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Effect of Surface Charge on the Curvature Elasticity of Membranes 
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Within the Debye-Hiickel approximation we calculate the energy of the diffuse double layer of a charged membrane for 
planar, cylindrical, and spherical geometry. Comparing the three energies with the phenomenological formula for the 
curvature-elastic energy of fluid membranes, we find the electrical contributions to the bending rigidity, the elastic modulus 
of Gaussian curvature, and the spontaneous curvature. The same value for the modulus of Gaussian curvature is obtained 
from the stress profile of the flat membrane. 

Curvature elasticity is a useful concept to understand and 
predict the shapes of lipid bilayers, also called and 
surfactant  monolayer^^.^ if the radii of curvature are much larger 
than the constituent molecules. The phenomenological formula 
for the bending energy per unit area may be written in the usual 
quadratic approximationS 

Here c1 and c2 are the principal curvatures (inverse radii of 
curvature), cs is the spontaneous curvature, k, is the bending 
rigidity, and k, is the elastic modulus of Gaussian curvature cIc2. 

Some years ago Israelachvili et a1.6 proposed a condenser model 
to account for the bending energy of fluid membranes. It assumes 
surface charge and electrolytic countercharge of each monolayer 
to form a condenser of fixed spacing which is held together by 
the interfacial tension at  the water/oil boundary. The condenser 
model is complet? in the sense that it gives nonvanishing values 
for both k, and k, and, with asymmetric bilayers, also for cO.’ 
However, it is rather special and of interest mainly in its gener- 
alized version in which the origin of repulsion need not be elec- 
trostatic. 

More recently, Ljunggren and Eriksson* asserted that the 
curvature-elastic energy of membranes is solely due to electrostatic 
double layers. Comparing their results for cylindrical and spherical 
geometry, they distinguished and calculated both elastic moduli. 
However, their theory is incomplete as they use an ansatz for the 
bending energy of the monolayer which is strictly linear in c1 + 
c2. This should lead to a vanishing bending rigidity also for the 
bilayer. (They escape this conclusion by overlooking the difference 
between the monolayers in the number of molecules per unit area 
of membrane middle surface.) A formula for the energy of the 
electric double layer of spheres which contains a linear and 
quadratic term was recently given by Overbeek et aL9 

In the present note we calculate the electrical contribution to 
the curvature-elastic energy of membranes in the framework of 
the Debye-Huckel approximation. Considering plane, cylinder, 
and sphere, we obtain a nonzero bending rigidity, an elastic 
modulus of Gaussian curvature, and a spontaneous curvature. The 
same value of the Gaussian modulus is obtained from the stress 
profile of the flat membrane. We point out the intricate depen- 
dence of the latter modulus on the mechanical properties of the 
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membrane. The spontaneous curvature associated with asym- 
metrically charged membranes is also calculated. 

The usual starting point to derive the electrostatic potential 4 
within the Debye-Hiickel approximation is the linearized Pois- 
son-Boltzmann equation 

A4 = x24 (2) 
where A is the Laplacian. Because of the symmetries 4 is a 
function of the distance from the charged surface only. The 
quantity 

= ( (3) 

denotes the inverse Debye length. Here no is the density of 
(monovalent) ions of one sign in the electrolyte far from the 
membrane, e is the elementary charge, ew the dielectric constant 
of water, k Boltzmann’s constant, and T temperature. 

We assume in the following calculations that the field emanating 
from the surface charges goes only into the water, thus neglecting 
any electrical coupling of the monolayers. This simplification is 
justified for Debye lengths up to (t,/q)d, where d is the membrane 
thickness and cL the dielectric constant of the lipid, e.g., up to 160 
nm for co/tL = 40 and d = 4 nm. The surface charge density on 
the inner interface of a curved membrane (sphere or cylinder) 
a t  radius r = a is denoted by a, and that on the outer one a t  r 
= b by ab The charge densities are thought to remain unchanged 
when the membrane is bent. In other words, the neutral surfaces 
of the monolayers are taken to coincide with the oil/water in- 
terfaces. 

