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Thin cylindrical tethers are ubiquitous structures in lipid bilayer membranes, arising in situa-
tions ranging from micromanipulation experiments on artificial vesicles to the dynamic structure
of the Golgi apparatus. We study the shape and formation of a tether in a simplified situation:
an initially flat membrane disk under tension subject to a point force. We show how a tether
forms from the elastic boundary layer near the point of application of the force for sufficiently
large displacement.
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I. INTRODUCTION

Imagine a soap film connecting two nearby parallel
rings which are slowly pulled apart. The film evolves
through a series of catenoid shapes until the ring sep-
aration reaches a critical value; then the film breaks.
Now imagine performing the same experiment with mi-
croscopic rings connected by a lipid bilayer membrane.
In this paper we will show that the membrane forms
catenoid shapes at small ring separations, but instead of
breaking, the membrane forms a thin cylindrical tether
for sufficiently large displacement.
A situation very much like this thought experiment

arises in a host of real experiments on artificial vesi-
cles, living cells, and membranous organelles such as the
Golgi apparatus. Perhaps the most controlled tether ex-
periment is that of Evans and Yeung, in which a tether
forms when a micropipet is withdrawn from a spherical
vesicle held at a fixed tension and bonded to a stationary
bead [1]. There are many variants on this experiment [2—
6], and such experiments have been used to measure a
wide variety of membrane mechanical properties [7].
Tethers commonly form in less controlled situations as

well. Simply pulling on a vesicle or cell with a sufficiently
large point force leads to a membrane tether (Fig. 1).
Tethers form when tubulin trapped inside a vesicle poly-
merizes to form microtubules [8]; as the microtubules
grow, the initially spherical membrane at first distorts
into an ellipsoidal shape, and then eventually forms a
surface of revolution with a contour in the shape of the
Greek letter “φ” [9—11]. Improvements in staining tech-
niques have recently revealed dynamic tether networks
in the Golgi apparatus of living cells [12]; similar model
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membrane networks have been studied in vitro [13] and
used as templates for making more durable networks [14].
Despite much theoretical, computational, and experi-

mental attention, a simple picture for tether formation
has not yet emerged. The goal of this paper is to provide
such a picture. The variety of conditions under which
tethers occur shows that they are robust structures, in-
sensitive to the details of applied forces and boundary
conditions. It is therefore natural to study tethers the-
oretically in the simplest possible situation, namely the
classic soap film geometry described above (Fig. 2). This
model situation captures the essential features of the
tether shape and formation without the experimentally
important but ultimately complicating effects such as
volume and lipid conservation. Our quasi-analytic ap-
proach exploits the smallness of the tether radius, and is
complementary to important numerical work by various
groups, most notably Heinrich et al. [6]. We begin our
analysis in section II with a discussion of shells, balloons,
and soap films in order to contrast their familiar me-
chanical properties with the peculiar properties of lipid
bilayer membranes. The latter are the subject of section
III, where we define precisely our model problem. Section
IV reviews the elements of the soap film problem which
are relevant for understanding the formation of tethers,
which we consider in section V. There we use asymp-
totic methods to solve the linearized equations for small
ring displacements and large tensions, and find that the
membrane shape is that of a catenoid with a small elastic
boundary layer surrounding the smaller ring (the point
force). At a critical ring separation, a tether forms from
the elastic boundary layer. We study the tether shape
analytically and numerically and make contact with the
classic matched asymptotics film coating calculations of
Landau and Levich [15], as well as Bretherton’s related
calculation of the shape of a long air bubble rising in
a fluid-filled capillary tube [16]. Section VI contains a
discussion of our results and their relation to previous
work. We conclude in section VII. The appendix reviews
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FIG. 1: Equilibrium shapes of a vesicle subject to various point forces. An optical tweezer exerts the point force,
which increases from left to right. Figure courtesy of D. Fygenson.

the subtleties that arise when comparing the variational
approach for lipid bilayer membrane elasticity to that of
moment and force balance.

