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Fluid-membrane tethers: Minimal surfaces and elastic boundary layers
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Thin cylindrical tethers are common lipid bilayer membrane structures, arising in situations ranging from
micromanipulation experiments on artificial vesicles to the dynamic structure of the Golgi apparatus. We study
the shape and formation of a tether in terms of the classical soap-film problem, which is applied to the case of
a membrane disk under tension subject to a point force. A tether forms from the elastic boundary layer near the
point of application of the force, for sufficiently large displacement. Analytic results for various aspects of the
membrane shape are given.
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I. INTRODUCTION

Imagine a soap film connecting two nearby parallel rin
that are slowly pulled apart. The film evolves through a
ries of catenoids until the ring separation reaches a crit
value. Then the film breaks. Now imagine performing t
same experiment with microscopic rings connected by a l
bilayer membrane. In this paper, we will show that the me
brane forms catenoidal shapes at small ring separations
instead of breaking, the membrane forms a thin cylindri
tether for sufficiently large displacement.

A situation very much like this imaginary experime
arises in a host of real experiments on artificial vesicl
living cells, and organelle membranes such as that of
Golgi apparatus. Perhaps the most controlled tether exp
ment is that of Evans and Yeung, in which a tether for
when a quasispherical vesicle held at a fixed tension is m
to adhere to a stationary bead, and then withdrawn@1#. There
are many variations on this experimental theme@2–6#, and
such experiments have been used to measure a wide va
of membrane mechanical properties@7#.

Tethers commonly form in less controlled situations
well. Simply pulling on a vesicle or cell with a sufficientl
large point force leads to a membrane tether~Fig. 1!. Tethers
form when tubulin trapped inside a vesicle polymerizes
form microtubules@8#: as the microtubules grow, the initiall
spherical membrane at first distorts into an ellipsoidal sha
and then eventually forms a surface of revolution with
contour in the shape of the Greek letter ‘‘f ’’ @9–11#. Im-
provements in staining techniques have recently revealed
namic tether networks in the Golgi apparatus of living ce
@12#; similar model membrane networks have been studiein
vitro and used as templates for making more durable
works @13#.

The variety of conditions under which tethers occ
shows that they are robust structures, insensitive to the
tails of applied forces and boundary conditions. Desp
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much theoretical, computational, and experimental attent
a simple intuitive picture for tether formation that exploi
the insensitivity to geometric constraints~such as volume
conservation! and emphasizes the role of the most essen
control parameters has yet to emerge. It is therefore nat
to study the theory of tethers in the simplest possible sit
tion, namely, the classic soap-film geometry described ab
~Fig. 2!. This model situation captures the essential featu
of the tether shape and formation without the experiment
important, but ultimately complicating, effects of volum
and lipid conservation. Our quasianalytic approach explo
the smallness of the tether radius, and is complementar
important numerical work by various groups, most notab
Heinrich et al. @6#. We begin our analysis in Sec. II with
discussion of shells, balloons, and soap films in order
contrast their familiar mechanical properties with the pe
liar properties of lipid bilayer membranes. The latter are
subject of Sec. III, which defines precisely the model pro
lem. Section IV reviews the elements of the soap-film pro
lem that are relevant for understanding the formation of te
ers, the subject of Sec. V. There we use asymptotic meth
to solve the linearized equations for small ring displaceme
and large tensions, and find that the membrane shape is
of a catenoid with a small elastic boundary layer surround
the smaller ring~the point force!. At a critical ring separa-
tion, a tether forms from the elastic boundary layer. T
tether shape is studied analytically and numerically, an
connection is made with the classic film-coating calculatio
of Landau and Levich@14#, as well as Bretherton’s relate
calculation of the shape of a long air bubble rising in a flu
filled capillary tube@15#. Section VI is the conclusion. The
Appendix reviews the subtleties that arise when compar

FIG. 1. Equilibrium shapes of a vesicle subject to various po
forces @10#. An optical tweezer exerts the point force, which i
creases from left to right. Figure courtesy of D. Fygenson.
©2002 The American Physical Society01-1
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the variational approach for lipid bilayer membrane elastic
to that of moment and force balance.

II. SHELLS, BALLOONS, AND SOAP FILMS

Before exploring the lipid bilayer membrane properti
that give rise to tethers, we review three examples of ela
surfaces encountered at the macroscopic scale: shells,
loons, and soap films. Much intuition about elastic surfa
derives from these canonical examples. Some of this in
ition can be directly applied to lipid membranes, but it
illuminating to point out the crucial differences as well.

