicinity.

Finally, we note that the electric polarizability itself can b
extracted by calculating the shift in energy of the atom in
presence of an external electric fieldE0 in second-order per-
turbation theory10

DE~2!5 (
nÞ0

^0ueE0x1un&^nueE0x1u0&
E02En

[2
1

2
4paEE0

2.

~15!

We find thenaE;e2^x1
2&/v0 and

DEvdW;
aE

2v0

4pR6 ~16!

so that it is thisself-interaction energywhich is responsible
for the London form—cf. Eq.~8!.

With this background in hand it is straightforward to mo
to the physical~three-dimensional! situation.11 In this case
the dipole moment generated by atom #1 (d15er1) gener-
ates an electromagnetic potential

U~R!5
d1"R

4pR3 , ~17!

which means that at locationR one has the electric field

E~R!52¹RU52
e

4pR3 @r123R̂R̂"r1#. ~18!

The corresponding dipole–dipole interaction energy is

UvdW52d2"E~R!5
e2

4pR3 @r1"r223r1"R̂r2"R̂#. ~19!

Choosing thez axis along the directionR̂, we can write

UvdW5
e2

4pR3 @x1x21y1y222z1z2#. ~20!

The lowest order energy shift involving a pair of hydrog
atoms is then

DE15^c1,0,0
~1! c1,0,0

~2! uUvdWuc1,0,0
~1! c1,0,0

~2! &50 ~21!

and vanishes sincêr1&5^r2&50. However, to second orde
there exists a nonvanishing energy—this is the van
Waals interaction
V~R!5DE25S e2

4pR3D 2

(
nlm;n8 l 8,m8

u^cn,l ,m
~1! cn8 l 8m8

~2! ux1x21y1y222z1z2uc1,0,0
~1! c1,0,0

~2! &u2

2E102Enl2En8 l 8
. ~22!
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Since the statec1,0,0 is the ground state, the denominator
always negative and it is thus clear that this result is nonz
although no exact evaluation is possible. Nevertheless,
can obtain an approximate form by noting that selection ru
allow only electric dipole~D j 50,61, parity change! excita-
tion of both atoms so that, using closure, we can write

V~R!.S e2

4pR3D 2 1

2E1022E21

3 (
nlm;n8 l 8m8

u^cn,l ,m
~1! cn8 l 8m8

~2! ux1x2

1y1y222z1z2uc1,0,0
~1! c1,0,0

~2! &u2

5S e2

4pR3D 2 1

2E1022E21
^c1,0,0

~1! c1,0,0
~2! ux1

2x2
2

1y1
2y2

214z1
2z2

2uc1,0,0
~1! c1,0,0

~2! &. ~23!

Using ^xi
2&5^r2&/35a0

2, where a051/ma is the Bohr ra-
dius, we find

V~R!.2
6aa0

5

R6 . ~24!

Expressing this result in terms of the electric polarizabil
via

aE52a(
nlm

u^cnlmuzuc1,0,0&u2

E102Enl
.a0

3, ~25!

we have

V~R!;
a

a0

a0
6

R6 5
v0aE

2

R6 , ~26!

which is the London form.

III. RETARDATION

The discussion given in the previous section is stand
but it is clear that it must be altered at large distances s
we have neglected the finite propagation time of electrom
netic interactions. Indeed, since the van der Waals forc
due to the self-interaction of the dipole moment of an at
with the electric field generated by the correlated dipole m
ment of an atom at distanceR, this simple nonrelativistic
action at a distance analysis must begin to break down w
the time required for a signal to travel from atom to ato
(DT1;R) becomes comparable to or greater than a cha
teristic time @DT2;1/(E102E21)# associated with the evo
lution of the atom, i.e., whenv0R>1. For hydrogen this
transition occurs atR;\c/10 eV;a0 /a;200 A. For dis-
tances comparable to or greater than this value, we must
retardation into account. There are at least two ways
which this can be accomplished, and we shall consider e
in turn.

