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Fluid-membrane tethers: Minimal surfaces and elastic boundary layers
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Thin cylindrical tethers are common lipid bilayer membrane structures, arising in situations ranging from
micromanipulation experiments on artificial vesicles to the dynamic structure of the Golgi apparatus. We study
the shape and formation of a tether in terms of the classical soap-film problem, which is applied to the case of
a membrane disk under tension subject to a point force. A tether forms from the elastic boundary layer near the
point of application of the force, for sufficiently large displacement. Analytic results for various aspects of the
membrane shape are given.
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[. INTRODUCTION much theoretical, computational, and experimental attention,
a simple intuitive picture for tether formation that exploits
Imagine a soap film connecting two nearby parallel ringsthe insensitivity to geometric constrainsuch as volume
that are slowly pulled apart. The film evolves through a seconservationand emphasizes the role of the most essential
ries of catenoids until the ring separation reaches a critica¢ontrol parameters has yet to emerge. It is therefore natural
value. Then the film breaks. Now imagine performing theto study the theory of tethers in the simplest possible situa-
same experiment with microscopic rings connected by a lipidion, namely, the classic soap-film geometry described above
bilayer membrane. In this paper, we will show that the mem<{Fig. 2). This model situation captures the essential features
brane forms catenoidal shapes at small ring separations, baf the tether shape and formation without the experimentally
instead of breaking, the membrane forms a thin cylindricaimportant, but ultimately complicating, effects of volume
tether for sufficiently large displacement. and lipid conservation. Our quasianalytic approach exploits
A situation very much like this imaginary experiment the smallness of the tether radius, and is complementary to
arises in a host of real experiments on artificial vesiclesimportant numerical work by various groups, most notably
living cells, and organelle membranes such as that of théleinrich et al. [6]. We begin our analysis in Sec. Il with a
Golgi apparatus. Perhaps the most controlled tether experliscussion of shells, balloons, and soap films in order to
ment is that of Evans and Yeung, in which a tether formscontrast their familiar mechanical properties with the pecu-
when a quasispherical vesicle held at a fixed tension is madégr properties of lipid bilayer membranes. The latter are the
to adhere to a stationary bead, and then withdrgljriThere ~ subject of Sec. I, which defines precisely the model prob-
are many variations on this experimental thef@e6], and lem. Section IV reviews the elements of the soap-film prob-
such experiments have been used to measure a wide varidgm that are relevant for understanding the formation of teth-
of membrane mechanical propertie§. ers, the subject of Sec. V. There we use asymptotic methods
Tethers commonly form in less controlled situations asto solve the linearized equations for small ring displacements
well. Simply pulling on a vesicle or cell with a sufficiently and large tensions, and find that the membrane shape is that
large point force leads to a membrane tettiég. 1). Tethers  of a catenoid with a small elastic boundary layer surrounding
form when tubulin trapped inside a vesicle polymerizes tothe smaller ring(the point forcg. At a critical ring separa-
form microtubuleg8]: as the microtubules grow, the initially tion, a tether forms from the elastic boundary layer. The
spherical membrane at first distorts into an ellipsoidal shapdgther shape is studied analytically and numerically, and a
and then eventually forms a surface of revolution with aconnection is made with the classic film-coating calculations
contour in the shape of the Greek lettep™ [9—11]. Im-  of Landau and Levicli14], as well as Bretherton’s related
provements in staining techniques have recently revealed dgalculation of the shape of a long air bubble rising in a fluid-
namic tether networks in the Golgi apparatus of living cellsfilled capillary tube[15]. Section VI is the conclusion. The
[12]; similar model membrane networks have been stuitied Appendix reviews the subtleties that arise when comparing
vitro and used as templates for making more durable net-
works[13].
The variety of conditions under which tethers occur
shows that they are robust structures, insensitive to the de- ©
tails of applied forces and boundary conditions. Despite

*Electronic address: Thomas_Powers@brown.edu FIG. 1. Equilibrium shapes of a vesicle subject to various point
"Electronic address: huber@umb.edu forces[10]. An optical tweezer exerts the point force, which in-
*Electronic address: gold@physics.arizona.edu creases from left to right. Figure courtesy of D. Fygenson.
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2r spherical shell isgeometrically rigid On the other hand,
I L i there are isometric small deformations of a spherical shell
with a circular hole[16]. The problem of determining the
geometric rigidity of an axisymmetric shell with boundaries
was solved using the qualitative theory of differential equa-

h tions [18]; for recent progress using a geometric approach,
9 which can be generalized to nonaxisymmetric shells, see
Ref.[19].