Shells are solid surfaces with a small thickness and a
ferred shape in the absence of external stresses. A plate
shell with a flat preferred shape. It is a matter of comm
experience that the force required to bend a thin p
through a certain displacement is much less than that
quired to stretch the plate through the same displacem
The plate can undergo large displacements through ben
without subjecting each element to large stress; thus, lin
elasticity is valid and the nonlinearities in the equations
shape are solely geometrical. In the limit of small plate thic
ness, stretching energy exceeds bending energy, since b
ing is differential stretching. Deformations without stretchi
are, therefore, of lowest energy@16#. These deformations, in
which the distances between nearby points remain fixed,
called isometric. For example, the axisymmetric isometr
deformations of the plane are cylinders and cones@17#. Note
that a shearing motion locally stretches the plate, even if
total area does not change. Bending energy~and possibly
boundary conditions! removes the degeneracy when, as
the case of a flat plate, there is a multiplicity of isomet
deformations. Bending also plays a role near boundaries
point forces. A familiar example of a plate with vanishin
thickness is a sheet of paper, which bends easily but ha
stretches or shears. The reader can easily verify that a s
of paper subject to a point force forms a cone with a sin
fold, a shape with twofold symmetry. For shells, the isom
ric constraint on deformations is even more severe.Any de-
formation of a sphere requires some local stretching or sh
ing: no almost-spherical shapes are isometric to the sphe

FIG. 2. Model problem. Two parallel rings with aligned cente
are connected by a lipid bilayer membrane in contact with a li
reservoir at fixed chemical potential~per unit area! m.
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spherical shell isgeometrically rigid. On the other hand
there are isometric small deformations of a spherical s
with a circular hole@16#. The problem of determining the
geometric rigidity of an axisymmetric shell with boundari
was solved using the qualitative theory of differential equ
tions @18#; for recent progress using a geometric approa
which can be generalized to nonaxisymmetric shells,
Ref. @19#.

Next, consider the case of balloons. Like plates with va
ishing thickness, there is virtually no cost to bend a sect
of a balloon compared to the cost of stretching or shear
However, deformations are not required to be isometric si
the cost of stretching is also low. Such a material is calle
‘‘membrane’’ in the theory of elasticity@16#; to avoid confu-
sion with lipid bilayer membranes, this terminology will no
be used. Since real balloons are easily stretched out of
linear elastic regime, the nonlinearity of the governing eq
tions arises from the constitutive relations as well as the
ometry of large deformations. Anyone who has inflated
cylindrical balloon has seen a phenomenon very much s
lar to the tethers of Fig. 1. A partially inflated balloon h
two cylindrical regions, one smaller than the other, which
smoothly connected by a junction region. However, this p
nomenon differs fundamentally from that of tether formati
in lipid bilayer membranes for several reasons. No po
force is required to make a balloon form a tether; it aris
from the nonlinear constitutive relation between tension a
areal extension, which is reflected by a nonmonotonicp-V
curve, reminiscent of the isotherms of the van der Wa
equation of state for a gas@20#. The material in the larger
cylinder is stretched more, and thus has a higher tension.
smaller cylinder is under smaller tension; the difference
tween the axial force of each tension is precisely balanced
the net pressure on the junction region. Thus, a pres
jump across the surface of the balloon is crucial for t
tether. Below it is shown that such a pressure jump is unn
essary for lipid bilayer membrane tethers.

Our final canonical example is the ‘‘ideal’’ soap film
which simply minimizes area subject to the boundary con
tions and volume constraints. Effects such as thickness va
tions and draining do not have a clear counterpart in the c
of lipid bilayer membranes, and are therefore disregard
Since soap films are liquid, the static in-plane shear rigid
vanishes, and the notion of geometric rigidity does not ap
Deformations need not be isometric and folds are not
quired to bend a flat film into a hemisphere.~There can be
solidlike folding behavior in liquid-film dynamics wheneve
bending flows are preferable to extensional flows@21#.! Un-
like the case of plates, interfacial tension is a material pr
erty of the soap film, and is not determined by extern
forces. To imagine poking a soap film with a point forc
consider again the geometry of two rings described in
introduction, but now take one ring radius to be mu
smaller than the other. Equilibrium solutions exist only wh
the ring separation is less than a critical separation, com
rable to the radius of the smaller ring. At a slightly larg
separation, the film breaks. The equilibrium shapes are s
low catenoids, and look nothing like tethers~structures remi-
niscent of thin tethers form during the rupture of a soap fil

d
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FLUID-MEMBRANE TETHERS: MINIMAL . . . PHYSICAL REVIEW E 65 041901
but these have a dynamical origin; see Ref.@22#!. However,
these shallow catenoidal shapes resemble the junction re
between the tether and vesicle of Fig. 1. Soap films
catenoids will be studied in more detail in Sec. IV.

Lipid bilayer membranes have elements of each of th
examples. Like macroscopic plates, lipid membranes re
bending, but they are typically fluid and therefore lack ge
metric rigidity, similar to soap films. The interplay betwee
these solidlike and fluid properties leads to the formation
tethers.