A. Fourth-order perturbation theory

Perhaps the most straightforward way to understand
effects of retardation is through a simple perturbation the
evaluation. Of course, since the van der Waals interactio
O(e4) this must be a fourth-order perturbative calculatio
This is how the original calculation of Casimir and Pold
443 Am. J. Phys., Vol. 69, No. 4, April 2001
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was done.8 However, use of the usual Coulomb gau
Hamiltonian for two neutral hydrogen atoms at distanceR
interacting with the electromagnetic field12

H5 (
j 51,2

H j
~0!1H rad1e2

r1"r223r1"R̂r2"R̂

4pR3

1 (
j 51,2

F2
e

m
pi "A~r i !1

e2

2m
A2~r i !G ~27!

leads to a rather complicated analysis involvingthirteen
diagrams—including seagull terms@i.e., the diagrams arising
from the termA2(r i) in Eq. ~27! involving a pair of photons
emitted from the same point, which diagramatically look li
a child’s drawing of a flying seagull# and instantaneous Cou
lomb interactions@i.e., the term involving

e2
r1"r223r1"R̂r2"R̂

4pR3 ,

which arises from expansion of the instantaneous Coulo
interactions between the charged particles making up
system#. It is thus advantageous, as pointed out by Pow
and Zienau,13 to isolate the important physics by working i
the gaugef50 and using the electric dipole approximatio
wherein the variation of the vector potential over the atom
size is neglected. In this case the Hamiltonian becomes

H5 (
j 51,2

H j
~0!1H rad2 (

j 51,2
er i "Et , ~28!

whereEt represents thetransverseelectric field so that only
radiation photons are involved. The resulting fourth-ord
diagrams which contribute to the van der Waals interact
are now only six in number. They are shown in Fig. 2 a
can be divided into three classes. One class is that where
interaction with the electric field by atom #1 occurs entire
previous to the interaction with the field by atom #2. F
pedagogical simplicity, we suppose that the atom has on
single excited state~u1&! connected to the ground state~u0&!
via the electric dipole operatorer , and for didactic purposes
we shall explicitly demonstrate how to evaluate one of
six diagrams—Fig. 2~a!, which is shown in more detail in
Fig. 3. We use

DE0
~4!5 (

n,l ,kÞ0

^0uVun&^nuVu l &^ l uVuk&^kuVu0&
~E02En!~E02El !~E02Ek!

, ~29!

where we have dropped self-energy terms, which do not c
tribute. In the gaugef50 we can write the interaction as

V5e (
j 51,2

r1"
]At

]t
, ~30!

where A is the quantized radiation field. For the diagra
shown we identifyEn2E05v101k2 , El2E05k11k2 , and
Ek2E05v101k1 , wherev105E12E0 is the excitation en-
ergy. Also,

^kuVu0&5 iek1ê1•^1ur 1eik1•~r11X1!u0&,

whereX1 is the location of the atom, with similar expres
sions for the remaining three transition amplitudes. Putt
all these together we find
443Barry R. Holstein
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ge
DE2a52e4 (
k1 ,ê1

(
k2 ,ê2

k1
2k2

2ei ~k11k2!"R

3
ê2* "^0ur2u1&ê1"^1ur2u0&ê2* "^0ur1u1&ê1"^1ur1u0&

~v101k1!~v101k2!~k11k2!
,

~31!

where

Fig. 3. One of the time-dependent perturbation theory diagrams contribu
to the van der Waals interaction. Here the dashed line indicates a ph
exchange.

Fig. 2. Time-dependent perturbation theory diagrams contributing to the
der Waals interaction. Here the dashed line indicates a photon exchan
444 Am. J. Phys., Vol. 69, No. 4, April 2001
(
k2 ,ê1

[E d3k1

~2p!32k1
(
ê1

.

Now combine this result with that obtained by interchan
ing atoms #1, #2 and include the corresponding contribut
from Fig. 2~b!. The result is

DEa1b52e4 (
k1 ,ê1

(
k2 ,ê2

k1
2k2

2ei ~k11k2!"R

3F ê2* "^0ur2u1&ê1"^1ur2u0&ê2* "^0ur1u1&ê1"^1ur1u0&

~v101k1!~v101k2!~k11k2!

1
ê1* "^0ur2u1&ê2"^1ur2u0&ê2* "^0ur1u1&ê1"^1ur1u0&

~v101k1!~v101k1!~k11k2!