Next, consider the case of balloons. Like plates with van-
ishing thickness, there is virtually no cost to bend a section
of a balloon compared to the cost of stretching or shearing.
However, deformations are not required to be isometric since
the cost of stretching is also low. Such a material is called a
“membrane” in the theory of elasticitj16]; to avoid confu-

FIG. 2. Model problem. Two parallel rings with aligned centers Sion with lipid bilayer membranes, this terminology will not
are connected by a lipid bilayer membrane in contact with a lipidbe used. Since real balloons are easily stretched out of the
reservoir at fixed chemical potentigler unit area . linear elastic regime, the nonlinearity of the governing equa-

tions arises from the constitutive relations as well as the ge-
the variational approach for lipid bilayer membrane elasticityometry of large deformations. Anyone who has inflated a
to that of moment and force balance. cylindrical balloon has seen a phenomenon very much simi-
lar to the tethers of Fig. 1. A partially inflated balloon has
two cylindrical regions, one smaller than the other, which are
smoothly connected by a junction region. However, this phe-

Before exploring the lipid bilayer membrane propertiesnomenon differs fundamentally from that of tether formation
that give rise to tethers, we review three examples of elastitn lipid bilayer membranes for several reasons. No point
surfaces encountered at the macroscopic scale: shells, bédrce is required to make a balloon form a tether; it arises
loons, and soap films. Much intuition about elastic surfacegrom the nonlinear constitutive relation between tension and
derives from these canonical examples. Some of this intuareal extension, which is reflected by a nonmonotgni¢
ition can be directly applied to lipid membranes, but it is curve, reminiscent of the isotherms of the van der Waals
illuminating to point out the crucial differences as well. equation of state for a gg20]. The material in the larger

Shells are solid surfaces with a small thickness and a prezylinder is stretched more, and thus has a higher tension. The
ferred shape in the absence of external stresses. A plate issealler cylinder is under smaller tension; the difference be-
shell with a flat preferred shape. It is a matter of commontween the axial force of each tension is precisely balanced by
experience that the force required to bend a thin platéhe net pressure on the junction region. Thus, a pressure
through a certain displacement is much less than that rgump across the surface of the balloon is crucial for this
quired to stretch the plate through the same displacementether. Below it is shown that such a pressure jump is unnec-
The plate can undergo large displacements through bendirgssary for lipid bilayer membrane tethers.
without subjecting each element to large stress; thus, linear Our final canonical example is the “ideal” soap film,
elasticity is valid and the nonlinearities in the equations forwhich simply minimizes area subject to the boundary condi-
shape are solely geometrical. In the limit of small plate thick-tions and volume constraints. Effects such as thickness varia-
ness, stretching energy exceeds bending energy, since beriins and draining do not have a clear counterpart in the case
ing is differential stretching. Deformations without stretching of lipid bilayer membranes, and are therefore disregarded.
are, therefore, of lowest enerfj¥6]. These deformations, in Since soap films are liquid, the static in-plane shear rigidity
which the distances between nearby points remain fixed, aneanishes, and the notion of geometric rigidity does not apply.
called isometric For example, the axisymmetric isometric Deformations need not be isometric and folds are not re-
deformations of the plane are cylinders and cdrd&%. Note  quired to bend a flat film into a hemisphef@here can be
that a shearing motion locally stretches the plate, even if theolidlike folding behavior in liquid-film dynamics whenever
total area does not change. Bending enefaiyd possibly bending flows are preferable to extensional flg®%].) Un-
boundary conditionsremoves the degeneracy when, as inlike the case of plates, interfacial tension is a material prop-
the case of a flat plate, there is a multiplicity of isometricerty of the soap film, and is not determined by external
deformations. Bending also plays a role near boundaries arfdrces. To imagine poking a soap film with a point force,
point forces. A familiar example of a plate with vanishing consider again the geometry of two rings described in the
thickness is a sheet of paper, which bends easily but hardiytroduction, but now take one ring radius to be much
stretches or shears. The reader can easily verify that a sheanhaller than the other. Equilibrium solutions exist only when
of paper subject to a point force forms a cone with a singlehe ring separation is less than a critical separation, compa-
fold, a shape with twofold symmetry. For shells, the isomet-rable to the radius of the smaller ring. At a slightly larger
ric constraint on deformations is even more sevAmy de-  separation, the film breaks. The equilibrium shapes are shal-
formation of a sphere requires some local stretching or shealew catenoids, and look nothing like tethéssructures remi-
ing: no almost-spherical shapes are isometric to the sphere. #iscent of thin tethers form during the rupture of a soap film,

II. SHELLS, BALLOONS, AND SOAP FILMS
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but these have a dynamical origin; see R&R]). However, bilayer couple mode[27-31. In the spirit of explaining
these shallow catenoidal shapes resemble the junction regigaether formation in the simplest possible context, these are
between the tether and vesicle of Fig. 1. Soap films andlisregarded.
catenoids will be studied in more detail in Sec. IV. Although typical values for the elastic bending modutus
Lipid bilayer membranes have elements of each of thesare (10—-15 kgT, thermal fluctuations easily excite long-
examples. Like macroscopic plates, lipid membranes resistavelength bending modes since the elastic energy vanishes
bending, but they are typically fluid and therefore lack geo-as the fourth power of the wave number for fluctuations
metric rigidity, similar to soap films. The interplay between about a flat sheet. These fluctuations lead to an entropic area
these solidlike and fluid properties leads to the formation oklasticity similar to that of semiflexible polymers, as is most
tethers. directly illustrated by the experiments of Evans and Rawicz
[32] (see also Ref.33]). In these experiments, the tension in
a vesicle is measured as a function of apparent area by suc-
lll. LIPID BILAYER MEMBRANES tioning a small amount of the vesicle membrane into a pipet.
A. Bending elasticity At low suctions(or low tensiong the resistance to stretching