III. LIPID BILAYER MEMBRANES

A. Bending elasticity

There is a vast literature on the mechanics of lipid bila
membranes~e.g., see Ref.@23#!. Here we review only the
aspects relevant to tethers. Lipid molecules are amphiph
composed of two oily hydrophobic chains attached to a po
hydrophilic head. Lipids self-assemble in aqueous solutio
shield the chains from the water, forming micron-size bilay
surfaces. In the fluid phase, a typical self-diffusion const
for a lipid molecule in a membrane is of order 1028 cm2/sec
@24#. The membrane is clearly a two-dimensional fluid ov
the time scale of typical tether experiments: a molecule w
diffuse from one side of a one-micron radius spheri
vesicle to the other in about a second. Hence, there is
in-plane static shear modulus. However, membranes ha
nonzero bending modulus since bending the membrane c
presses and extends the slightly elastic heads and tails o
lipid molecules. The fluid nature of the membrane constra
the form of the elastic energy to depend only on theshapeof
the membrane. To lowest order in curvatures, the bend
energy is given by the expression of Canham@25# and Hel-
frich @26#,

Eel5EdSFk

2
~2H !21

k̄

2
KG , ~1!

whereH is the mean curvature of the membrane surface
K is the Gaussian curvature (k and k̄ are elastic constants!.
In terms of the principal radii of curvatureR1 and R2 at a
point on the surface, 2H51/R111/R2 and K51/(R1R2).
Explicit formulas for these curvatures will be given belo
For simplicity, suppose that there is no difference betwe
the two sides of the bilayer; hence, there is no spontane
curvature. The Gaussian curvature term is typically drop
in studies of vesicles since it amounts to the sum o
deformation-independent term and a boundary term by
Gauss-Bonnet theorem,

EdS K1 R dskg52px, ~2!

where x is the Euler-Poincare´ characteristic andkg is the
geodesic curvature of the boundary of the surface@17#. Note
that a more detailed treatment of the formation of tethers
vesicles would require additional terms of the generaliz
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bilayer couple model@27–31#. In the spirit of explaining
tether formation in the simplest possible context, these
disregarded.

Although typical values for the elastic bending modulusk
are ~10–15! kBT, thermal fluctuations easily excite long
wavelength bending modes since the elastic energy vani
as the fourth power of the wave number for fluctuatio
about a flat sheet. These fluctuations lead to an entropic
elasticity similar to that of semiflexible polymers, as is mo
directly illustrated by the experiments of Evans and Raw
@32# ~see also Ref.@33#!. In these experiments, the tension
a vesicle is measured as a function of apparent area by
tioning a small amount of the vesicle membrane into a pip
At low suctions~or low tensions!, the resistance to stretchin
is the entropic penalty of reducing the number of fluctuat
modes. At high tensions, most of the thermal ripples ha
been smoothed out, and the resistance to stretching is ma
due to the membrane’s intrinsic area elasticity. Thermal fl
tuations are therefore negligible for the high tension regi
considered here.

B. Model problem and nondimensionalization

As in the Introduction, consider a lipid membrane spa
ning two rings that are initially concentric and lying in th
planez50 ~see Fig. 2!. The outer ring of radiusR remains in
this plane, but the heighth0 of the inner ring will be varied.
Measuring all lengths in units of the radiusR, henceforthR
51. The inner ring then has radiusr 0!1. Later, we will take
r 0→0 to model the application of a point force. For com
parison with the case of soap films and also for the numer
approach, it is convenient to keepr 0 nonzero for now. As-
sume that there is a reservoir of lipid at a fixed chemi
potential ~per unit area! m. Further suppose this ‘‘surfac
tension’’ is very large compared to the bending elastic
mR2@k. Thermal fluctuations are therefore negligible. Sin
the membrane has edges, the Gaussian modulusk̄ affects the
shape through the boundary conditions@recall the geodesic
curvature term of Eq.~2!#. For simplicity, we disregard this
effect and setk̄50.

Our model is closest in spirit to the tether experiments
Evans and Yeung@1# mentioned earlier. The pipet suctio
sets the value of the tensionm and the small amount of lipid
projecting inside the pipet serves as a reservoir. In the
periments, the vesicle is under pressure and is there
curved, whereas in our model there is no pressure ju
across the initially flat membrane. The role of the pressure
vesicle tethers is small since the tether curvature is m
larger than the vesicle curvature for high tension. In fact, i
shown in Sec. V B 2 that the pressure leads to a sublea
correction to the tether radius.

The complete specification of the model problem requi
defining the boundary conditions at the rings. The tang
plane of the surface at the point force is perpendicular to
force if the line of action is along the axis of symmetr
Since the role of the small ring is to mimic a point force, t
membrane is clamped so that the tangent plane at each
on the boundary~with the small ring! is in the plane of the
small ring. The ring atr 51 is somewhat artificial; therefore
1-3
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POWERS, HUBER, AND GOLDSTEIN PHYSICAL REVIEW E65 041901
we choose the simplest possible boundary condition for
51, which turns out to be zero moment,H50 @16#. The
outer ring acts as a hinge. Defining the dimensionless par
eter

e[
k

mR2 , ~3!

~recall R51), the problem is to minimize the energy~mea-
sured in units ofmR2)

E5EdS1
e

2EdS~2H !2 ~4!

for given ring separationh0 subject to the boundary cond
tions ande!1. Equation~4! casts the tether problem into th
same form as the classic variational problem for a minim
surface (e50).