The solutions of the linearized Poisson-Boltzmann equation 
for the three geometries may be found in textbooks.I0 For planar 
symmetry they are 

d 
‘w x 2 

exp(-xz) for z 1 - (4) 
ab exp(Xd/2) = - 

if we define inside and outside and have the xy plane coincide with 
the middle surface of the membrane. With cylindrical symmetry 
one has 

where r is the radial coordinate and Zi and Ki are the modified 
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Bessel functions of ith order. Finally, with spherical symmetry 
one has 

In the Debye-Huckel approximation the free energy per unit area 
g of the electrostatic double layer is easily obtained from the 
potentials and the surface charge. For example, the inner double 
layer has the energy 

Denoting by 26 the difference in surface charges between the inner 
and outer monolayer, we can write 'Tb = u( 1 + 6 )  and ua = a( 1 
- 6 ) .  The total electric energy per unit area of membrane is in 
the case of planar symmetry 

U' 

L X  
= -(1 + 6 2 )  (7) 

In the case of cylindrical geometry we require the central surface 
of the membrane to conserve its area A,, which means that the 
outer monolayer gains as much material as the inner one loses. 
Keeping only terms up to second order in 1/R, where R is the 
radius of the central surface, we obtain for the total energy per 
unit area of membrane 

where A(in) = A,(1 - d/(2R)) and A("') = A,(1 + d/(2R)) are 
the areas of the inner and outer interfaces, respectively, and d 
the thickness of the membrane. We proceed in a similar way in 
the case of spherical curvature. Assuming again the total mem- 
brane surface to be constant yields for spherical surfaces a different 
partition, the inside area becoming A('") = A,( 1 - d/R)  and the 
outer one A@') = Ac(l + d/R). (This implies a decrease of the 
central surface area proportional to 8 / R 2  which is irrelevant.) 
The result is 

= - (1+ 6 2  a2)[ 1 +-!+($-$)I + -$6[ $ d - t ) ]  CwX 

(9) 
If the principal curvatures are expressed by the radius R of the 
cylinder or sphere, eq 1 becomes, for the respective symmetries 

&Ae = !hk,(co)2 (10) 

g s ?  = l/tk,( f - co) 2 1  + E,? 

apart from a constant term which is omitted. Adopting these 
dependences, we obtain from (1 1) the electric contribution to the 
bending rigidity 

and from (1 1) and (12) that to the modulus of Gaussian curvature 

The electric contribution to the spontaneous curvature is found 
to be 

equally from the cylinder a_nd the sphere. 
It is interesting to derive k,C1 by a further completely different 

method. The modulus of Gaussian curvature has been shown to 
be the second moment of the stress profile s(z) of the flat mem- 
brane;" i.e. 

Here s(z) is the three-dimensional stress (normal force per unit 
area) along a vertical cut through the membrane, z being the 
coordinate normal to the layer. The relationship is valid if the 
zeroth and first moments vanish and, therefore, for symmetric 
membranes at zero lateral tension. In order to calculate the electric 
contributions we need the Maxwell stresses normal to the z axis 

and the electric contribution to the osmotic pressure. The latter 
is calculated from the ion concentrations 

ni = n p  exp(-z,e$/kr) 

where n p  are the concentrations far from the membrane and zi 
the charge numbers of the ions. For a 1:l electrolyte we have 
n10 = n? and z1 = -z2. Expanding the exponential and keeping 
terms up to second order yields for the electrically induced osmotic 
pressure 

if the inverse Debye length x is used to eliminate no. Insertion 
of the Debye-Hiickel potential of the flat membrane, eq 4, shows 
that the osmotic pressure is equal to the negative Maxwell stress 

The integral of the two pressures over z must be balanced by 
a positive force if the lateral tension of each monolayer is to remain 
zero. The natural position of this force is at the oil/water interface 
at  z = &d/2, since the interface was specified in our model as 
the neutral surface of the monolayer. Accordingly, we may write 

-Txx = -Tyy. 

which, with z2 = ( z  - (d/2))2 + (z - (d/2))d + (d/2)2 for z > 
0 and the corresponding transformation for z < 0, is readily seen 
to result again in eq 14. 

Let us now estimate the electric contribution to the bending 
rigidity which can be obtained in the range of validity of the 
Debye-Huckel approximation. The Debye length of very pure 
water, x-' = IOd m, permits a surface charge density up to about 
u = A s m-2. This is seen by inserting u into (4) which leads 
to the surface potential 4 = 0.014 V and thus e& = ' / , k T .  In- 
serting x and a into (13) yields k2l = J. The maximum 
surface charge density allowed within the Debye-Huckel ap- 
proximation is inversely proportional to the Debye length. In- 
spection of eq 13 for kcel shows, however, that the increase in 
surface charge is more than compensated by the decrease of the 
Debye length. In fact, the maximum k:* compatible with the 
Debye-Htickel approximation is proportional to the Debye length. 
The bending rigidity of lecithin membranes has been rneasuredl2 
to be of the order of J. With the more typical Debye length 
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of distilled water, x-' = lo-' m, it would be increased by ca. 10% 
to the maximum allowable surface charge density which is now 
lo4 A s m-2. The new limit corresponds to 6 X 1014 elementary 
charges per m2 and to a fraction of 0.036% of singly charged 
molecules if the molecular cross section is 6 X m2. The effect 
of this charge density should be measurable with lecithin mem- 
branes and even more so with more flexible bilayers. 

