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Viscous Nonlinear Dynamics of Twist and Writhe
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Exploiting the “natural” frame of space curves, we formulate an intrinsic dynamics of a twisted
elastic filament in a viscous fluid. Coupled nonlinear equations describing the temporal evolution of
the filament's complex curvature and twist density capture the dynamic interplay of twist and writhe.
These equations are used to illustrate a remarkable nonlinear phenorgenoretric untwistingf open
filaments, whereby twisting strains relax through a transient writhing instability without axial rotation.
Experimentally observed writhing motions of fibers of the bacterirsubtilis[N. H. Mendelsoret al.,

J. Bacteriol.177, 7060 (1995)] may be examples of this untwisting process. [S0031-9007(98)06244-9]

PACS numbers: 87.10.+e, 02.40.—k, 03.40.Dz, 36.20.Ey

As D’Arcy Thompson emphasized [1], nature aboundshamics, we explicitly derive this twist-bend coupling and
with examples of the balance between growth and formillustrate the qualitatively new physics of open filaments
The balance is particularly manifest in the low Reynoldsin a viscous medium.
number regime without inertia, where the motion of An important feature of our treatment is the
organisms is generally dominated by dissipation and fornparametrization of the filament. Although the “Eu-
is a consequence of elasticity. The coupling betweemrlidean” representation based on the position veetey
these two has been termed “elastohydrodynamics.” is convenient for linear stability analysis about simple

Possibly the most common “form” of subcellular dy- shapes, it makes the full nonlinear problem unnecessarily
namics is the elastic filament: rodlike macromoleculescomplicated. As exploited by Kirchhoff [11], the Euler
perform a multitude of structural and biological roles. Toangles of rigid body motion are better suited for elastic
gain some intuition for dynamics at this scale, the case ogquilibria. This parametrization singles out a particular
the elastic filament is thus a fruitful starting point [2]. As space-fixed reference frame and thus is partly extrinsic.
a motivating example, we recall Mendelson’s discovery ofAn intrinsic representation expresses the rate of change
shape instabilities exhibited by a mutant strain of the bacef a frame (e.g., the material or Frenet-Serret frames) at
terium B. subtilis[3]. Filaments of cells form as the rod- each point of the rod in terms of the frame itself [12], and
shaped bacteria fail to separate upon dividing; beyond & simplified by using the “natural frame” associated to
critical length, a filament buckles, twisting around itself tothe centerline. First used by Darboux [13] and later by
form a plectoneme (see Fig. 1). It is thought that this in-Hasimoto in his study of vortex filament motion [14], this
stability arises from nonequilibrium twisting stresses genframe has been applied to the dynamics of space curves
erated in the cell walls through the process of growthwith bending but no twisting elasticity [15].

[3,4]. As the bacteria continue to grow, this process is The configuration of an elastic rod may be described
iterated, leading to a hierarchy of supercoils. The handby a material orthonormal framéé,, é,,é;} [12]: we
edness of the coils may be tuned with temperature or ionichooseé; to point along the tangen€; to point from
concentrations. Since the filament ends are generally frete centerline to a painted stripe on the rod surface that
and thermal fluctuations are negligible, this supercoiling
is fundamentally different from that of torsionally stressed
DNA that is closed or has pinned ends [5]. As a first step aL
toward understanding these highly nonlinear phenomena, \"/4
we develop here amtrinsic deterministic formulation of
twisted elastic filament motion, and apply it supercoiling
of B. subtilis Various elements of this formulation have
appeared in previous work oclosed elastic rodswith-
outdissipation [6], where dynamic(rather than energetic
[7]) coupling between twist and bend degrees of freedom
has been recognized [8]. In the inertialess case, a geomet-
ric argument for this coupling has been recently proposed

[9], and its qualitative consequences have been exploredG. 1. Supercoiled filament . subtilis [3]. Scale bar is
[10]. In presenting a general formulation of filament dy-10 um. Image courtesy of N. H. Mendelson.
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connects one end to the other, afid= é; X &;. The Note that keepingd y = 0 during the variation does not
strainsQ) are given by the rate of rotation of this frame imply that the twist rat€) = ()3 stays fixed! (For brevity
with arclengths, d,é; = X &;. To quadratic order in we drop the subscript 023 below.)