C. Euler-Lagrange equations

The derivation of the Euler-Lagrange equations from
energy of Eq.~4! is somewhat lengthy but straightforwar
@34#. The result is

2e~¹2H12H322HK !22H1Dp50, ~5!

where¹2 is the covariant Laplacian on the surface.Dp ~the
Lagrange multiplier enforcing volume conservation f
closed vesicles! measured in units ofm/R ~in other words,
m) is zero for our soap-film geometry, but it is included
Eq. ~5! for later discussion of the effect of pressure on tet
shape. Note thate50 andDp50 yields the minimal-surface
equation,H50. Since the membrane shape is a surface
revolution, natural coordinates for the surface arew the azi-
muthal angle ands arclength along a meridian. Arclength
measured from the inner ring, which has coordinates50.
The position of a point on the surface is, therefore,X(s,w)
5r (s) r̂1z(s) ẑ, where r and z are cylindrical coordinates
Note thatr s

21zs
251, sinces is arclength.

With these choices, the metric, or first fundamental for
is

gi j dj idj j5ds21r 2dw2, ~6!

wherej15s andj25w. The second fundamental form is

Ki j dj idj j5~zsr ss2r szss!ds22rzsdw2, ~7!

wherezs5dz/ds, etc. We follow the usual conventions fo
raising and lowering indices using the inversegi j of the met-
ric tensor. Thus,gikgk j5d j

i , K j
i 5gikKk j , and

H[
1

2
gi j Ki j 5

1

2 F r ss

zs
2

zs

r G , ~8!

K[detK j
i 52

r ss

r
, ~9!
04190
m-
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¹2[
1

Ag
] ig

i jAg] j5
1

r

d

ds
r

d

ds
, ~10!

whereg is the determinant of the metric tensorgi j and r s
2

1zs
251 was used to simplify~8!.
The Euler-Lagrange equation~5! for an axisymmetric

shape is a nonlinear ordinary differential equation, eas
solved with numerical methods. However, more insight
gained by exploiting the smallness ofe. Sincee multiplies
the term in Eq.~5! with the highest number of derivatives
there will be a boundary layer. The layer occurs where
boundary conditions are incompatible with Eq.~5! with e
50. It is now clear why the zero momentH50 boundary
condition is the most natural condition at the larger ring: t
boundary condition is compatible with the minimal-surfa
equation and does not lead to a boundary layer at the la
ring. The clamped boundary condition at the smaller rin
however, is incompatible with the minimal-surface equatio
since the ring must exert a moment on the surface to kee
clamped. In this boundary layer, bending and tension bala
and the shape is determined by the full Euler-Lagrange eq
tion, where the smallness ofe is offset either by larges
derivatives or large curvatures. Balancinge¹2H with H in
Eq. ~5! reveals that the boundary layer thickness scales
Ae. In the outer region, beyond the elastic boundary lay
bending is unimportant and the shape is governed by
minimal-surface equation,H50. The only nonplanar axi-
symmetric minimal surface is a catenoid, the surface of re
lution generated by a catenary@17#. Thus, the membrane
forms a catenoid in the outer region. The following secti
reviews basic facts about catenoids.

IV. CATENOID LORE

We noted in the preceding section that settinge50 and
Dp50 in Eq. ~5! results in the minimal-surface equationH
50. To leading order, the outer solution to Eq.~5! is given
by exactly the same condition. The solution to the minim
surface equation is conveniently found by applying No
her’s theorem directly to the energy functional~4! with e
50. To this end, rewritedS in terms ofr (z),

E5Edw dz rA11r z
2. ~11!

The conserved quantity associated with the invariance of
integrand of Eq.~11! with respect to translations inz is the
axial force F necessary to hold the rings apart at a giv
separation,

F

2p
5

r

A11r z
2

. ~12!

The radiusr attains its minimum valueb5F/(2p) when
r z50. Integrating Eq.~12! yields the catenoid

r 5b coshS z2c

b D , ~13!
1-4
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FLUID-MEMBRANE TETHERS: MINIMAL . . . PHYSICAL REVIEW E 65 041901
wherec is thez coordinate of the minimum radius. Note th
b is the minimumpossibleradius; i.e., it is possiblynot at-
tained. The minimum radius is attained only ifc<h0.

The boundary condition r (0)51 determines c
56cosh21(1/b), and thus Eq.~13! expands to

r 5coshS z

bD7A12b2sinhS z

bD . ~14!

The upper sign is chosen as it corresponds to catenaries
a minimum neck radius at a positive value ofz (c.0). The
force F, or equivalently the minimum neck radiusb, is de-
termined by the boundary condition at the other ring:r (h0)
5r 0, or

r 05coshS h0

b D2A12b2sinhS h0

b D . ~15!

Solving ~15! for h0 gives the separation as a function
force

h05b lnS r 06Ar 0
22b2

12A12b2 D . ~16!