There is a vast literature on the mechanics of lipid bila eris the entropic penalty of reducing the number of fluctuating
- P Y€ modes. At high tensions, most of the thermal ripples have
membranege.g., see Ref[23]). Here we review only the

aspects relevant to tethers. Lipid molecules are amphiphilicbeen smoothed out, and the resistance to stretching is mainly

composed of two oily hydrophobic chains attached to a poladue.to the membrane’s intrinfsic area eIas'Ficity. Th_ermal fI_uc-
o 7 . . fuations are therefore negligible for the high tension regime
hydrophilic head. Lipids self-assemble in agueous solution t%onsidered here
shield the chains from the water, forming micron-size bilayer '
surfaces. In the fluid phase, a typical self-diffusion constant
for a lipid molecule in a membrane is of order 0 cn?/sec B. Model problem and nondimensionalization
[24]. The membrane is clearly a two-dimensional fluid over  As in the Introduction, consider a lipid membrane span-
the time scale of typical tether experiments: a molecule willning two rings that are initially concentric and lying in the
diffuse from one side of a one-micron radius sphericalpjanez=0 (see Fig. 2 The outer ring of radiui remains in
yesicle to th_e other in about a second. Hence, there is ngjs plane, but the height, of the inner ring will be varied.
in-plane static shear modulus. However, membranes have geasuring all lengths in units of the radi& henceforthR
nonzero bending modulus since bending the membrane com- 1 The inner ring then has radiug<1. Later, we will take
presses and extends the slightly elastic heads and tails of the .o to model the application of a point force. For com-
lipid molecules. The fluid nature of the membrane constraingarison with the case of soap films and also for the numerical
the form of the elastic energy to depend only onshapeof ~ approach, it is convenient to keep nonzero for now. As-
the membrane. To lowest order in curvatures, the bendingyme that there is a reservoir of lipid at a fixed chemical
energy is given by the expression of Canhg8] and Hel-  potential (per unit arep w. Further suppose this “surface
frich [26], tension” is very large compared to the bending elasticity,
wR?> k. Thermal fluctuations are therefore negligible. Since

Eo= de{E(ZH)ZnL fK} (1) the membrane has edges, the Gaussian moauaffects the
2 2 shape through the boundary conditigmscall the geodesic
curvature term of Eq(2)]. For simplicity, we disregard this
whereH is the mean curvature of the membrane surface andffect and sek=0.

K is the Gaussian curvature: (and « are elastic constants Our model is closest in spirit to the tether experiments of
In terms of the principal radii of curvatur®, andR, at a  Evans and Yeund1] mentioned earlier. The pipet suction
point on the surface, R=1/R;+1/R, and K=1/(R;R,).  sets the value of the tensignand the small amount of lipid
Explicit formulas for these curvatures will be given below. projecting inside the pipet serves as a reservoir. In the ex-
For simplicity, suppose that there is no difference betweemperiments, the vesicle is under pressure and is therefore
the two sides of the bilayer; hence, there is no spontaneowirved, whereas in our model there is no pressure jump
curvature. The Gaussian curvature term is typically dropped@cross the initially flat membrane. The role of the pressure in
in studies of vesicles since it amounts to the sum of avesicle tethers is small since the tether curvature is much
deformation-independent term and a boundary term by théarger than the vesicle curvature for high tension. In fact, it is
Gauss-Bonnet theorem, shown in Sec. VB2 that the pressure leads to a subleading
correction to the tether radius.
The complete specification of the model problem requires
jds K+ %dsngzwx, (2)  defining the boundary conditions at the rings. The tangent
plane of the surface at the point force is perpendicular to the
force if the line of action is along the axis of symmetry.
where y is the Euler-Poincareharacteristic andegy is the  Since the role of the small ring is to mimic a point force, the
geodesic curvature of the boundary of the surfdcg. Note =~ membrane is clamped so that the tangent plane at each point
that a more detailed treatment of the formation of tethers iron the boundarywith the small ring is in the plane of the
vesicles would require additional terms of the generalizegmall ring. The ring at =1 is somewhat artificial; therefore
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we choose the simplest possible boundary conditionrfor
=1, which turns out to be zero moment,=0 [16]. The

outer ring acts as a hinge. Defining the dimensionless param-

eter

K

EW, ©)

€

(recallR=1), the problem is to minimize the energyea-
sured in units ofuR?)

£= fds+ gfdsaH)z @)

for given ring separatioin, subject to the boundary condi-

tions ande<<1. Equation(4) casts the tether problem into the
same form as the classic variational problem for a minima
surface €=0).