Q, the elastic energy of a homogeneous isotropic rod is  Thus the force per unit length is—-8F /ér =

A C —e3A; + Rele” F.), where
-2 [0 +0p+ £ [as03 - [asn, 1
F. = _A<¢’Sx + E |¢|2¢/> + iC(QyY), — Ay,

1)
where (); = Q - &;, A and C are the bend and twist (5)
elastic constants, respectively, ards) is a Lagrange anq 5 termc)2/2 has been absorbed info. Separating
multiplier function enforcing local inextensibility. (5) into its real and imaginary parts yields the classic

A “natural” orthonormal frame [13] of a given curve yeqits of Love [18]. Note that the force density is
consists of the unit tangent and two other vectors CONjvariant undery > ei®y, € — e'®e for constante.

strained to have zero tangential rotation rate. Imagine gpe tangential moment per unit length45E /8 y(s) =
weather vane sliding along the curve and always lying inc() ~ The conditions of zero force and moment at
the normal plane [16]. If the weather vane spins aroénd free ends imply the boundary conditiofis= ¢, = A —
with vanishing initial tangential angular momentum thengy _
it traces out one member of a family of natural frames e dynamics ofy and Q follow immediately from
related bys-independent rotations. Such a frame is CON<4) by choosingdr = r,8t andd y = y,8¢. Their form
structed simply by untwisting the material frame, i.e., ro-jg completely dictated by geometry. (That far, is
tatingé, andeé, ?ro/undég by minus the accumulated tWist eqyjivalent to earlier results [15]; the undamped analog of
angled(s) = ['ds'Qs. Sincee” - 9,€ =0, the vector yhe (), equation appears in [8]) The right-hand side of
€ = (& + i&)expid does not twist arounes. (4) expresses a fact easily demonstrated with the nearest
The rotation rate of this frame is given by the complexybper tube; there are two distinct ways of changing the

curvaturey: d,€ = —i€; anda;&; = Re(y€”), where  yist density: (i) nonuniform axial rotations of the rod and
. [, (ii) nonplanar bending motions.
g = (=i + Qz)eXpl] ds'Qs. (2) To complete the equations of motion, we use the

simplest Rouse dynamics in which the only effect of the
surrounding fluid is to provide a local isotropic drag [19]
roportional to the local velocityfq,,, = {r;. Likewise,

e take the tangential moment per unit length to be
Marag = {r - Since at zero Reynolds number the elastic
forces and moments must exactly balance the drag forces
and moments, the complex curvature and twist obey

Some elementary shapes have simpleepresentations:
the straight line hagr = 0, and the helixy = ae'?* (a, p

are real constants). Likewise, certain geometric propertie
of curves are easily stated in terms f a curve lies in
a plane if and only if(Re ¢ (s), Im ¢(s)) lies on a line
through the origin in the compley® plane, and a curve
lies on a sphere if and only {Rey(s), Imi(s)) lies on a

line not through the origin [17]. = (8% + 2 + il [‘Yd I x
We compute from (1) the elastic forces and moments £ = (0 + WRFL + iyim ST
per unit length using the principle of virtual work. K — Asths (6)

is the force acting on a cross section, the force per unit

length F, is found by varying the position of the center- .

line without rotating any element of the rod about the tan- £y = CQy + (& /O IMF LG (7)
gent directiondE = — [ dsF, - 6r(s), with the rotation | gcal inextensibility, d,ds = 0, requires A, —
angIeBX = ¢, - 0€; = 0. Likewise, |fM is the moment —Re(y* F.). Equation (6) is covariant and (7) in-
acting on a cross section, the tangential component of th@ariant unders-independent rotations of the natural basis
moment per unit lengttM; is found by varying the ori- apout the tangent — ¢i%y. Since the elastic energy
entatio_ns of the elements of the rods. without moving thql) is achiral, the dynamics are covariant under mirror
centerline:dE = — [dsM, - &8, with 6r = 0. Us-  reflections:y — 4*, O — —Q. Equations (6) and (7)
ing or; = (r);, 0&, = (Ox)€as€, — (&, - Ory)é3 for  describe the filament's changes in shape and twist without

a,b = 1,2and6é; = &r; — (& - 5r,)és, we find relation to an external coordinate system, and so are
S = —24h83 - Ory + € - Oryy intrinsic; rigid translations and rotations do not enter the
dynamics sincer; and y; appear only through theis
, S derivatives.
—iylm [ dsige - oy, (3) The derivation of the above dynamics relies solely on

geometry and mechanics. However, for closed curves,

_ oA . R A N we can reconsider (7) in light of the celebrated relation
803 = 8); = {383 - ory + (&) + (&) - b Lk=Tw+ Wr[20]. HereL k is the linking number
(4)  of the two curves traced out by the heads of the vectors
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¢, andé, (assuming a continuous material fram&jy =