1#1↔#2G . ~32!

Similarly one finds contributions from Figs. 2~c! and 2~d!,

DEc1d52e4 (
k1 ,ê1

(
k2 ,ê2

k1
2k2

2ei ~k11k2!"R

3F ê2* "^0ur2u1&ê1"^1ur2u0&ê2* "^0ur1u1&ê1"^1ur1u0&

~v101k1!~v101k2!2v10

1
ê2* "^0ur2u1&ê1"^1ur2u0&ê2* "^0ur1u1&ê1"^1ur1u0&

~v101k1!~v101k2!2v10

1#1↔#2G ~33!

and from Figs. 2~e! and 2~f!,

DEe1 f52e4 (
k1 ,ê1

(
k2 ,ê2

k1
2k2

2ei ~k11k2!"R

3F ê2* "^0ur2u1&ê1"^1ur2u0&ê1* "^0ur1u1&ê2"^1ur1u0&

~v101k1!~v101k1!~2v101k11k2!

1
ê2* "^0ur2u1&ê1"^1ur2u0&ê1* "^0ur1u1&ê2"^1ur1u0&

~v101k1!~v101k2!~2v101k11k2!

1#1↔#2G . ~34!

Consider first the contribution from Figs. 2~a! and 2~b!. Sum-
ming over polarization states, Figs. 2~a! and 2~b! become

DEa1b52e4E d3k1

2k1~2p!3

d3k2

2k2~2p!3 k1
2k2

2ei ~k11k2!"R

3
u^1uz1u0&u2u^1uz2u0&u2~11~ k̂1"k̂2!2!

~v101k1!~k11k2!

3S 1

v101k2
1

1

v101k1
D . ~35!

Consider first the long distance limit (v10R@1) wherein re-
tardation effects are important. Then since, due to the ex
nential, the sum over photon momenta extends only tok1 ,
k2<1/R, we can write

g
on

n
.

444Barry R. Holstein
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r

DEa1b →
v10R@1

24
e4

v10
2 E d3k1

2k1~2p!3

d3k2

2k2~2p!3

3k1
2k2

2ei ~k11k2!"R

3
u^1uz1u0&u2u^1uz2u0&u2~11~ k̂1"k̂2!2!

k11k2
.

~36!

Using the definition of electric polarizability

aE5
e2

2p (
nÞ0

u^nuzu0&u2

En2E0
5

e2

2p

u^1uzu0&u2

v10
, ~37!

this becomes

DEa1b →
v10R@1

2
aE

2

~2p!4

3E d3k1d3k2k1k2ei ~k11k2!"RS 11~ k̂1"k̂2!2

k11k2
D

[2
aE

2

~2p!4 J1 . ~38!

The integration can easily be performed, as shown in App
dix A, and the result is

DEa1b52
23aE

2

4pR7 , ~39!

which is the result given by Casimir and Polder.8 Similarly,
the contributions from the remaining diagrams become
this limit,

DEc1d5DEe1 f

→
v10R@1

2
aE

2

~2p!42v10

3E d3k1d3k2k1k2ei ~k11k2!"R~11~ k̂1"k̂2!2!.

~40!

By simple scaling arguments, it is easy to see thatDEc1d

5DEe1 f;aE
2/v10R

8;DEa1b /v10R!DEa1b and can be
neglected in the long distance limit.

As an aside we note that it is also straightforward to
clude the effects of magnetic polarizability; since

(
ê1 ,ê2

~ ê1"ê2!2511~ k̂1"k̂2!25 (
ê1 ,ê2

~ êÃk̂1"ê2Ãk̂2!2

~41!

the contribution to the van der Waals interaction from a p
of magnetic interactions is found simply by replacingaE

2

→bM
2 in Eq. ~39!. Similarly, we can include interaction

involving electric and magnetic polarizabilities via the ide
tity

(
ê1 ,ê2

~ ê1Ãk̂1"ê2!252k̂1"k̂25 (
ê1 ,ê2

~ ê1"ê2Ãk̂2!2. ~42!

