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Viscous Nonlinear Dynamics of Twist and Writhe
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Exploiting the “natural” frame of space curves, we formulate an intrinsic dynamics of a twi
elastic filament in a viscous fluid. Coupled nonlinear equations describing the temporal evoluti
the filament’s complex curvature and twist density capture the dynamic interplay of twist and w
These equations are used to illustrate a remarkable nonlinear phenomenon:geometric untwistingof open
filaments, whereby twisting strains relax through a transient writhing instability without axial rota
Experimentally observed writhing motions of fibers of the bacteriumB. subtilis[N. H. Mendelsonet al.,
J. Bacteriol.177, 7060 (1995)] may be examples of this untwisting process. [S0031-9007(98)0624
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As D’Arcy Thompson emphasized [1], nature abound
with examples of the balance between growth and form
The balance is particularly manifest in the low Reynold
number regime without inertia, where the motion o
organisms is generally dominated by dissipation and for
is a consequence of elasticity. The coupling betwe
these two has been termed “elastohydrodynamics.”

Possibly the most common “form” of subcellular dy
namics is the elastic filament: rodlike macromolecule
perform a multitude of structural and biological roles. T
gain some intuition for dynamics at this scale, the case
the elastic filament is thus a fruitful starting point [2]. As
a motivating example, we recall Mendelson’s discovery
shape instabilities exhibited by a mutant strain of the ba
terium B. subtilis[3]. Filaments of cells form as the rod-
shaped bacteria fail to separate upon dividing; beyond
critical length, a filament buckles, twisting around itself t
form a plectoneme (see Fig. 1). It is thought that this in
stability arises from nonequilibrium twisting stresses ge
erated in the cell walls through the process of grow
[3,4]. As the bacteria continue to grow, this process
iterated, leading to a hierarchy of supercoils. The han
edness of the coils may be tuned with temperature or ion
concentrations. Since the filament ends are generally f
and thermal fluctuations are negligible, this supercoilin
is fundamentally different from that of torsionally stresse
DNA that is closed or has pinned ends [5]. As a first ste
toward understanding these highly nonlinear phenome
we develop here anintrinsic deterministic formulation of
twisted elastic filament motion, and apply it supercoilin
of B. subtilis. Various elements of this formulation have
appeared in previous work onclosed elastic rodswith-
out dissipation [6], where adynamic(rather than energetic
[7]) coupling between twist and bend degrees of freedo
has been recognized [8]. In the inertialess case, a geom
ric argument for this coupling has been recently propos
[9], and its qualitative consequences have been explo
[10]. In presenting a general formulation of filament dy
0031-9007y98y80(23)y5232(4)$15.00
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namics, we explicitly derive this twist-bend coupling an
illustrate the qualitatively new physics of open filamen
in a viscous medium.

An important feature of our treatment is th
parametrization of the filament. Although the “Eu
clidean” representation based on the position vectorrssd
is convenient for linear stability analysis about simp
shapes, it makes the full nonlinear problem unnecessa
complicated. As exploited by Kirchhoff [11], the Eule
angles of rigid body motion are better suited for elas
equilibria. This parametrization singles out a particul
space-fixed reference frame and thus is partly extrins
An intrinsic representation expresses the rate of chan
of a frame (e.g., the material or Frenet-Serret frames)
each point of the rod in terms of the frame itself [12], an
is simplified by using the “natural frame” associated
the centerline. First used by Darboux [13] and later b
Hasimoto in his study of vortex filament motion [14], thi
frame has been applied to the dynamics of space cur
with bending but no twisting elasticity [15].

The configuration of an elastic rod may be describ
by a material orthonormal framehê1, ê2, ê3j [12]: we
chooseê3 to point along the tangent,̂e1 to point from
the centerline to a painted stripe on the rod surface t

FIG. 1. Supercoiled filament ofB. subtilis [3]. Scale bar is
10 mm. Image courtesy of N. H. Mendelson.
© 1998 The American Physical Society
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connects one end to the other, andê2 ­ ê3 3 ê1. The
strainsV are given by the rate of rotation of this frame
with arclengths, ≠sêi ­ V 3 êi . To quadratic order in
V, the elastic energy of a homogeneous isotropic rod is

E ­
A
2

Z
dssV2

1 1 V2
2d 1

C
2

Z
dsV2

3 2
Z

dsL ,

(1)

where Vi ­ V ? êi , A and C are the bend and twist
elastic constants, respectively, andLssd is a Lagrange
multiplier function enforcing local inextensibility.