Note that the two branches form a closed curve in theb-h0
plane forr 0,1 ~Fig. 3!. Since each curve has a maximu
~marked with a dot for the curvesr 050.6 andr 051.0), there
is a critical r 0-dependent separation beyond which
catenoidal solution exists. The soap film spanning the
rings breaks just beyond this critical separation. For fixedr 0
and a given separationh0 below the maximum, there are tw
catenoidal solutions. For example, Fig. 4 illustrates the t
equilibrium catenoids withr 051 andh050.6. For a given
h0, one can show that the catenoid with the largerb has less
area. Thus, the solution with the smaller neck~e.g., the upper
catenoid in Fig. 4! is unobservable in real soap films. In th
presence of bending stiffness and a fully developed tethe
is shown below that the axial force is 2pA2e. To see which
catenoid matches onto a fully developed tether, equate
axial tether force to the axial catenoidal force 2pb to find b,

FIG. 3. Ring separationh0 vs minimum neck radiusb ~force by
2p) for the valuesr 050.2,0.4,0.6,0.8, and 1.0, proceeding from t
innermost curve to the outermost curve. For a givenr 0, as the rings
are separated, the sequence of shapes corresponds to the tra
marked with arrows.
04190
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and then use Eq.~14! to find the shape. This shape can co
respond to the catenoid with greater or lesser area, depen
on the value chosen forr 0 .

Finally, the arrows in Fig. 3 display the trajectory o
shapes as the rings are separated. The forceF increases from
zero to a maximum value, and then decreases slightly be
the film breaks. This nonmonotonic behavior occurs in
case of tethers as well, as is shown below.

V. FROM CATENOIDS TO TETHERS

As discussed earlier, for small but nonzeroe, the outer
region of the membrane will have a catenoidal shape,
there will be an elastic boundary layer near the small ri
This elastic boundary layer allows the attainment of the po
force limit, r 0→0, in contrast to the case of the soap film
We begin with the analysis of the case of small axial se
ration,h0!1.

A. Small displacements

Whenh0!1, it is most convenient to work in the Mong
parameterization, in which the surface is represented by
height z(r ) above the planez50. To leading order inh0 ,
s'r , the mean curvatureH'(1/2)¹2z, and the Euler-
Lagrange equation reduces to

e¹4z2¹2z50, ~17!

with

¹25
1

r

d

dr F r
d

drG . ~18!

The boundary conditions at the large ringr 51 arez50 and
the condition of zero moment,¹2z50. At the inner ringr
5r 0, the displacementz5h0 and the slopedh/dr50.

tory

FIG. 4. The two catenoidal solutions with equal-size rings (r 0

51) and ring spacingh050.6; the lower catenoid has less area.
1-5
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POWERS, HUBER, AND GOLDSTEIN PHYSICAL REVIEW E65 041901
At order e0, the outer solution satisfies¹2zouter(r )50,
i.e.,

zouter~r !5b11b2 ln r . ~19!

The boundary condition on displacement atr 51 fixes b1
50. The zero-moment boundary condition adds no c
straint on the solution of Eq.~19!; b2 must be determined by
matching to the inner solution.

Note that the outer solution diverges at the inner ring
r 0→0; the inner solution must correct for this divergence.
find the inner solution, expand the region nearr 50 with the
rescalingr5r /Ae. Then the inner solution satisfies

1

r

d

dr S r
d

dr D F1

r

d

dr S r
d

dr D zinner1zinnerG50, ~20!

or

zinner~r!

h0
5c11c2 ln r1c3I 0~r!1c4K0~r!, ~21!

where I 0(r) and K0(r) are modified Bessel functions.c3
must vanish, sinceI 0(r) diverges asr→` and cannot be
matched to the outer solution. The boundary conditionsr
5r 0 ~i.e., r5r 0 /Ae) add two more constraints to yield

zinner~r!

h0
511c4FK0~r!2K0S r 0

Ae
D

1
r 0

Ae
K1S r 0

Ae
D lnS rAe

r 0
D G . ~22!

To match the inner and outer solutions, note thatK0(r)
decays exponentially at larger. Therefore, the constan
terms ofzinner must vanish, and the coefficient of the log
rithmic term ofzinner must matchb2. To leading order,

zouter

h0
5

r 0

Ae
K1S r 0

Ae
D ln r

r 0

Ae
K1S r 0

Ae
D ln r 01K0S r 0

Ae
D , ~23!

and

zinner

h0
5

r 0

Ae
K1S r 0

Ae
D ln r 1K0S r

Ae
D

r 0

Ae
K1S r 0

Ae
D ln r 01K0S r 0

Ae
D . ~24!

The Bessel functionK0(r /Ae) cancels the logarithmic diver
gence of the ln(r) term of the inner solution. To construct
uniformly valid approximationzcomposite(r ) for both the inner
and outer regions, add the two solutions and subtract t
common part@35#. This procedure yields the very compa
result
04190
-

s

ir

zcomposite5zinner. ~25!