II. SHELLS, BALLOONS, AND SOAP FILMS

Before exploring the lipid bilayer membrane proper-
ties that give rise to tethers, we review three examples
of elastic surfaces encountered at the macroscopic scale:
shells, balloons, and soap films. Much of our intuition
about elastic surfaces derives from these canonical exam-
ples. Some of this intuition can be directly applied to
lipid membranes, but it is illuminating to point out the
crucial differences as well.
Shells are solid surfaces with a small thickness and

a preferred shape in the absence of external stresses.
A plate is a shell with a flat preferred shape. It is a
matter of common experience that the force required to
bend a thin plate through a certain displacement is much
less than that required to stretch the plate through the
same displacement. The plate can undergo large dis-
placements through bending without subjecting each el-
ement to large stress; thus, linear elasticity is valid and
the nonlinearities in the equations for shape are solely
geometrical. In the limit of small plate thickness, stretch-
ing energy exceeds bending energy, since bending is dif-
ferential stretching. The lowest energy deformations are
the so-called isometric deformations that have no stretch-
ing [17]. For example, the axisymmetric isometric defor-
mations of the plane are cylinders and cones [18]. Note
that a shearing motion locally stretches the plate, even
if the total area does not change. Bending energy (and
possibly boundary conditions) removes the degeneracy
when, as in the case of a flat plate, there is a multiplic-
ity of isometric deformations. Bending also plays a role
near boundaries and point forces. A familiar example
of a plate with vanishing thickness is a sheet of paper,
which bends easily but hardly stretches or shears. The
reader can easily verify that a sheet of paper subject to a

point force forms a cone with a single fold, a shape with
two-fold symmetry. (One way to balance the point force
is to place the sheet on circular rim [19].) For shells, the
isometric constraint on deformations is even more severe.
Any deformation of a sphere requires some local stretch-
ing or shearing: no almost-spherical shapes are isometric
to the sphere. A spherical shell is geometrically rigid. On
the other hand, there are isometric small deformations of
spherical shell with a circular hole [17]. The problem
of determining the geometric rigidity of an axisymmet-
ric shell with boundaries was solved using the qualitative
theory of differential equations [20]; for recent progress
using a geometric approach which can be generalized to
non-axisymmetric shells, see [21].
Next, consider the case of balloons. Like plates with

vanishing thickness, there is virtually no cost to bend-
ing a section of a balloon compared to that of stretch-
ing or shearing. However, deformations are not required
to be isometric since the cost of stretching is also low.
Such a material is called a “membrane” in the theory of
elasticity [17]; to avoid confusion with lipid bilayer mem-
branes we will not use this terminology. Since real bal-
loons are easily stretched out of the linear elastic regime,
the nonlinearity of the governing equations arises from
the constitutive relations as well as the geometry of large
deformations. Anyone who has inflated a cylindrical bal-
loon has seen a phenomenon very much like the tethers
of Fig. 1. A partially inflated balloon has two cylindrical
regions, one smaller than the other, which are smoothly
connected by a junction region. However, this phenom-
enon differs fundamentally from that of tether forma-
tion in lipid bilayer membranes for several reasons. No
point force is required to make a balloon form atether;
it arises from the nonlinear constitutive relation between
tension and areal extension, which is reflected by a non-
monotonic p-V curve, reminiscent of the isotherms of the
van der Waals equation of state for a gas [22]. The mate-
rial in the larger cylinder is stretched more, and thus has
a higher tension. The smaller cylinder is under smaller
tension; the difference between the axial force of each
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tension is precisely balanced by the net pressure on the
junction region. Thus, a pressure jump across the surface
of the balloon is crucial for this tether; we will see below
that such a pressure jump is unnecessary for lipid bilayer
membrane tethers.
Our final canonical example is the soap film. We

will consider “ideal” soap films, which simply minimize
area subject to the boundary conditions and volume con-
straints. We disregard effects such as thickness variations
and draining, because these effects do not have a clear
counterpart in the case of lipid bilayer membranes. Since
soap films are liquid, the static in-plane shear rigidity
vanishes, and the notion of geometric rigidity does not
apply. Deformations need not be isometric and folds are
not required to bend a flat film into a hemisphere. (There
can be solid-like folding behavior in liquid film dynam-
ics whenever bending flows are preferable to extensional
flows [23].) Unlike the case of plates, interfacial tension
is a material property of the soap film, and is not de-
termined by external forces. To imagine poking a soap
film with a point force, consider again the geometry of
two rings described in the introduction, but now take one
ring radius to be much smaller than the other. Equilib-
rium solutions exist only when the ring separation is less
than a critical separation, comparable to the radius of
the smaller ring. At a slightly larger separation, the film
breaks. The equilibrium shapes are shallow catenoids,
and look nothing like tethers (structures reminiscent of
thin tethers form during the rupture of a soap film, but
these have a dynamical origin; see [24]). However, these
shallow catenoid shapes resemble the junction region be-
tween the tether and vesicle of Fig. 1. Soap films and
catenoids will be studied more fully in section IV.
As we shall see next, lipid bilayer membranes have ele-