A “natural” orthonormal frame [13] of a given curve
consists of the unit tangent and two other vectors co
strained to have zero tangential rotation rate. Imagine
weather vane sliding along the curve and always lying
the normal plane [16]. If the weather vane spins aroundê3

with vanishing initial tangential angular momentum the
it traces out one member of a family of natural frame
related bys-independent rotations. Such a frame is con
structed simply by untwisting the material frame, i.e., ro
tating ê1 andê2 aroundê3 by minus the accumulated twist
angleq ssd ;

Rsds0V3. Sinceep ? ≠se ­ 0, the vector
e ; sê1 1 iê2d expiq does not twist around̂e3.

The rotation rate of this frame is given by the comple
curvaturec : ≠se ­ 2c ê3 and≠sê3 ­ Rescepd, where

c ­ s2iV1 1 V2d expi
Z s

ds0V3 . (2)

Some elementary shapes have simplec representations:
the straight line hasc ­ 0, and the helixc ­ aeips (a, p
are real constants). Likewise, certain geometric properti
of curves are easily stated in terms ofc: a curve lies in
a plane if and only ifsssRecssd, Im cssdddd lies on a line
through the origin in the complexc plane, and a curve
lies on a sphere if and only ifsssRecssd, Imcssdddd lies on a
line not through the origin [17].

We compute from (1) the elastic forces and momen
per unit length using the principle of virtual work. IfF
is the force acting on a cross section, the force per un
length Fs is found by varying the position of the center-
line without rotating any element of the rod about the tan
gent direction:dE ­ 2

R
dsFs ? drssd, with the rotation

angledx ; ê2 ? dê1 ­ 0. Likewise, if M is the moment
acting on a cross section, the tangential component of t
moment per unit lengthMs is found by varying the ori-
entations of the elements of the rods without moving th
centerline:dE ­ 2

R
dsMs ? ê3dx, with dr ­ 0. Us-

ing drs ; sdrds, dêa ­ sdxdeab êb 2 sêa ? drsdê3 for
a, b ­ 1, 2 anddê3 ­ drs 2 sê3 ? drsdê3, we find

dc ­ 22c ê3 ? drs 1 e ? drss

2 ic Im
Z s

ds0cep ? drs , (3)

dV3 ­ dxs 2 V3ê3 ? drs 1 sV1ê1 1 V2ê2d ? drs .

(4)
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Note that keepingdx ­ 0 during the variation does not
imply that the twist rateV ; V3 stays fixed! (For brevity
we drop the subscript onV3 below.)

Thus the force per unit length is2dEydr ­
2e3Ls 1 ResepF'd, where

F' ­ 2A

µ
css 1

1
2

jcj2c

∂
1 iCsVcds 2 Lc ,

(5)
and a termCV2y2 has been absorbed intoL. Separating
(5) into its real and imaginary parts yields the classi
results of Love [18]. Note that the force density is
invariant underc ° eifc, e ° eife for constantf.
The tangential moment per unit length is2dE ydxssd ­
CVs. The conditions of zero force and moment a
free ends imply the boundary conditionsc ­ cs ­ L ­
V ­ 0.

The dynamics ofc and V follow immediately from
(4) by choosingdr ­ rtdt anddx ­ xtdt. Their form
is completely dictated by geometry. (That forct is
equivalent to earlier results [15]; the undamped analog
the Vt equation appears in [8].) The right-hand side o
(4) expresses a fact easily demonstrated with the near
rubber tube; there are two distinct ways of changing th
twist density: (i) nonuniform axial rotations of the rod and
(ii) nonplanar bending motions.