It is now clear why a small amount of bending elastic
allows a membrane to support a point force: the ela
boundary cuts off the divergence of the logarithm of t
outer solution. To find the solutions in the limit of a poin
force, recall K1(r 0 /Ae)5Ae/r 01O(r 0 /Ae) and
K0(r 0 /Ae)52g1 ln(2Ae/r 0)1O@(r 0 /Ae)2#, where g
50.5772 . . . is theEuler constant. Thus

zcomposite~r !5h0

ln r 1K0~r /Ae!

2g1 ln~2Ae!
. ~26!

Note that the boundary conditionzcomposite(1)50 is satisfied
up to terms of ordere1/4exp(21/Ae)/ ln e for small e. Figure
5 shows that although the details of the membrane sh
depend somewhat sensitively on the value ofr 0, the physical
limit r 0→0 is well behaved. In this limit, the elastic bound
ary layer becomes a small disc of approximate radiusAe
around the point force. Thus, the outer solution is roughly
catenoid that connects a ring of radius unity with a ring
radiusAe. As in the preceding section, the maximum rin
separation for a soap film in this situation is approximat
equal to the radius of the smaller ring. Thus, ash0 increases,
the amplitude of the catenoid increases untilh0 is of order
Ae. Since the amplitude of the catenoid cannot increase
yond this value, the boundary layer deforms into a thin c
inder to accommodate further increases inh0. The formation
of the tether is a smooth process; there is no bifurcation

B. Tether: Analytical approach

1. Tether radius, tether stability, and axial force

Tether formation is an intrinsically nonlinear phenom
enon, and to give a complete account of the tether shape
resort to numerical methods. However, many features of
tether yield to an analytic approach. The tether radius is
most prominent such feature. Our numerical calculations w
verify that the tether has a cylindrical shape between the
cap and the catenoidal junction. Thus, for our soap-film
ometry with Dp50, the radius follows from Eq.~5! with
constant mean curvature and vanishing Gaussian curvat

2eH32H50. ~27!

FIG. 5. Comparison of membrane profileszcomposite(r ) for r 0

50.1 ~upper curve! and the point force limitr 0→0 ~lower curve!.
1-6
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Since H521/(2a) for a cylinder of radiusa, the exact
tether radiusa5Ae/2 @1#. This square-root dependence
tether radius on inverse tension has been verified experim
tally by Evans and Yeung@1#.

To study the stability of a tether, writer (z)5a1u(z) and
expand the elastic energy~4! to O(u2) @to express the metric
~7! and mean curvature~8! as functions ofz use dz/ds
5A11r 8(z)2], which yields

E
2p

5EdzF S a1
e

2aD1S 12
e

2a2D S u1
au82

2 D
1

ea

2 S u921
u2

a4D G . ~28!

A total derivative term has been dropped in Ref.~28!. Mini-
mizing theu-independent terms overa yields the equilibrium
tether radius. The terms linear inu vanish as expected whe
a takes the equilibrium valueAe/2. Note that the terms qua
dratic in u8 vanish in equilibrium as well, since the termsu
andau82/2 always enter in the combinationu1au82/2. This
combination arises from the factorrA11r 82 in the original
energy. Since the remaining terms of Eq.~28! in u2 andu92

are positive definite, the tether is stable. Therefore, theequi-
librium cylinder solution does not undergo a pearling ins
bility @36,37#. These considerations suggest that the pear
behavior induced by a rapid pull of a vesicle tether@38#
arises because hydrodynamic resistance prevents the r
from instantly assuming the value appropriate to the n
value of tension. This mechanism differs in detail from th
of the laser-tweezer-induced instability of membrane tu
with fixed volume@37#.

The tether radius determines the axial force on
catenoid. The argument hinges on thez independence of the
axial force. For an undistorted cylinder withu50 and equi-
librium radius a5Ae/2, the total energy per unit lengt
E/L52pA2e, as easily follows from Eq.~28!. Therefore, the
axial forceF/(2p)5A2e saturates to a constant value ind
pendent of tether length once the tether has formed. Since
axial force is independent ofz, the junction connecting the
tether to the ring is a catenoid withb5A2e. Note that the
minimum attainable radius of the limiting catenoid is twi
the radius of the tether. Thus, the catenoid cannot smoo
join onto the cylindrical tether and there must be a transit
region~see Fig. 6!. Before analyzing this transition region i
more detail, we consider the role of pressure.

2. The effects of pressure are subleading

Evans and Yeung argued that the pressure jumpDp,
present in the case of a closed vesicle under tension, p
little direct role in determining the tether radius@1#. Since a
sphere of radiusR0 has constant mean curvature 1/R0 and
Gaussian curvature 1/R0

2, the Euler-Lagrange equation~5! in
the spherical region of the vesicle reduces to the You
Laplace law, 2H5Dp ~even in the presence of bending r
sistance!. Measuring lengths in units ofR0 ~for this para-
graph only!, the Euler-Lagrange equation in the region of t
tether becomes
04190
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2a3 2
1

a
1250, ~29!

since the pressure jump is everywhere uniform. For smae,
the three solutions are

a56Ae/21e/21O~e3/2!, ~30!

a51/22e1O~e2!. ~31!