C. Euler-Lagrange equations

PHYSICAL REVIEW B5 041901

szi

Vg

whereg is the determinant of the metric tensgy and r2
+272=1 was used to simplify8).

The Euler-Lagrange equatio(b) for an axisymmetric
shape is a nonlinear ordinary differential equation, easily
solved with numerical methods. However, more insight is
gained by exploiting the smallness ef Since e multiplies
the term in Eq.(5) with the highest number of derivatives,
there will be a boundary layer. The layer occurs where the
boundary conditions are incompatible with E&) with €
=0. It is now clear why the zero momeht=0 boundary
condition is the most natural condition at the larger ring: this
boundary condition is compatible with the minimal-surface

quation and does not lead to a boundary layer at the larger
ing. The clamped boundary condition at the smaller ring,
however, is incompatible with the minimal-surface equation,
since the ring must exert a moment on the surface to keep it
clamped. In this boundary layer, bending and tension balance

N 1d d
99" \/§0sz as’ gs’ (10

The derivation of the Euler-Lagrange equations from theand the shape is determined by the full Euler-Lagrange equa-

energy of Eq.(4) is somewhat lengthy but straightforward
[34]. The result is
2e(V?H+2H3—2HK)—2H+Ap=0, (5)
whereV? is the covariant Laplacian on the surfade (the
Lagrange multiplier enforcing volume conservation for

closed vesiclgsmeasured in units ofi/R (in other words,
) is zero for our soap-film geometry, but it is included in

tion, where the smallness af is offset either by larges
derivatives or large curvatures. Balancia§2H with H in

Eqg. (5) reveals that the boundary layer thickness scales as
Je. In the outer region, beyond the elastic boundary layer,
bending is unimportant and the shape is governed by the
minimal-surface equationti=0. The only nonplanar axi-
symmetric minimal surface is a catenoid, the surface of revo-
lution generated by a catenaf7]. Thus, the membrane
forms a catenoid in the outer region. The following section

Eq. (5) for later discussion of the effect of pressure on tethereviews basic facts about catenoids.

shape. Note that=0 andAp=0 yields the minimal-surface
equation,H=0. Since the membrane shape is a surface o
revolution, natural coordinates for the surface arthe azi-
muthal angle and arclength along a meridian. Arclength is
measured from the inner ring, which has coordinste0.
The position of a point on the surface is, therefofés, ¢)
=r(s)r+z(s)z, wherer and z are cylindrical coordinates.
Note thatr2+z2=1, sinces is arclength.

With these choices, the metric, or first fundamental form,
is

gi;jdédg=ds?+r2de?, (6)

where&l=s and £2= ¢. The second fundamental form is
Kijdfidng(Zsrss—rSZSS)dSZ—I’ZSdgoz, (7)

wherezs=dz/ds, etc. We follow the usual conventions for
raising and lowering indices using the invegseof the met-
ric tensor. Thusg™gy;= &, K;=g"K,;, and

1 . lirgs 2z
=_JglK.=—| 22— 2
H Zg KI] 2 ZS r 3 (8)
i lss
K=detk|=——=, 9)

f IV. CATENOID LORE

We noted in the preceding section that settaig0 and
Ap=0 in Eqg. (5) results in the minimal-surface equatiéh
=0. To leading order, the outer solution to E§) is given
by exactly the same condition. The solution to the minimal-
surface equation is conveniently found by applying Noet-
her’s theorem directly to the energy functiord) with e
=0. To this end, rewritel S in terms ofr(z2),

E= fd@dzr\/lJrrg.

11)

The conserved quantity associated with the invariance of the

integrand of Eq(11) with respect to translations inis the
axial force F necessary to hold the rings apart at a given
separation,

F

r

2w \[1+r2

(12

The radiusr attains its minimum valud=F/(27) when

r,=0. Integrating Eq(12) yields the catenoid

Z—C
r=bcos|‘( )

b (13

041901-4



FLUID-MEMBRANE TETHERS: MINIMAL . .. PHYSICAL REVIEW E 65 041901
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FIG. 3. Ring separatiohy vs minimum neck radiub (force by
21r) for the values ;=0.2,0.4,0.6,0.8, and 1.0, proceeding from the
innermost curve to the outermost curve. For a gikgras the rings
are separated, the sequence of shapes corresponds to the trajectory
marked with arrows.

wherec is thez coordinate of the minimum radius. Note that

b is the minimumpossibleradius; i.e., it is possiblyot at-

tained. The minimum radius is attained onlyci& h,,. FIG. 4. The two catenoidal solutions with equal-size rings (
The boundary condition r(0)=1 determines ¢ =1) and ring spacindn,=0.6; the lower catenoid has less area.