To complete the equations of motion, we use th
simplest Rouse dynamics in which the only effect of th
surrounding fluid is to provide a local isotropic drag [19
proportional to the local velocity:fdrag ­ z rt. Likewise,
we take the tangential moment per unit length to b
mdrag ­ zr xt. Since at zero Reynolds number the elasti
forces and moments must exactly balance the drag forc
and moments, the complex curvature and twist obey

z ct ­ s≠2
s 1 jcj2dF' 1 ic Im

Z s

ds0F'
pcs

2 Lscs , (6)

zrVt ­ CVss 1 szryz d Im F'
p
sc . (7)

Local inextensibility, ≠tds ­ 0, requires Lss ­
2RescpF'd. Equation (6) is covariant and (7) in-
variant unders-independent rotations of the natural basi
about the tangentc ° eifc . Since the elastic energy
(1) is achiral, the dynamics are covariant under mirro
reflections:c ° cp, V ° 2V. Equations (6) and (7)
describe the filament’s changes in shape and twist witho
relation to an external coordinate system, and so a
intrinsic; rigid translations and rotations do not enter th
dynamics sincert and xt appear only through theirs
derivatives.

The derivation of the above dynamics relies solely o
geometry and mechanics. However, for closed curve
we can reconsider (7) in light of the celebrated relatio
L k ­ T w 1 W r [20]. HereL k is the linking number
of the two curves traced out by the heads of the vecto
5233
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ê1 andê2 (assuming a continuous material frame),T w ;R
dsVy2p, and the writheW r is an integer plusAy2p,

whereA is the signed area enclosed by the curve swept o
on the unit sphere bŷe3 [21]. For a locally inextensible
filament, the twist dynamics (7) can be interpreted
a local link conservation law under the assumption th
smooth filament motions will not change the intege
contribution to the writhe [9]. The time derivative of the
density wr of the noninteger contribution to the writhe
is ≠twr ­ ê3 ? ≠t ê3 3 ≠sê3y2p ­ 2ImsF's

pcdy2pz .
Therefore, the twist dynamics has the formrt 1 js ­
0, with the “link density” r ­ Vy2p 1 wr and link
currentj ­ 2sCyzr dVs. Of course, since the link is not
a single integral of a local density there is no true lin
density; however,changesin link can be written as a
single integral over a density [21]. WhileL k andW r
are conventionally defined only for closed filaments, th
equations of motion (6) and (7) show that the tradeo
between twist and writhe still has meaning for ope
filaments.

With the coupled evolution equations forc and V

we turn to linear and nonlinear aspects of supercoilin
instabilities. The simplicity of thec formulation for open
filaments is seen first in the stability of a straight ro
with a uniform twist density (temporarily neglecting the
boundary conditions onV). The linearization of (6) is

z ct ­ 2Acssss 1 iCVcsss . (8)

The eigenfunctionsWn of 2A≠4
s 1 iCV≠3

s have eigen-
values sn ­ 2Ak4

n 1 CVk3
n (and associated growth

rates snyz ) which are real since the operator is Her
mitian. If V ­ 0, the modes are planar shapes wit
Wn ­ cs1d

n sinsknsd 1 cs2d
n cossknsd 1 cs3d

n sinhsknsd 1

cs4d
n coshsknsd, with cossknLd coshsknLd ­ 1 [12]. Since

the Wnssd satisfy the boundary conditions and form
complete set, the shape ofany free elastica in three di-
mensions, whether tightly wound helices or plectoneme
is expressible as

css, td ­
X̀
n­1

CnstdWnssd . (9)

The time evolution is a nonlinear dynamical system
Cnstd ; kWnjcstdl, where theWn are normalized.