The electric part of the bending rigidity does not depend on 
the membrane thickness din our approximation which is quadratic 
in the curvatures. Therefore, it is also independent of the position 
of the neutral surface of the monolayer. In contrast, the electric 
contribution to the modulus of Gaussian curvature contains a 
second term which is proportional to d .  We have seen that the 
position of the neutral surface enters into the derivation of this 
term. The actual situation is even more complicated than our 
model since the mechanical force balancing both the pressure due 
to the Maxwell stresses and the electrical part of the ion gas 
pressure will be balanced not by a 6-function-like force but by 
a change of the whole mechanical stress profile similar to that 
occurring under lateral tension. (This may have an effect on the 
bending rigidity which we ignore.) The second term dominates 
for x-' < d .  While this condition is easily satisfied, a strongly 
negative E:1 may be expected only for surface charge densities 

far beyond the limit of the Debye-Hiickel approximation. It is 
conceivable that in favorable cases the total energy of a spherical 
vesicle 

also becomes negative. That might result in the spontaneous 
vesiculation which has been observed with certain membranes 
when their surface charge density was made very large.13s'4 
Further theoretical work is needed to check and quantify our 
expectation. 

It should also be noted that the quasi one-dimensional De- 
bye-Huckel approximation breaks down for very small surface 
charge densities, Le., if the mean spacing of the charged lipid 
molecules is much larger than the Debye length. We are below 
this limit for u = IO4 A s m-2 and x-' = lo-' m, but cross it when 
0 is increased and x-' decreased by a factor of 10. However, we 
feel that the use of the quasi-one-dimensional Debye-Hiickel 
approximation is justified as a first step toward understanding 
the effect of the electrostatic double layer on the curvature 
elasticity of membranes. 
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The dissociative ionization of cubic ice, induced by 488-nm radiation from a CW argon ion laser, has been monitored through 
the conversion of intact D20 molecules isolated in protiated ice films to neighbor-coupled (HOD)2 units at -90 K. By coupling 
the laser beam to the 3-bm-thick ice films using an interference-enhanced internal-reflection approach, the photon density 
was sufficiently enhanced that isotopic exchange was extensive after a few hours. The absorption of the blue light, and therefore 
the dissociative ionization, presumably depends on single-photon excitation of the vibrational overtones of the water molecules 
as has been reported for liquid water. 

The dissociative ionization of pure liquid water induced by 
singlephoton vibrational excitation was first reported over a decade 
ago' and has been the basis for other more recent studies.2 The 
single-photon nature of the ionization was deduced from an ob- 
served correlation of the frequency dependence of the ionization 
efficiency with the features of the overtone spectrum and an 
observed linear dependence of the effect on the laser beam intensity 
(1.5-50 M W  cm-2). Because the quantum efficiency for such 
ionization tends to increase with increasing photon energy, while 
the absorption coefficient of water decreases with a similar rate, 
the extent of induced ionization is relatively insensitive to photon 
energy for frequencies ranging from 10 000 to 20 000 cm-'. A 
similar single-photon-induced ionization of ice has been anticipated 
but several attempts to observe this phenomenon in pure ice a t  
wavelengths greater than 200 nm have been unsuccessf~l .~ 
However, in this Letter we report conclusive evidence for the 
dissociative ionization of ice for a single frequency, namely the 
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20050 cm-I (488 nm) radiation of a C W  argon ion laser. 
The successful observation of vibrationally induced ionization 

of ice has depended on (a) the availability of a sensitive probe 
of the presence of nonthermal mobile protons in ice, and (b) the 
generation of exceptionally large C W  electric field intensities 
within the ice samples. A sensitive probe that measures integrated 
proton activity for unlimited time periods is available from recent 
studies of ionic defect activities in cubic These studies have 
been based on (a) the growth of thin films of cubic ice containing 
-2% intact D 2 0  using vapor-beam epitaxial cocondensation 
techniques at  125 K and (b) the recognition that proton hopping 
converts D20 molecules into (HOD)2 units while the subsequent 
conversion to isolated HOD molecules requires the passage of 
mobile Bjerrum defects. Since there are no thermally generated 
mobile protons or Bjerrum defects in pure ice a t  temperatures 
below 130 K, D 2 0  remains intact indefinitely in H20-ice films4 
However, mobile protons, generated by using either high-energy 
electrons or UV radiation, convert isolated D 2 0  molecules to 
(HOD)2 units, which accumulate to an equilibrium saturation limit 
for temperatures less than 130 K.5+6 Since the vibrational spectra 
of isolated D20,  (HOD)2 and isolated HOD are known, the 
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