ments of each of these examples. Like macroscopic plates,
lipid membranes resist bending, but they are typically
fluid and therefore lack geometric rigidity, like soap films.
The interplay between these solid-like and fluid proper-
ties leads to the formation of tethers.

III. LIPID BILAYER MEMBRANES

A Bending elasticity

There is a vast literature on the mechanics of lipid bi-
layer membranes ( e.g. see [25]). We will only review
the aspects relevant to tethers. Lipid molecules are am-
phiphilic, composed of two oily hydrophobic chains at-
tached to a polar hydrophilic head. Lipids self-assemble
in solution to shield the chains from the water, forming
micron-size bilayer surfaces. In the fluid phase, a typical
self-diffusion constant for a lipid molecule in a membrane
is of order 10−8cm2/sec [26]. The membrane is clearly a
two-dimensional fluid over the time scale of typical tether
experiments: a molecule will diffuse from one side of a
one micron radius spherical vesicle to the other in about
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FIG. 2: Model problem. Two parallel rings with aligned
centers are connected by a lipid bilayer membrane in con-
tact with a lipid reservoir at fixed chemical potential µ.

a second. Hence, there is no in-plane static shear modu-
lus. However, membranes have a non-zero bending mod-
ulus since bending the membrane compresses and extends
the slightly elastic heads and tails of the lipid molecules.
The fluid nature of the membrane constrains the form
of the elastic energy to depend only on the shape of the
membrane. To lowest order in curvatures, the bending
energy is given by the expression of Canham and Hel-
frich [27, 28],

Eel =
Z
dS

∙
κ

2
(2H)2 +

κ̄

2
K

¸
, (1)

where H is the mean curvature of the membrane surface,
and K is the Gaussian curvature. In terms of the princi-
pal radii of curvature R1 and R2 at a point on the surface,
2H = 1/R1+1/R2 andK = 1/(R1R2). Explicit formulas
for these curvatures will be given below. For simplicity,
we suppose that there is no difference between the two
sides of the bilayer; hence, there is no spontaneous curva-
ture. The Gaussian curvature term is typically dropped
in studies of vesicles since it amounts to the sum of a
deformation-independent term and a boundary term by
the Gauss-Bonnet theorem:Z

dSK = 4π(2− 2g) +
I
dsκg, (2)

where the genus g is the number of handles and κg is the
geodesic curvature of the boundary of the surface [18].
Note that a more detailed treatment of the formation of
tethers in vesicles would require additional terms of the
generalized bilayer couple model [29—33]. In the spirit
of explaining tether formation in the simplest possible
context, we disregard these.
Although typical values for the elastic bending mod-

ulus κ are 10—15kBT , thermal fluctuations easily excite
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long wavelength bending modes since the elastic energy
vanishes as the fourth power of the wavenumber for fluc-
tuations about a flat sheet. These fluctuations lead to
an entropic area elasticity similar to that of semiflexi-
ble polymers, as is most directly illustrated by the ex-
periments of Evans and Rawicz [34] (see also [35]). In
these experiments, the tension in a vesicle is measured
as a function of apparent area by suctioning a small
amount of the vesicle membrane into a pipet. At low
suctions (or low tensions), the resistance to stretching is
the entropic penalty of reducing the number of fluctuat-
ing modes. At high tensions, most of the thermal ripples
have been pulled out of the membrane, and the resistance
to stretching is mainly due to the membrane’s intrinsic
area elasticity. We consider here the high tension regime
only, and therefore disregard thermal fluctuations.