Then the overall van der Waals interaction at long dista
assumes the familiar form
445 Am. J. Phys., Vol. 69, No. 4, April 2001
n-

n

-

ir

e

V~R!5
223~aE

21bM
2 !17~aEbM1bMaE!

4pR7 , ~43!

where we have used the result

E d3k1d3k2k1k2ei ~k11k2!"R
2k̂1"k̂2

k11k2
52

28p3

R7 , ~44!

as shown in Appendix A.
Here the fact that the large distance–retardat

corrected–van der Waals interaction varies asaE
2/R7 is eas-

ily understood from simple physical arguments, as cited
Kaplan.14 In Figs. 2~a! and 2~b! the photon emission
absorption involving, say, atom #1 occur entirely before~or
after! those involving atom #2, so this interaction may effe
tively be shrunk to a local two-photon vertex characteriz
by the electric/magnetic polarizability. Since polarizabiliti
have units of volume and since two such interactions
involved, the requirement that the potential energy have
proper units givesV(R);aE

2/R7, where we have used th
feature that the separationR provides the only scale in the
problem.

The above derivation breaks down, however, for short d
tances where the photon emission/absorption by the atom
correlated so that the photon emitted from atom #2, say
absorbed by atom #1beforeany emission/absorption of th
second photon. Indeed, if we assume thatv10R!1, then it is
easy to see that the dominant diagrams become Figs.~c!
and 2~d! with

DEc1d →
v10R!1

2
e4

2v10
E d3k1

~2p!3

d3k2

~2p!3 ei ~k11k2!"R

3u^1uz1u0&u2u^1uz2u0&u2~11~ k̂1"k̂2!2!. ~45!

The integration is performed in Appendix A, yielding

DEc1d52
3v10aE

2

4R6 , ~46!

which is the London form. For this short distance situati
the contribution of the remaining diagrams is found to be

DEa1b5DEe1 f

→
v10R!1

2
aE

2v10
2

~2p!4

3E d3k1d3k2ei ~k11k2!"R
~11~ k̂1"k̂2!2!

k11k2
. ~47!

By simple scaling arguments we find thatDEa1b5DEe1 f

;aE
2v10

2 /R5;v10RDEc1d!DEc1d and can be neglected i
the short distance limit.

The general form of the van der Waals interaction at ar
trary distance can, of course, be found by adding togetheall
of the above diagrams,13 which yields the Casimir–Polde
integral

V~R!52
aE

2v10
4

pR3 E
0

` du exp~22u!

~v10
2 R21u2!2

3~u412u315u216u13!. ~48!
445Barry R. Holstein
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However, the physics is more clearly identified by worki
in the separate long and short distance limits, as sho
above. If intermediate distance results are needed, a g
numerical match to the exact form is given by15

V~R!52
3v10aE

2

4R6 S 2

p D tan21
23

6v10R
. ~49!

It is also interesting to see why the Kaplan argument le
ing to 1/R7 behavior breaks down at short distance. T
point is that since emission/absorption by atoms #1, #2
correlated, it is not possible to shrink the interactions invo
ing a single atom down to an effective point vertex involvi
the polarizability. Indeed, in this case one must deal w
both the ground and excited states of both atoms, so th
new scalev10 enters the problem and this is why simp
Kaplan scaling fails.

B. Two-photon exchange

An alternative, but completely equivalent, way to deri
the van der Waals interaction is to use the feature that
potential is the Fourier transform of the quantum mechan
scattering amplitude,15

V~R!5E d3q

~2p!3 eiq"R amp~q!, ~50!

where q5pi2pf is the momentum transfer. Thus, for e
ample, for the Coulomb scattering amplitude ampCoul

5e2/q2 we find

VCoul~R!5e2E d3q

~2p!3 eiq"R
1

q2 5
e2

4puRu
, ~51!

as required. In our case, we wish to isolate the portion of
atom–atom scattering which is due totwo-photon exchange.
This is, in general, a nontrivial relativistic Feynman diagra
calculation, but may be simplified by realizing that the sc
tering amplitude is causal~i.e., the scattered wave cannot b
emitted before the incoming plane wave strikes the scatte
center! and is an analytic function in momentum transfe
squared, meaning that it satisfies a dispersion relation in
variablet52q2,

amp2g~ t !5
1

p E
0

` dt Im amp2g~ t8!

t82t2 i e
. ~52!