= +cosh ¥(1/b), and thus Eq(13) expands to

and then use Ed14) to find the shape. This shape can cor-
7 7 respond to the catenoid with greater or lesser area, depending
_ 2 .-
r=cosi‘(5) FVl1-b sml-(B). (14)  on the value chosen far,.
Finally, the arrows in Fig. 3 display the trajectory of
o _ _ shapes as the rings are separated. The fericereases from

The upper sign is chosen as it corresponds to catenaries withy 1o 4 maximum value, and then decreases slightly before
a minimum neck radius at a positive valueofc>0). The  he film breaks. This nonmonotonic behavior occurs in the
force F, or equivalently the minimum neck radils is de- 556 of tethers as well. as is shown below.
termined by the boundary condition at the other ringh) '

=rg, Of
V. FROM CATENOIDS TO TETHERS

ho — . [ho As discussed earlier, for small but nonzerothe outer
ro—cosl‘( F) —Vi-b sm?‘(F : (19 region of the membrane will have a catenoidal shape, and

there will be an elastic boundary layer near the small ring.
Solving (15) for h, gives the separation as a function of This elastic boundary layer allows the attainment of the point
force force limit, ro—0, in contrast to the case of the soap film.

We begin with the analysis of the case of small axial sepa-

ration, hy<€1.
ot \/r(z)—b2) 0

1—1-b? 1o

. Whenhgy<1, it is most convenient to work in the Monge
Note that the two'branch('as form a closed curve 'nb% parameterization, in which the surface is represented by its
plane forry<<1 (Fig. 3). Since each curve has a maximum heightz(r) above the plang=0. To leading order irh,
(marked with a dot for the curveg=0.6 andry=1.0), there " o mean curvaturH~ (1/2)V2z, and the Eulér-
is a critical ro-dependent separation beyond which nOLagr,ange equation reduces to ’
catenoidal solution exists. The soap film spanning the two
rings breaks just beyond this critical separation. For fixgd eViz—V?%z=0, (17
and a given separatidn, below the maximum, there are two
catenoidal solutions. For example, Fig. 4 illustrates the twq,;ip,
equilibrium catenoids witlrg=1 andhy=0.6. For a given

ho=b In(
A. Small displacements

hy, one can show that the catenoid with the largéras less 1dl d
area. Thus, the solution with the smaller néelg., the upper v2=C_ _[ r _}_ (18
catenoid in Fig. #is unobservable in real soap films. In the rdrl dr

presence of bending stiffness and a fully developed tether, it

is shown below that the axial force is72/2¢. To see which  The boundary conditions at the large ring 1 arez=0 and
catenoid matches onto a fully developed tether, equate thiéae condition of zero momen¥?z=0. At the inner ringr
axial tether force to the axial catenoidal forcel2to find b, =ry, the displacement=h, and the slopeh/dr=0.
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At order €°, the outer solution satisfie§2zy,(r)=0,
ie.,

ZoutelF)=b1+byInr. (19

The boundary condition on displacementrat 1 fixes b,
=0. The zero-moment boundary condition adds no con- ) ) . =
straint on the solution of Eq19); b, must be determined by ' 0.2 04 0.6 038 1.0
matching to the inner solution. r

Note that the outer solution diverges at the inner ring as fig, 5, comparison of membrane profiles,mposid") or o
ro—0; the inner solution must correct for this divergence. To— .1 (upper curvg and the point force limit,—0 (lower curve.
find the inner solution, expand the region nea0 with the
rescalingp=r/+/e. Then the inner solution satisfies

Zcomposité~ Zinner- (25
1d d\j1d d
S a0\ Panll 5 a0l P gy Ziert Ziner =0, (20) It is now clear why a small amount of bending elasticity
pdp\"dp/lpdp\~dp - . -
allows a membrane to support a point force: the elastic
or boundary cuts off the divergence of the logarithm of the
outer solution. To find the solutions in the limit of a point
Zinned p) force, recall Ky(ro/\e)=\elrg+0O(ro/\e) and

ho C1T 2Pt Calolp)teaKolp). @D k(ror €)== y+In@\elr)+ Ol(ro/Ve)?],  where
=0.5772 ... is theEuler constant. Thus
where | 4(p) and Kq(p) are modified Bessel functionsg

must vanish, sincéy(p) diverges asp—o and cannot be Inr+K (r/\/;)
matched to the outer solution. The boundary conditions at Zeomposit" ) = ho—o. (26)
=rg (i.e., p=rq/\/e) add two more constraints to yield —y+In(2ve)

Zinned p)
ho

=1+cy Ko(p) =Ko

To Note that the boundary conditiaR,mpoesid 1) =0 is satisfied
Je up to terms of ordee™%exp(—1/\/€)/In e for small e. Figure
5 shows that although the details of the membrane shape
ro ro pe depend somewhat sensitively on the value pfthe physical
+ ﬁKl e In T I (22} |imit ry—0 is well behaved. In this limit, the elastic bound-
ary layer becomes a small disc of approximate radjs
To match the inner and outer solutions, note tkgtp)  @round the point force. Thus, the outer solution is roughly the
decays exponentially at large. Therefore, the constant catenoid that connects a ring of radius unity with a ring of
terms ofzje Must vanish, and the coefficient of the loga- radius Ve. As in the preceding section, the maximum ring
rithmic term ofz;,,e; Must matchb,. To leading order, separation for a soap film in this situation is approximately
equal to the radius of the smaller ring. Thushgdncreases,
the amplitude of the catenoid increases uhglis of order