The linear stability analysis of a free rod with uniform
twist is identical to that of a clamped rod with uniform
twist. Using the complex Monge representationjszd ­
xszd 1 iyszd, whererszd ­ fxszd, yszd, zg, yields z jt ­
2Ajzzzz 1 iCVjzzz with jz ­ jzz ­ 0 at the clamped
ends. Note, however, that the Monge representation is
capable of describing plectonemes. The critical conditi
for the first centerline instability isVc ø 8.98AyCL [12].
When the twist is nonzero, each eigenfunction is a s
perposition of four helices with appropriate spatial dam
ing: Wnssd ­

P4
m­1 csmd

n expsiksmd
n sd, where for eachn the

four ksmd
n are in general complex. Modes with negativ

eigenvaluesn have three helices of one handedness a
5234
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FIG. 2. Filament shapes at various twist densities. (a)–(
c ­ 10W1 at VyVs1d

c ­ 0.22, 1.0, 2.22; (d)–(f): c ­ 8W2 at
VyVs2d

c ­ 0.13, 0.58, 1.29.

one of the other; otherwise, all have the same handedn
Shapes calculated from the first two modes are shown
Fig. 2.

The writhe-tracking term in (7) is explicitly nonlinear
when the diffusion constantCyzr ­ 0, twist changes only
when the filament writhes. In assessing the relative i
portance of twist diffusion and writhe tracking we no
that whilezr in (7) was interpreted as a rotational drag c
efficient, in the context of bacterial filaments it is not cle
that this dissipative mechanism dominates others, e.g.,
arrangement of the polymer network inside the cell wal
If the shape instabilities are generated by nonequilibriu
twist, then twist must not relax on time scales shorter th
the observed buckling time (tens of minutes [22]). Usin
the purely hydrodynamic twist diffusion constantCyzr

[10,23] (withC ; 10210 erg cm [24] andzr ; 10210 erg
sec/cm for a1 mm diameter slender rod in water), an
the typical filament lengthL , 100 mm for buckling,
the time scaletD ­ L2z yC for twist to diffuse out the
ends of the filament is only1024 sec, eliminating hydro-
dynamic drag as a candidate mechanism. This and o
observations (e.g., of slow stress relaxation [24]) stron
suggest a dominant dissipative mechanismwithin the fila-
ment, characterized by a very much largerzr . Therefore,

FIG. 3. Geometric untwisting. Filament shapes are calcula
from numerical integration of (6) and (7) withCyA ­ 1. Time
proceeds from left to right.



VOLUME 80, NUMBER 23 P H Y S I C A L R E V I E W L E T T E R S 8 JUNE 1998

t-
lly

l-
s,
,

F

s

.

o

i,

-

d

FIG. 4. Details of geometric untwisting. (a) Twist density
evolution, with dotted line showing initial profile. Asymmetry
in V arises from that of the initial shape. (b) Time evolution
of twist, bend, and total elastic energy.

we consider the limit of negligible diffusion constan
Cyzr , where twist changes only by bending rather tha
by axial rotation, a relaxation mechanism we term “geo
metric untwisting.”

Geometric untwisting is illustrated in Fig. 3, obtained
by numerical integration [25] of (6) and (7). An addi-
tional nonlocal contact force inF' prevents self-crossing.
The initial condition is a nearly straight filament with
twist density of the form shown in Fig. 4(a). This mesa
like profile reflects uniform local twist production during
growth and diffusive boundary layers at the ends [26
Motion begins as chiral buckling; as the curvature in
creases, twist is converted to writhe, andV decreases in
the interior [Fig. 4(a)]. When twist has sufficiently re-
laxed and writhe is of order unity, the filament relaxe
back to the straight ground state as link flows out the end
In this overdamped dynamics the total elastic energy
monotonically decreasing, despite the transient increase
the bending energy during loop formation [Fig. 4(b)].

The sequence in Fig. 3 is quite similar to that exhibite
by short filaments ofB. subtilis [22]: after beginning the
transition to a plectoneme via a looping instability
the ends touch only transiently, the loop snaps open, a
the filament straightens. Plectoneme formation occu
after several aborted looping events, presumably as
twist stresses continually increase with filament extensio

The results presented here proceed from the robust
the specific: from kinematics dictated solely by geome
try, through viscous dynamics governed by elasticity, an
united in a description of the onset of bacterial superco
ing. This particular union will help unravel the puzzle
surrounding growth-induced iterated writhing instabili
t
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ties of bacterial fibers [26] and elucidate possible twis
induced instabilities in related systems, such as therma
fluctuating nucleic acids [27].
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