[dsQ /27, and the writhe W r is an integer plusi/27, @)
whereA is the signed area enclosed by the curve swept out
on the unit sphere bg; [21]. For a locally inextensible
filament, the twist dynamics (7) can be interpreted as
a local link conservation law under the assumption that
smooth filament motions will not change the integer
contribution to the writhe [9]. The time derivative of the
density wr of the noninteger contribution to the writhe
is 9,wr = &3 - 9,83 X 0,&3/2m = —Im(F “)/27{.
Therefore, the twist dynamics has the fopn + j, =

0, with the “link density” p = Q/27 + wr and link
currentj = —(C/{.)Q;. Of course, since the link is not

a single integral of a local density there is no true link
density; howeverchangesin link can be written as a
single integral over a density [21]. Whilé  and Wr  FiG 2. Filament shapes at various twist densities. (a)—(c):
are conventionally defined only for closed filaments, they, = 10w, at O/Q0 = 0.22,1.0,2.22; (d)—(f): ¢ = 8W, at
equations of motion (6) and (7) show that the tradeoffqQ/Q® = 0.13,0.58, 1.29.

between twist and writhe still has meaning for open

filaments.
With the coupled evolution equations far and ©ne of the other; otherwise, all have the same handedness.

we turn to linear and nonlinear aspects of supercoilingehapes calculated from the first two modes are shown in

instabilities. The simplicity of they formulation for open  F19- 2. _ _ _ o _
filaments is seen first in the stability of a straight rod The writhe-tracking term in (7) is explicitly nonlinear;
with a uniform twist density (temporarily neglecting the When the diffusion constart/Z. = 0, twist changes only

boundary conditions of2). The linearization of (6) is when the filament writhes. In assessing the relative im-
portance of twist diffusion and writhe tracking we note

L = — Ay + ICQibgs . (8) thatwhile{, in (7) was interpreted as a rotational drag co-
efficient, in the context of bacterial filaments it is not clear
that this dissipative mechanism dominates others, e.g., re-
arrangement of the polymer network inside the cell walls.
If the shape instabilities are generated by nonequilibrium
, . twist, then twist must not relax on time scales shorter than
V‘(/"() = ¢ sin(k,s) + ¢, codkys) + _Cz(f) sinhlk,s) +  the observed buckling time (tens of minutes [22]). Using
¢, cosftk,s), with cogk,L) costik,L) = 1 [12]. Since o nyrely hydrodynamic twist diffusion consta@t/¢,

the W, (s) satisfy the boundary conditions and form a[10,23] (WithC = 10~ ergcem [24] andt, = 10~ '° erg

complete set, the shape afly free elastica in three di- goc/cm for a1 wm diameter slender rod in water), and
mensions, whether tightly wound helices or plectonemesy,o typical filament length. ~ 100 wm for buckling

7 AR
nnmuu!ll/\/l/'}/'})

The eigenfunctiondv, of —A¢* + iCQa? have eigen-

values o, = —Akﬁ + CQkﬁ (and associated growth
rates o,/{) which are real since the operator is Her-
mitian. If O = 0, the modes are planar shapes with

is expressible as the time scaler, = L2{/C for twist to diffuse out the
0 ends of the filament is only0~* sec, eliminating hydro-
Pls,0) = D Cult)Wi(s). (9)  dynamic drag as a candidate mechanism. This and other
n=1

observations (e.g., of slow stress relaxation [24]) strongly

The time evolution is a nonlinear dynamical system insuggest a dominant dissipative mechanisgithin the fila-
C,(t) = (W,|¥(2)), where thew, are normalized. ment, characterized by a very much lardgger Therefore,

The linear stability analysis of a free rod with uniform
twist is identical to that of a clamped rod with uniform
twist. Using the complex Monge representatiéfy) =
x(z) + iy(z), wherer(z) = [x(z), y(z), z], yields £ & =
—Aé,, +iCQE,,, with & = &, = 0 at the clamped
ends. Note, however, that the Monge representation is in-
capable of describing plectonemes. The critical condition
for the first centerline instability i€}, =~ 8.984/CL [12].
When the twist is nonzero, each eigenfunction is a su-
perposition of four helices with appropriate spatial damp-

ina: =54 () (1)
ing: Wa(s) Zﬂ:l ¢, explik,*’s), where for eacln the G. 3. Geometric untwisting. Filament shapes are calculated

four k{# are in general complex. Modes with negative from numerical integration of (6) and (7) with/A = 1. Time
eigenvalueo, have three helices of one handedness ang@roceeds from left to right.
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FIG. 4. Details of geometric untwisting. (a) Twist density
evolution, with dotted line showing initial profile. Asymmetry
in Q) arises from that of the initial shape. (b) Time evolution
of twist, bend, and total elastic energy.

we consider the limit of negligible diffusion constant

ties of bacterial fibers [26] and elucidate possible twist-
induced instabilities in related systems, such as thermally
fluctuating nucleic acids [27].
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