B Model problem and nondimensionalization

As in the introduction, we consider a lipid membrane
spanning two rings that are initially concentric and lying
in the plane z = 0 (see Fig. 2). The outer ring of radius
R remains in this plane, but the height h0 of the inner
ring will be varied. Measuring all lengths in units of the
radius R we henceforth set R = 1. The inner ring then
has radius r0 ¿ 1. Later, we will take r0 → 0 to recover
the result of a point force, but for comparison with the
case of soap films and also for our numerical approach it
is convenient to keep r0 nonzero for now. We assume that
there is a reservoir of lipid at a fixed chemical potential µ,
and further suppose this “tension” is very large compared
to the bending elasticity, µ À κ (justifying our neglect
of thermal fluctuations). Since the membrane has edges,
the Gaussian modulus κ̄ affects the shape through the
boundary conditions (recall the geodesic curvature term
of Eq. (2)). For simplicity, we disregard this effect and
set κ̄ = 0.
Our model is closest in spirit to the tether experiments

of Evans and Yeung [1] mentioned earlier. The pipet suc-
tion sets the value of the tension µ, and the small amount
of lipid projecting inside the pipet serves as a reservoir.
In the experiments the vesicle is under pressure and is
therefore curved, whereas in our model there is no pres-
sure jump across the initially flat membrane. The role
of the pressure in vesicle tethers is small since the tether
curvature is much larger than the vesicle curvature for
high tension; in fact, below we show that the pressure
jump leads to a subleading correction to the tether ra-
dius.
To complete the specification of the model problem, we

must define the boundary conditions at the rings. The
tangent plane of the surface at the point force is perpen-
dicular to the force if the line of action is along the axis
of symmetry. Since the role of the small ring is to mimic
a point force, the membrane is clamped so that the tan-
gent plane at each point on the boundary with the small

ring is in the plane of the small ring. The ring at r = 1
is somewhat artificial; therefore we choose the simplest
possible boundary condition for r = 1, which turns out
to be zero moment, H = 0 [17]. The outer ring acts as a
hinge. Defining

² ≡ κ

µ
, (3)

our task is to minimize

E =
Z
dS +

²

2

Z
dS(2H)2 (4)

for given ring separation h0 subject to the boundary con-
ditions and ²¿ 1. Equation (4) casts the tether problem
into the same form as the classic calculus of variations
problem for a minimal surface (² = 0).

C Euler-Lagrange equations

The derivation of the Euler-Lagrange equations from
the energy of Eq. (4) is somewhat lengthy but straight-
forward [36],

2²(∇2H + 2H3 − 2HK)− 2H +∆p = 0, (5)

where ∇2 is the covariant Laplacian on the surface. ∆p
(measured in units of µ/R = µ) is zero for our soap film
geometry, but it is included in Eq. (5) for later discussion
of the effect of pressure on tether shape. Note that ² = 0
and ∆p = 0 yields the minimal surface equation, H =
0. Since the membrane shape is a surface of revolution,
natural coordinates for the surface are ϕ, the azimuthal
angle, and s, arc-length along a meridian. Arclength is
measured from the inner ring, which has coordinate s =
0. The position of a point on the surface is therefore
X(s,ϕ) = r(s)r̂ + z(s)ẑ, where r and z are cylindrical
coordinates. Note that r2s + z

2
s = 1, since s is arclength.

With these choices, the metric or first fundamental
form is

gijdξ
idξj = ds2 + r2dϕ2, (6)

where ξ1 = s and ξ2 = ϕ. The second fundamental form
is

Kijdξ
idξj = (zsrss − rszss) ds2 − rzsdϕ2, (7)

where zs = dz/ds, etc. We follow the usual conventions
for raising and lowering indices using the inverse gij of
the metric tensor. Thus, gikgkj = δ

i
j, K

i
j = g

ikKkj , and

H ≡ 1

2
gijKij =

1

2

∙
rss
zs
− zs
r

¸
, (8)

K ≡ detKi
j = −

rss
r
, (9)

∇2 ≡ 1√
g
∂ig

ij√g∂j = 1

r

d

ds
r
d

ds
, (10)
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where g is the determinant of the metric tensor gij , and
r2s + z

2
s = 1 was used to simplify (8).