The full discussion from this point onward is a bit technic
and is outlined in Appendix B. However, it is possible
isolate the basic physics more simply and that is what
shall present here. Readers wishing a more complete dis
sion can refer to Appendix B or to Ref. 15.

The desired van der Waals potential is found by taking
Fourier transform of the two-photon-exchange amplitude.
reversing the order of integrations we see that the result
also be written in terms of a superposition of Yukawa pot
tials,

V~R!5
1

p E
0

`

dt8 Im amp2g~ t8!E d3q

~2p!3

eiq"R

t81q22 i e

5
1

4p2 E
0

`

dt Im amp2g~ t8!
exp~2At8R!

R
. ~53!

The necessary input to Eq.~53! is provided by the unitarity
stricture, which in the center-of-mass frame takes the for16
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2 Im amp2g~ t !5
1

2! (
k1 ,ê1

(
k2 ,ê2

uM2g~ t5~k11k2!2!u2

3~2p!4d4~Q2k12k2!, ~54!

where the factor 2! is due to the identity of the two photo
in the intermediate state andQm represents the four-vecto
(At,0). Note here that the unitarity relation gives the imag
nary component of the amplitudeM2g at positivevalues oft,
which can be related by crossing symmetry and analytic c
tinuation to the Compton scattering amplitude atnegative t.
Defining t5(2v)2, we can write

V~R!5
1

p2 E
0

`

v8 dv8
exp~22v8R!

R
Im amp2g~ iv8!.

~55!

The electric polarizability contribution to the Compton sca
tering amplitude from a neutral object can be written in t
general form

MComp.4paE~v!E2~v!54paE~v!v2ê1"ê2 , ~56!

whereaE(v) is the dynamic polarizability. Thus the van de
Waals potential assumes the form

V~R!.2
4

3p E
0

`

v85 dv8 aE
2~ iv8!

exp~22v8R!

R
. ~57!

Now suppose that the time taken by light to travel betwe
the two systems (dt2;R) is large compared to a typica
excitation timedt1;1/v10. In this case (v10R@1) the inte-
gration in Eq. ~57! involves only valuesv8<1/R!v10.
ThenaE( iv) may be approximated by its value atv50 and,
after five integrations by parts, the van der Waals poten
can be written in the form

V~R! →
v10R@1

2
5!aE

2~0!

24p E
0

`

dv8
exp~22v8R!

R6

.2
20aE

2~0!

4pR7 . ~58!

Here the coefficient sitting in front of the polarizability is no
quite correct since we have not used the proper relativi
forms ~cf. Appendix B!, but the ‘‘physics’’ is properly in-
cluded.

In the alternative limit where the light transition time
small compared to a typical excitation time (v10R!1), the
convergence of the integration in Eq.~57! is set now byv8
<v10!1/R and we must include the frequency dependen
of the dynamic polarizability. The correct way to do this c
be found in Appendix B, but one can understand the esse
physics of this result by insertingaE

2( iv8) in Eq. ~58!,

V~R!52
5!

24p E
0

`

dv8
aE

2~ iv8!

R6 exp~22v8R!

→
v10R!1

2
5!

24pR6 E
0

`

dv8 aE
2~ iv8!. ~59!

Now the polarizability can itself be written in terms of
dispersion relation17
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aE~v!5
1

p E
v0

` dv8 v8s~v8!

v822v2 , ~60!

where the spectral densitys~v8! is nonzero only in the vi-
cinity of excitations of the system in question. As a simp
representation, we may write, then, for the case of a sin
such excitation@note thataE(0) corresponds toaE in the
notation of the previous section#

aE~v!.aE

v10
2

v10
2 2v2 . ~61!

Substituting into Eq.~59! we have

V~R! →
v10R!1

2
5!aE

2~0!

24pR6 E
0

`

dv8
v10

4

~v821v10
2 !2

52
5!paE

2~0!v10

96R6 , ~62!

which is the expected London form.