lo o : . . )
TKl T Inr Je. Since the amplitude of the catenoid cannot increase be-
Zouter _ € € (23  yond this value, the boundary layer deforms into a thin cyl-
ho 1y ro ol inder to accommodate further increasesijn The formation
—=Ki| —=|Inro+Ko| —= of the tether is a smooth process; there is no bifurcation.
Ve T\ Ve Ve
and B. Tether: Analytical approach
r r r 1. Tether radius, tether stability, and axial force
0 0
, ﬁKl E)MHKO ﬁ) Tether formation is an intrinsically nonlinear phenom-
nner_ (24)  enon, and to give a complete account of the tether shape we
ho o ro ro resort to numerical methods. However, many features of the
ﬁKl ﬁ InTo+Ko ﬁ tether yield to an analytic approach. The tether radius is the

most prominent such feature. Our numerical calculations will
verify that the tether has a cylindrical shape between the end
cap and the catenoidal junction. Thus, for our soap-film ge-
ometry with Ap=0, the radius follows from Eq(5) with
gonstant mean curvature and vanishing Gaussian curvature,

The Bessel functioio(r/\/€) cancels the logarithmic diver-
gence of the I term of the inner solution. To construct a
uniformly valid approximatiorc,mpesitér) for both the inner
and outer regions, add the two solutions and subtract the
common par{35]. This procedure yields the very compact
result 2eH3—H=0. (27
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Since H=—1/(2a) for a cylinder of radiusa, the exact 1.0
tether radiusa= \e/2 [1]. This square-root dependence of o9
tether radius on inverse tension has been verified experimen- 08
tally by Evans and Yeunfl]. 1
To study the stability of a tether, writdz) =a+u(z) and 0.7t
expand the elastic energg) to O(u?) [to express the metric 0.6
(7) and mean curvatur€8) as functions ofz use dz/ds 05l
=1+r’(2)?], which yields 0'4
E_Jd +6 +l1 € +au’2 03}
2z 9913 2a “2a2/|YT 2 02}
€a 2 0.1} A
+ > u”"+ ? . (28) TN

01 02 03 04 05 06 0.7 08 09 10

z
A total derivative term has been dropped in R&B). Mini- _ _
mizing theu-independent terms ovaryields the equilibrium FIG. 6. Overlay of a fully developed teth¢A) with radiusa
tether radius. The terms linear invanish as expected when = Ve/2 and a catenoidB) with minimum radiusb= y2e. In this
a takes the equilibrium valu 'e/2. Note that the terms qua- example,e=0.005 and the transition region lies roughly between
dratic inu’ vanish in equilibrium as well, since the terms 2~ 0-2 8ndz=0.4.
andau’?/2 always enter in the combinatiant au’?/2. This
combinatipn arises from 'Fhe factok/1+r'2 in thgz origingtl is_ £+2:0, (29)
energy. Since the remaining terms of Eg8) in u“ andu” 2a® a
are positive definite, the tether is stable. Therefore eting- ] ] ] ]
librium cylinder solution does not undergo a pearling insta-Since the pressure jump is everywhere uniform. For small
bility [36,37). These considerations suggest that the pearling® three solutions are
behavior induced by a rapid pull of a vesicle teth8g]

— [ 3/2
arises because hydrodynamic resistance prevents the radius a==x \el2+ el2+0O(e™), (30
from instantly assuming the value appropriate to the new _ )
value of tension. This mechanism differs in detail from that a=1/2—€e+0O(€%). (3D

of the laser-tweezer-induced instability of membrane tubes iona— — \ei2 . , ,
with fixed volume[37]. The solutiona= —+/e/2+ O(¢€) is unphysical. The solution

The tether radius determines the axial force on thed=Ve/2+O(e€) corresponds to the tether in the case

catenoid. The argument hinges on thdependence of the =0. Thus, to leading order, the tether radius_is unchanged
axial force. For an undistorted cylinder with=0 and equi- and the effect of pressure appears at ordeFinally, the
librium radius a= /2, the total energy per unit length solution with a radius near 1/2 corresponds to a balance of
EIL=2m2e, as easily follows from Eq28). Therefore, the ~Pressure and tension, and is not relevant for tethers.

axial forceF/(27) = \/2¢ saturates to a constant value inde- gzgj):n;rr]igs éc; Ogirnrggdaerl ngg:efrgrcv:\gt‘?s r_eo ’u?rg;?garﬁlrlnthe
pendent of tether length once the tether has formed. Since t §her out of thé membrane disc. there muc'lst be a teFr)wsion in
axial force is independent & the junction connecting the . Lo o

tether to the ring is a catenoid with= y2e. Note that the f[he m_embrane. Thls tension is isotropic, since the membrane
minimum attainable radius of the limiting catenoid is twice is fluid. But consider the cylindrical portion of the tether

the radius of the tether. Thus, the catenoid cannot smoothlgetween two fixed values af If this cylinder is cut in half
join onto the cylindrical tether and there must be a transitio long the long axiFig. 7), then each apparently experiences