The solutiona52Ae/21O(e) is unphysical. The solution
a5Ae/21O(e) corresponds to the tether in the caseDp
50. Thus, to leading order, the tether radius is unchan
and the effect of pressure appears at ordere. Finally, the
solution with a radius near 1/2 corresponds to a balance
pressure and tension, and is not relevant for tethers.

Returning to our model problem withDp50, an apparent
paradox arises. Since an axial force is required to pull
tether out of the membrane disc, there must be a tensio
the membrane. This tension is isotropic, since the membr
is fluid. But consider the cylindrical portion of the tethe
between two fixed values ofz. If this cylinder is cut in half
along the long axis~Fig. 7!, then each apparently experienc
a resultant force due to the tension. What force balances
tension force ifDp50?

The paradox is most readily resolved by comparing
Euler-Lagrange equations of the variational approach w
the equations that follow from force and moment balance
a membrane element, given the lipid bilayer membrane c
stitutive relation@1#. The Appendix recapitulates the com
parison between the two approaches to the equilibrium sh
equations. There it is shown that the coefficientm of the area
term in the variational energy is the tension only for minim
surfaces:m5S1eH2, where S is the tension. Since the
pressure jumpDp50, the cylindrical region of the mem
brane is in a state of pure bending,S50. But due to the
differential stretching inherent in bending, the outer shee
stretched and the inner sheet is compressed~Fig. 7!. Since

FIG. 6. Overlay of a fully developed tether~A! with radiusa
5Ae/2 and a catenoid~B! with minimum radiusb5A2e. In this
example,e50.005 and the transition region lies roughly betwe
z50.2 andz50.4.
1-7
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POWERS, HUBER, AND GOLDSTEIN PHYSICAL REVIEW E65 041901
the sheets are fluid, the tension or compression in each s
is isotropic. The compressive and tensile forces along
lines of longitude of the cylinder cancel~consistent with
Dp50). However, since the outer sheet is longer than
inner sheet along a line of latitude, there is a net axial t
sion. The axial force at zero pressure jump is a manifesta
of the liquid properties of lipid bilayer membranes.

3. The tether always necks twice

We have seen that the shape of a membrane subject
point force and under high tension is best described a
boundary-layer problem, with tension dominating in t
outer region and bending dominating in the inner regi
This situation is reminiscent of the coating problem stud
by Landau and Levich@14#, and of Bretherton’s bubble prob
lem @15#, in which the shapes of different regions of an i
terface are determined by different balances. The ana
goes further: Bretherton showed that the trailing edge o
large air bubble, rising in a capillary tube filled with viscou
liquid, has a slight ripple@15#. It will now be shown that
there are slight ripples in the shape of a lipid membrane
bothends of the cylindrical tether region. These ripples ha
been noticed in the numerical work of Ref.@6#.

Since bending and tension are equally important in
junction region, we must rescale the variables to bala
these two effects. Ifs1 is the arclength corresponding to
point in the transition region, it is enough to assume that
radiusr (s1) is small and close toAe/2, without any further
specification ofs1. It is therefore natural to rescale the radi
as in Sec. V, r 5rAe. The further rescalingss5(s
2s1)/Ae and z5@z2z(s1)#/Ae lead to a balance of the
bending and tension terms,

¹̄2H̄12H̄322H̄K̄2H̄50, ~32!

where

FIG. 7. Axial force due to the greater circumference of the ou
leaf.
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H̄5
1

2 Frss

zs
2

zs

r G , ~33!

K̄52
rss

r
, ~34!

¹̄25
1

r

d

ds
r

d

ds
, ~35!

andrs
21zs

251. Therefore, the transition region is govern
by the full nonlinear Euler-Lagrange equation, and there
no further simplifications arising from the smallness ofe.
However, one can use perturbation theory to study the sh
of the transition region near the tether. Letr51/A21h, with
h!1. To leading order inh, Eq. ~32! becomes

hssss14h50. ~36!

Note that Eq.~36! also follows immediately from Eq.~28!
with appropriate rescalings. There are four independent
lutions to Eq.~36!, each of the formha5Caexp(ips), where
p56(16 i ) anda51, . . . ,4. Theshape near either end o
the tether region is an exponentially damped sinusoid w
wavelength 2p/Ae and decay lengthAe.

C. Tether: Numerical solution

The preceding section shows that a description of
membrane shape in the junction region requires the solu
of a nonlinear differential equation with no small paramete
despite the smallness ofe. Rather than solve this equatio
numerically and match the solution onto the tether a
catenoidal regions, we simply solve for the complete sh
numerically. Standard relaxation techniques@39# are used to
solve for the shape as a function of ring displacementh0,
with a small ring of radiusr 050.005 mimicking the point
force. Figure 8 displays the membrane shape for varioush0.
For smallh0, the shape is well approximated by the linea

r

FIG. 8. Membrane shape for various ring separations;e
50.005 andr 050.005.
1-8
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FLUID-MEMBRANE TETHERS: MINIMAL . . . PHYSICAL REVIEW E 65 041901
ized catenoid with an elastic boundary layer at small rad
~see Sec. V!. As h0 increases, the amplitude of the cateno
increases until the limiting catenoid withb5Ae is reached.
For larger separations, a tether forms. The axial force a
function of displacement is shown in Fig. 9. Note that t
force increases to a maximum and then decreases slig
before saturating toA2e. This behavior is reflected in Fig. 8
where the limiting catenoid lies inside the catenoids w
slightly lower values ofh0, since these catenoids hav
slightly larger values of the minimum neck radiusb
5F/(2p). Figure 10 shows the ripple in the junction regio
The radial scale has been magnified for clarity.