IV. CONCLUSIONS

In this paper we have examined the origin of the van
Waals interaction, both in its traditional London—
1/R6—form, valid when the photon travel time between a
oms is small compared to a typical quantum mechanical e
lution time DT;1/v10, and the retarded or Casimir
Polder—1/R7—version, valid in the opposite limit when th
quantum mechanical evolution time is small compared to
time required for interatomic photon travel so that fin
propagation times must be considered. The calculation
performed in two very different but equivalent ways. T
first was a direct evaluation of the atom–atom interaction
fourth-order perturbation theory, where the two limitin
forms are seen to arise from the dominance of differ
graphs depending on the interatomic separation. The se
was based on dispersion relations wherein the difference
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tween the two forms arises because of the requiremen
utilize the static versus dynamic polarizability in the lon
versus short distance limits. Either discussion involves in
esting pieces of physics and offers an attractive means
which to enhance discussion of this universal and fami
phenomenon.
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APPENDIX A

In order to perform the integrals

J@1;2#~R!5E d3k1d3k2k1k2ei ~k11k2!"R

3
@11~ k̂1"k̂2!2;2k̂1"k̂2#

k11k2
, ~63!

we select thez axis to lie along the directionR̂ and use the
identities

k̂1"k̂25cosu1 cosu21sinu1 sinu2 cos~f12f2!,
~64!

1

k11k2
5E

0

`

ds exp2s~k11k2!,

wherek̂1 ,k̂2 are chosen to lie along the directionsu, f and
u8, f8, respectively. Performing thef, f8 integrations in Eq.
~63! and definingsi5kiR, k5sR we find
J@1;2#5~2p!2E
0

`

dsE
0

`

dk1 k1
3E

0

`

dk2 k2
3E

21

1

dzE
21

1

dz8exp~ ik1Rz1 ik2Rz8!

3exp2s~k11k2!@ 3
2 1 3

2 z2z822 1
2 ~z21z82!;2zz8#

5
~4p!2

R7 E
0

`

dkE
0

`

ds1 s1
3E

0

`

ds2 s2
3F3

2
1

3

2

d2

ds1
2

d2

ds2
2 1

1

2 S d2

ds1
2 1

d2

ds2
2D ; 22

d

ds1

d

ds2
G sins1

s1

sins2

s2
exp2k~s11s2!

5
~4p!2

R7 E
0

`

dkE
0

`

ds1 s1
3E

0

`

ds2 s2
3F3

2

sins1

s1

sins2

s2
1

3

2 S sins1

s1
22

sins1

s1
3 12

coss1

s1
2 D ~same with s1→s2!

1
1

2 S sins1

s1
22

sins1

s1
3 12

coss1

s1
2 D sin

s2

s2
1~same with s1↔s2!

22S coss1

s1
2

sins1

s1
2 D ~same with s1→s2!Gexp2k~s11s2!. ~65!
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Defining13

M ~x!5sinx1N~x!5sinx1
cosx

x
2

sinx

x2 ,

~66!

K~x!5cosx2
sinx

x
,

we find

J15
2~4p!2

R7 E
0

`

dkF2S E
0

`

ds s2N~s!e2ksD 2

1S E
0

`

ds s2M ~s!e2ksD 2G ,
~67!

J25
2~4p!2

R7 E
0

`

dkS E
0

`

ds s2K~s!e2ksD 2

.

Using

E
0

`

ds sn sins exp2ks5~2 !n
dn

dkn

1

11k2 ,

~68!E
0

`

ds sn coss exp2ks5~2 !n
dn

dkn

k

11k2 ,

the remaining integrations overk become trivial and we find

J@1,2#5
@23,27#4p3

R7 . ~69!

Likewise the corresponding short distance integration

L1~R!5E d3k1d3k2ei ~k11k2!"R~11~ k̂1"k̂2!2! ~70!

may be performed. If we write

ki
25ki

3E
0

`

dk i exp2k iki ~71!

then by very similar steps to those used in deriving Eq.~67!
we find

L15
2~4p!2

R6 F2S E
0

`

dkE
0

`

ds s2N~s!e2ksD 2

1S E
0

`

dkE
0

`

ds s2M ~s!e2ksD 2G . ~72!

Using Eq. ~68! the integrations are again straightforwar
yielding

L15
24p4

R6 . ~73!