: . . X " NSO, resultant force due to the tension. What force balances this
regmn(seg Fig. 6. Before analyzing this transition region in tension force ifAp=0?
more detail, we consider the role of pressure. The paradox is most readily resolved by comparing the
Euler-Lagrange equations of the variational approach with
the equations that follow from force and moment balance on

Evans and Yeung argued that the pressure julm a membrane element, given the lipid bilayer membrane con-
present in the case of a closed vesicle under tension, playsitutive relation[1]. The Appendix recapitulates the com-
little direct role in determining the tether radif]. Since a  parison between the two approaches to the equilibrium shape
sphere of radiuR}, has constant mean curvatureRd/and  equations. There it is shown that the coefficignof the area
Gaussian curvature Rﬁ, the Euler-Lagrange equatidb) in ~ term in the variational energy is the tension only for minimal
the spherical region of the vesicle reduces to the Youngsurfaces:u=3 + eH?, wherey is the tension. Since the
Laplace law, H=Ap (even in the presence of bending re- pressure jumpp=0, the cylindrical region of the mem-
sistanc@ Measuring lengths in units dR, (for this para- brane is in a state of pure bending=0. But due to the
graph only, the Euler-Lagrange equation in the region of thedifferential stretching inherent in bending, the outer sheet is
tether becomes stretched and the inner sheet is compreg$ag. 7). Since

2. The effects of pressure are subleading
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FIG. 8. Membrane shape for various ring separatioss;
=0.005 andr,=0.005.

FIG. 7. Axial force due to the greater circumference of the outer

leaf. oo %[? B &} 33
the sheets are fluid, the tension or compression in each sheet o P
is isotropic. The compressive and tensile forces along the _
lines of longitude of the cylinder cancétonsistent with =—- (39
Ap=0). However, since the outer sheet is longer than the P
inner sheet along a line of latitude, there is a net axial ten- 1d d
sion. The axial force at zero pressure jump is a manifestation V2= _—p—, (35)
of the liquid properties of lipid bilayer membranes. p do do
3. The tether always necks twice andp2+ 2=1. Therefore, the transition region is governed

We h that the sh f b biect t by the full nonlinear Euler-Lagrange equation, and there are
: tef ave segn da h('a f‘ ?pe o a_mgmtrzne S.lf) Jcejc O further simplifications arising from the smallness eof
point forcé and under high tension 1S best described as ﬁowever, one can use perturbation theory to study the shape

boundaryjlayer prOb'e”." with _tens_|on_dom|n§1t|ng n Fheof the transition region near the tether. lget 1/\/2+ 7, with
outer region and bending dominating in the inner region. <1. To leading order iy, Eq. (32) becomes
This situation is reminiscent of the coating problem studied” ~~ 9 7, =

by Landau and Levich14], and of Bretherton’s bubble prob-
lem [15], in which the shapes of different regions of an in-
terface are determined by different balances. The analogiote that Eq.(36) also follows immediately from Eq(28)
goes further: Bretherton showed that the trailing edge of ayith appropriate rescalings. There are four independent so-
large air bubble, rising in a capillary tube filled with viscous |utions to Eq.(36), each of the formy,=C_ exp(pa), where
liquid, has a slight ripplg15]. It will now be shown that p=+(1+i) anda=1,...,4. Theshape near either end of
there are slight ripples in the shape of a lipid membrane aghe tether region is an exponentially damped sinusoid with

bothends of the cylindrical tether region. These ripples haveyayelength 2r/+/e and decay lengti/e.
been noticed in the numerical work of Rg6].

Since bending and tension are equally important in the
junction region, we must rescale the variables to balance
these two effects. I, is the arclength corresponding to a  The preceding section shows that a description of the
point in the transition region, it is enough to assume that thénembrane shape in the junction region requires the solution
radiusr(sl) is small and close tQ/?Z, without any further of a nonlinear differential equation with no small parameters,
specification of;. It is therefore natural to rescale the radius despite the smaliness af Rather than solve this equation
as in Sec. V,r=pye. The further rescalingsoc=(s Numerically and match the solution onto the tether and
—s;)/\e and {=[z—z(s;)]/ Ve lead to a balance of the catenq|dal regions, we S|mpl)_/ solve fo_r the complete shape
bending and tension terms, numerically. Standard relaxatlor_1 techm_qtﬁ@@]_ are used to

solve for the shape as a function of ring displacentent
V2H+ 2H3—2HK—-H=0, (32)  Wwith a small ring of radiug,=0.005 mimicking the point
force. Figure 8 displays the membrane shape for varigus
where For smallhg, the shape is well approximated by the linear-

Noooe T 41=0. (36)

C. Tether: Numerical solution
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FIG. 11. Forces and moments acting on an element of an
axisymmetric membrane.

larger radii. These insights carry over to the more compli-
cated problem of tether formation in closed lipid bilayer