The Euler-Lagrange equation (5) for an axisymmet-
ric shape is a nonlinear ordinary differential equation,
easily solved with numerical methods. However, we can
gain more insight by exploiting the smallness of ². Since
it multiplies the term in (5) with the highest number
of derivatives, we expect a boundary layer wherever the
boundary conditions are incompatible with Eq. (5) with
² = 0. It is now clear why the zero momentH = 0 bound-
ary condition is the most natural condition at the larger
ring; this boundary condition is compatible with the min-
imal surface equation and does not lead to a boundary
layer at the larger ring. The clamped boundary condi-
tion at the smaller ring, however, is incompatible with
the minimal surface equation, since the ring must exert
a moment on the surface to keep it clamped. In this in-
ner region, bending and tension balance and the shape is
determined by the full Euler-Lagrange equation, where
the smallness of ² is offset either by rapid variations as a
function of s or the smallness of the tether radius. In the
outer region, beyond the elastic boundary layer, bending
is unimportant and the shape is governed by the mini-
mal surface equation, H = 0. The only nonplanar ax-
isymmetric minimal surface is a catenoid, the surface of
revolution generated by a catenary curve [18]. Thus, the
membrane forms a catenoid in the outer region. In the
next section we review basic facts about catenoids.

IV. CATENOID LORE

We noted in the previous section that setting ² = 0
and ∆p = 0 in Eq. (5) results in the minimal surface
equation H = 0. To leading order, the outer solution to
Eq. (5) is given by the exactly the same condition. The
solution to the minimal surface equation is conveniently
found by applying Noether’s theorem directly to the en-
ergy functional (4) with ² = 0. To this end, we rewrite
dS in terms of r(z):

E =
Z
dϕdzr

p
1 + r2z . (11)

The conserved quantity associated with the invariance of
the integrand of (11) with respect to translations in z is
the axial force F :

F

2π
=

rp
1 + r2z

. (12)

The radius r attains its minimum value b = F/(2π) when
rz = 0. Integrating (12) yields the catenoid

r = b cosh

µ
z − c
b

¶
, (13)

where c is the z-coordinate of the minimum radius. Note
that b is the minimum possible radius; i.e. it is possibly

0.2 0.4 0.6 0.8 1.0

0.2
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FIG. 3: Ring separation h0 vs. minimum neck radius b
(force over 2π) for the values r0 = 0.2, 0.4, 0.6, 0.8, and
1.0 proceeding from the innermost curve to the outermost
curve. For a given r0, as the rings are separated, the
sequence of shapes corresponds to the trajectory marked
with arrows.

not attained. The minimum radius is attained only if
c ≤ h0.
The boundary condition r(0) = 1 determines c =

± cosh−1(1/b), and thus Eq. (13) expands to

r = cosh

µ
z

b

¶
∓
p
1− b2 sinh

µ
z

b

¶
. (14)

We choose the upper sign since it corresponds to cate-
naries with a minimum neck radius at a positive value
of z (c > 0). The force F , or equivalently the minimum
neck radius b, is determined by the boundary condition
at the other ring: r(h0) = r0, or

r0 = cosh

µ
h0
b

¶
−
p
1− b2 sinh

µ
h0
b

¶
. (15)

Solving (15) for h0 gives the separation as a function of
force:

h0 = b log

Ã
r0 ±

p
r20 − b2

1−√1− b2

!
. (16)

Note that the two branches form a closed curve in the
b-h0 plane for r0 < 1 (Fig. 3). Since each curve has a
maximum (marked with a dot for the curves r0 = 0.6
and r0 = 1.0), there is a critical r0-dependent separation
beyond which no catenoid solution exists. The soap film
spanning the two rings breaks just beyond this critical
separation. For fixed r0 and a given separation h0 be-
low the maximum, there are two catenoid solutions. For
example, Fig. 4 illustrates the two equilibrium catenoid
shapes with r0 = 1 and h0 = 0.6. For a given h0, one can
show that the catenoid with the larger b has less area.
Thus, the solution with the smaller neck (e.g. the upper
catenoid in Fig. 4) is unobservable in real soap films. In
the presence of bending stiffness and a fully developed
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FIG. 4: The two catenoid solutions with equal size rings
(r0 = 1) and ring spacing h0 = 0.6; the lower catenoid
has less area.

tether, we shall see below that the axial force is 2π
√
2².