VI. CONCLUSION

We have seen that tethers in our model problem are a
of boundary-layer phenomenon. In the cylindrical tether
gion, bending dominates, whereas tension dominates

FIG. 9. Force vs displacement;e50.005, r 050.005.

FIG. 10. Ripple profile,e50.0002.
04190
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pe
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larger radii. These insights carry over to the more comp
cated problem of tether formation in closed lipid bilay
membrane vesicles, where the quantitative details of
force vs extension will be different, since tension depends
extension. An important generalization of the problem co
sidered here would be to study membranes with varying
grees of in-plane order, ranging from liquid crystalline
solidlike, since the liquid nature of fluid membranes is cr
cial for tether formation.
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APPENDIX A: PLATE THEORY VS VARIATIONAL
PRINCIPLE

This appendix reviews the force and moment balance
lations for axisymmetric shells@1,40#, and the constitutive
relations for fluid membranes@1#. The approach is equivalen
to the variational approach taken in the text, and elucida
the apparent paradox discussed in Sec. V B 2. Figure
shows the forces and moments acting on a small elemen
fluid membrane. Only the forces and moments that enter
shape equations are shown.tm is the force per unit length
parallel to the meridian acting on an element edge along
azimuthal direction.tw is the force per unit length in the
azimuthal direction acting on an element edge along a
ridian. The shearing forceQm acts along the surface norma
on an element edge along the azimuthal direction. The ex
nal stressespn and pt are forces per unit area acting on th
element in the normal and meridional directions, resp
tively. The curvature along the meridian iscm5du/ds, and
the curvature in the azimuthal direction iscw5sinu/r.

The balance of forces and moments is just the same a
shells. Normal stress balance requires

pn5twcw1tmcm2
1

r

d

ds
~rQm!. ~A1!

FIG. 11. Forces and moments acting on an element of
axisymmetric membrane.
1-9
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Tangential stresses balance when

2pt5
1

r

d

ds
~r tm!2

tw

r

dr

ds
1cmQm , ~A2!

wheredr/ds5cosu. Moment balance about thew axis re-
lates the shearing forceQm to the moments per unit lengt
Mm andMw ,

Qm5
1

r

d

ds
~rM m!2

Mw

r

dr

ds
. ~A3!

It is useful to have an expression for the total axial for
acting on a circle of latitude. Consider the resultant of
normal and axial stresses along the axial direction

r ~pncosu2pt sinu!5
d

ds
~r tmsinu2rQmcosu!,

~A4!

where we have used Eqs.~A1! and~A2!. In our model prob-
lem, the external stresses vanish,pn5pt50. Thus,r tmsinu
2rQmcosu is a constant, the total axial force by 2p @com-
pare with the axial force on a soap film, Eq.~12!#,

F

2p
5r tmsinu2rQmcosu. ~A5!

Returning to the derivation of the shape equations, c
sider now the tangential forces per unit lengthtm andtw . If
x denotes the coordinate across the thickness of the m
brane, then

tm5 t̄1cwMm , ~A6!

tw5 t̄1cmMw , ~A7!
io

n,

ys

ett

et

04190
e
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where t̄m5*tmdx, t̄w5*twdx, Mm5*xtmdx, and Mw

5*xtwdx. Part of the ‘‘tension’’ in the membrane come
from the bending moments.

The constitutive relation for the fluid membrane com
pletes the specification of the shape equations. Since the
nature implies isotropy,t̄m5 t̄w . Define the common value
of tension ast5 t̄m5 t̄w . Likewise,

Mm5Mw5k c̄, ~A8!

where c̄5cm1cw . Thus, the shearing force is known onc
the curvature of the membrane is known:

Qm5k
dc̄

ds
. ~A9!

Tangential force balance, Eq.~A2!, becomes

2pt5
d

dsS t̄1
1

2
k c̄2D . ~A10!

In the absence of flow, the external tangential stresses va
and t[t̄1k c̄2/2 is constant. However,t̄ and c̄ need not
separately be constant.

Inserting the constitutive relations into Eq.~A1!, the nor-
mal stress balance becomes

pn5t c̄2
1

2
k c̄~cm2cw!22k

1

r

d

ds
S r

dc̄

ds
D . ~A11!

But since c̄52H and K5cmcw , Eq. ~A11! reduces to the
Euler-Lagrange equation~5! with m5t.
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