FIG. 9. Force vs displacement;=0.005, r ;= 0.005. membrane vesicles, where the quantitative details of the
force vs extension will be different, since tension depends on
extension. An important generalization of the problem con-

. . U3idered here would be to study membranes with varying de-
(see Sec. Y. As hg increases, the amplitude of the caten0|dgrees of in-plane order, ranging from liquid crystailine to

increases until the. limiting catenoid with= Ve is_reached_ solidlike, since the liquid nature of fluid membranes is cru-
For larger separations, a tether forms. The axial force as 8ial for tether formation

function of displacement is shown in Fig. 9. Note that the
force increases to a maximum and then decreases slightly
before saturating tq2e. This behavior is reflected in Fig. 8,
where the limiting catenoid lies inside the catenoids with We thank Vikram Deshpande for useful discussions and
slightly lower values ofhg, since these catenoids have Deborah Fygenson for Fig. 1, and acknowledge support from
slightly larger values of the minimum neck radids the Brown MRSEC on Micromechanics and Nanomechanics
=F/(2). Figure 10 shows the ripple in the junction region. of Materials(TRP) and NSF Grant No. DMR981252REG

The radial scale has been magnified for clarity. and GH.

ized catenoid with an elastic boundary layer at small radiu
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VI. CONCLUSION APPENDIX A: PLATE THEORY VS VARIATIONAL

. PRINCIPLE
We have seen that tethers in our model problem are a type

of boundary-layer phenomenon. In the cylindrical tether re- This appendix reviews the force and moment balance re-
gion, bending dominates, whereas tension dominates d&ations for axisymmetric shellgl,40], and the constitutive
relations for fluid membrand4]. The approach is equivalent

2 to the variational approach taken in the text, and elucidates
0500 k- the apparent paradox discussed in Sec. VB2. Figure 11
E shows the forces and moments acting on a small element of
0475 F fluid membrane. Only the forces and moments that enter the
F shape equations are shown, is the force per unit length
0450 | parallel to the meridian acting on an element edge along the
0425 _ az@muthal d_irect.ion.rq, is the force per unit length in the
B azimuthal direction acting on an element edge along a me-
0400 E ridian. The shearing forc®,, acts along the surface normal
: on an element edge along the azimuthal direction. The exter-
0375 F nal stressep, andp; are forces per unit area acting on the
- element in the normal and meridional directions, respec-
0350 | tively. The curvature along the meridiandég,=dé/ds, and
i the curvature in the azimuthal directiondg=sin é/r.
0325 F The balance of forces and moments is just the same as in
0300 E , N shells. Normal stress balance requires
00100 00105 00110

r

1d
FIG. 10. Ripple profileg=0.0002. Pn=TeCo ™ TnCm ™ r d_s(er)' (A1)
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Tangential stresses balance when where 7= [7.dx, 7,=[7,dX, Mp=[x7,dx, and M,
14 - dr =[x7,dx. Part of the “tension” in the membrane comes
—p== — () — = — +CQm» (A2)  from the bending moments. _
rds r ds The constitutive relation for the fluid membrane com-

. letes the specification of the shape equations. Since the fluid
wheredr/ds=cosd. Moment balance about the axis re- P pecricatl pe equat ! u!

lates the shearing foro®,, to the moments per unit length Nature _|mpI|es ISOtropyrm= 7, - Define the common value
MpnandM,, of tension asr=7,=7,. Likewise,

1d M, dr Mm=M,= «C, (A8)
Qm—Fd—S(me)—Td—s- (A3) m- e

It is useful to have an expression for the total axial forcemgeéifvz&j T;L g;f t'hlhrzz’nfgfaizeizr:(nngo&?r:?e is known once
acting on a circle of latitude. Consider the resultant of the '
normal and axial stresses along the axial direction ic
c
d Qm= Kd_s' (A9)

r(p,coséd—p;sinf) = d—s(r TmSin0—rQ ,c0sh),

(Ad)  Tangential force balance, E¢A2), becomes

where we have used Eq#1) and(A2). In our model prob- d
lem, the external stresses vaniph=p;=0. Thus,r 7,,sin ¢ —p= 4 = xc?
—rQ,cos#h is a constant, the total axial force byr2com- ds 2

pare with the axial force on a soap film, E42)],

. (A10)

In the absence of flow, the external tangential stresses vanish,

and 7= 7+ kc%/2 is constant. Howeverr and ¢ need not
separately be constant.

] o ) Inserting the constitutive relations into E@1), the nor-
Returning to the derivation of the shape equations, conmg| stress balance becomes

sider now the tangential forces per unit lengthand 7, . If

F .
Ezrrmsm 0—rQmcosé. (A5)

x denotes the coordinate across the thickness of the mem- 1 1d
brane, then = e — ke C(C—C )2 e
pn,=7C 2KC(Cm C,) K ds(r dg (A11)
Tm=T+C,Mp,, (AB) o
. But sincec=2H andK=cc,, Eq. (All) reduces to the
T,=T+CnM,, (A7) Euler-Lagrange equatiofb) with = 17.
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