To see which catenoid matches onto a fully developed
tether, consider the extreme case r0 = 1. Since the ax-
ial force vanishes as ² → 0, the matching catenoid must
have b near zero and lie on the left branch of the r0 = 1
curve of Fig. 3. By continuity, as r0 decreases, the corre-
sponding matching catenoid is always on the left branch.
Therefore, the catenoid joining a tether is the one with
a narrow neck; bending stiffness selects this otherwise
unobservable shape.
Finally, the arrows in Fig. 3 display the trajectory

of shapes as the rings are separated. The force F in-
creases from zero to a maximum value, and then de-
creases slightly before the film breaks. We shall see that
this nonmonotonic behavior occurs in the case of tethers
as well.

V. FROM CATENOIDS TO TETHERS

As discussed earlier, for small but nonzero ², the outer
region of the membrane will have a catenoid shape, and
there will be an elastic boundary layer near the small
ring. This elastic boundary layer allows the attainment
of the point force limit, r0 → 0, in contrast to the case
of the soap film. We begin with the analysis of the case
of small axial separation, h0 ¿ 1.

A Small displacements

When h0 ¿ 1, it is most convenient to work in the
Monge parametrization, in which the surface is repre-

sented by its height z(r) above the plane z = 0. To lead-
ing order in h0, s ≈ r, and the Euler-Lagrange equation
reduces to

²∇4z −∇2z = 0, (17)

with

∇2 = 1

r

d

dr

∙
r
d

dr

¸
. (18)

The boundary conditions at the large ring r = 1 are
z = 0 and the condition of zero moment, ∇2z = 0. At
the inner ring r = r0, the displacement z = h0 and the
slope dh/dr = 0.
At order ²0, the outer solution satisfies∇2zouter(r) = 0,

i.e.

zouter(r) = b1 + b2 log r. (19)

The boundary condition on displacement at r = 1 fixes
b1 = 0. The zero-moment boundary condition adds no
constraint on the solution of (19); b2 must be determined
by matching to the inner solution.
Note that the outer solution diverges at the inner ring

as r0 → 0; the inner solution must correct for this diver-
gence. To find the inner solution, we expand the region
near r = 0 with the rescaling ρ = r/

√
². Then the inner

solution satisfies

1

ρ

d

dρ

µ
ρ
d

dρ

¶∙
1

ρ

d

dρ

µ
ρ
d

dρ

¶
zinner + zinner

¸
= 0, (20)

or

zinner(ρ)

h0
= c1 + c2 log ρ+ c3I0(ρ) + c4K0(ρ), (21)

where I0(ρ) and K0(ρ) are modified Bessel functions. c3
must vanish, since I0(ρ) diverges as ρ→∞ and cannot be
matched to the outer solution. The boundary conditions
at r = r0, or ρ = r0/

√
², add two more constraints to

yield

zinner(ρ)

h0
= 1+ c4

∙
K0(ρ)−K0

µ
r0√
²

¶
+
r0√
²
K1

µ
r0√
²

¶
log

µ
ρ
√
²

r0

¶¸
. (22)

To match the inner and outer solutions, note that
K0(ρ) decays exponentially at large ρ. Therefore, the
constant terms of zinner must vanish, and the coefficient
of the logarithmic term of zinner must match b2. To lead-
ing order, we find

zouter
h0

=

r0√
²
K1(

r0√
²
) log r

r0√
²
K1(

r0√
²
) log r0 +K0(

r0√
²
)
, (23)

and

zinner
h0

=

r0√
²
K1(

r0√
²
) log r +K0(

r√
²
)

r0√
²
K1(

r0√
²
) log r0 +K0(

r0√
²
)
. (24)



7

The Bessel function K0(r/
√
²) cancels the logarithmic

divergence of the log r term of the inner solution. To
construct a uniformly valid approximation zcomposite(r)
for both the inner and outer regions, we add the two
solutions and subtract their common part; this procedure
yields the very compact result

zcomposite = zinner . (25)

It is now clear why a small amount of bending elasticity
allows a membrane to support a point force; the elastic
boundary cuts off the divergence of the logarithm of the
outer solution. To find the solutions in the limit of a
point force, recall K1(r0/