APPENDIX B

The fully relativistic calculation of the van der Waals in
teraction via the Fourier transform method can be found
the work of Feinberg and Sucher.15 We have tried in Sec
III B to identify the basic physics behind this result. How
ever, a number of the steps are less than rigorous. Here
present a more detailed summary of how the calculatio
performed.
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We begin by decomposing the Compton scattering am
tude for the reactionA(p)1g(k)→A(p8)1g(k8) into elec-
tric and magnetic components. Defining

Tmn
1 5~k•k8•Pgmn1k•k8PmPn2k•Pkm8 Pn

2k8•PknPm!/MA
2,

~74!
Tmn

2 5k•k8gmn2knkm ,

where P5p1p8, it is easy to see that the correspondi
electric and magnetic tensors can be written as

Tmn
E 52 1

2Tmn
1 , Tmn

M 52 1
2Tmn

1 12Tmn
2 . ~75!

Then the general Compton scattering amplitude can be w
ten as

Amn
Comp5Tmn

E FE~s1 ,t !1Tmn
M FM~s1 ,t !, ~76!

where we have defineds65(p6k)2, u65(p7k8)2, and t
5(k2k8)2. Using crossing symmetry, one now write
FE ,FM in terms of a dispersion relation at fixed momentu
transfer,

FE,M~s1 ,t !5
1

p E
M2

`

ds8 rE,M~s8,t !

3S 1

s82s1
1

1

s82u1
D . ~77!

The amplitude Im amp2g(t) needed for the Fourier transform
in Eq. ~53! is then given by unitarity as

Im amp2g52 (
X,Y5E,M

M2E ds ds8 rX~s,t !rY~s8,t !

3FXY~s,s8,t !, ~78!

where

FXY~s,s8,t !5E d4k

~2p!42k0

d4k8

~2p!42k08

3~2p!4d4~ t2k2k8!TX :TY

3S 1

s2s1
1

1

s2u1
D S 1

s82s2
1

1

s82u2
D .

~79!

In order thatt be positive and small it is necessary to do
analytic continuation to consider the reactionsA1Ā→Ā
1A at a total center-of-mass energyAt. In order that par-

ticles A, Ā stay on their mass shells we must use

PA,Ā5SAt

2
,6 iM Ap̂D , p

A,Ā
8 5SAt

2
,6 iM Ap̂8D ,

~80!

k,k85SAt

2
,6 k̂D .

Then
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s2s25s2MA
21

t

2
2 iAtMAz,

s2u15s2MA
21

t

2
1 iAtMAz,

~81!
s82s15s82MA

21
t

2
1 iAtMAz,

s82u25s82MA
21

t

2
2 iAtMAz,

wherez5 p̂"k̂52 p̂8"k̂. We find then

FXY.
1

2 E dVTX :TYS s2MA
2

~s2MA
2 !21tMA

2z2D
3S s82MA

2

~s82MA
2 !21tMA

2z82D . ~82!

Defining v5(s2MA
2)/MA , v85(s82MA

2)/MA , and t
5v/At, t85v8/At the solid angle integration becomes

F.
pt

2MA
2 E

21

1

dz
t

t21z2

t8

t821z2 QXY , ~83!

where QEE5QMM5222z21z4, QEM5QME5z422z2,
and may be performed directly, yielding

FXY5
pttt8

MA
2

gXY~t8!2gXY~t!

t22t82 ~84!

with

gEE~t!5gMM~t!5t22S 212t21t4

t D tan21 t,

~85!
gEM~t!5gME~t!5t22S 2t21t4

t D tan21 t.

Using these results the integration in Eq.~53! can be per-
formed by making the substitutiont54z2 followed by a
fivefold integration by parts in order to remove the tan21 t
dependence. The result is

V~R!52
CXY~R!

R6 , ~86!

where
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CXY~R!5
1

p E
0

`

dze22zRPXY~zR!aE
2~ i z! ~87!

with

PEE~x!5PMM~x!5316x15x212x31x4,
~88!PEM~x!5PME~x!52~x212x31x4!.

The integration overz may now be done, yielding result
identical to those found via perturbative methods.
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