√
²) =

√
²/r0 + O(r0/

√
²) and

K0(r0/
√
²) = −γ + log(2√²/r0) + O((r0/√²)2), where

γ ≈ 0.577... is the Euler constant. Thus

zcomposite(r) = h0
log r +K0(r/

√
²)

−γ + log(2√²) . (26)

Note that the boundary condition zcomposite(1) = 0 is

satisfied up to terms of order ²1/4 exp(−1/√²)/ log ² for
small ².
When r0 → 0, the elastic boundary layer becomes a

small disc of approximate radius
√
² around the point

force. Thus, the outer solution is roughly the catenoid
that connects a ring of radius unity with a ring of radius√
². As we saw in the previous section, the maximum

ring separation for a soap film in this situation is approx-
imately equal to the radius of the smaller ring. Thus, as
h0 increases, the amplitude of the catenoid increases un-
til h0 is of order

√
². Since the amplitude of the catenoid

cannot increase beyond this value, the boundary layer
deforms into a thin cylinder to accommodate further in-
creases in h0. The formation of the tether is a smooth
process; there is no bifurcation.

B Tether: analytical approach

1 Tether radius, tether stability, and axial force

Tether formation is an intrinsically nonlinear phenom-
enon, and to give a complete account of the tether shape
we must resort to numerical methods. However, many
features of the tether are amenable to an analytic ap-
proach. The most prominent such feature is the tether
radius. Our numerical calculations will verify that the
tether has a cylindrical shape away from the end cap
and the catenoid junction to the ring. Thus, for our soap
film geometry with ∆p = 0, the radius follows from (5)
with constant mean curvature and vanishing Gaussian
curvature:

2²H3 −H = 0. (27)

Since H = −1/(2a) for a cylinder of radius a, the exact
tether radius a =

p
²/2 [1]. This square-root dependence

of tether radius on inverse tension has been verified ex-
perimentally by Evans and Yeung [1].
To study the stability of a cylindrical tether, we write

r(z) = a + u(z) and expand the elastic energy (4) to
O(u2) (to express the metric (7) and mean curvature (8)
as functions of z we use dz/ds =

p
1 + r0(z)2), yielding

E
2π
=

Z
dz

∙µ
a+

²

2a

¶
+

µ
1− ²

2a2

¶µ
u+

au02

2

¶
+
²a

2

µ
u002 +

u2

a4

¶¸
. (28)

A total derivative term has been dropped in (28). We
recover the equilibrium tether radius by minimizing the
u-independent terms over a. The terms linear in u vanish
as expected when a takes the equilibrium value

p
²/2.

Note that the terms quadratic in u0 vanish in equilib-
rium as well since the terms u and au02/2 always enter
in the combination u+ au02/2 arising from the combina-

tion r
√
1 + r02 in the original energy. Since the remaining

terms of Eq. (28) in u2 and u002 are positive definite, the
tether is stable. Therefore, the equilibrium cylinder so-
lution does not undergo a pearling instability [37, 38].
These considerations suggest that the pearling behav-
ior induced by a rapid pull of a membrane tether [39]
arises because hydrodynamic resistance prevents the ra-
dius from instantly assuming the value appropriate to
the new value of tension. This mechanism differs in de-
tail from that of the laser-tweezer-induced instability of
membrane tubes with fixed volume [38].
The tether radius determines the axial force. For an

undistorted cylinder with u = 0 and equilibrium radius
a =

p
²/2, the total energy per unit length E/L =

2π
√
2². Therefore, the axial force F/(2π) =

√
2² satu-

rates to a constant value independent of tether length
once the tether has formed. Since the axial force is inde-
pendent of z, the junction connecting the tether to the
ring is a catenoid with b =

√
2². Note that the minimum

attainable radius of the limiting catenoid is twice the ra-
dius of the tether. Thus, the catenoid cannot smoothly
join onto the cylindrical tether; there must be a tran-
sition region. Before analyzing this transition region in
more detail, we consider the role of pressure.

2 The effects of pressure are subleading

Evans and Yeung argued that the pressure jump ∆p,
present in the case of a closed vesicle under tension,
plays little direct role in determining the tether radius [1].
Since a sphere of radius R0 has constant mean curvature
1/R0 and Gaussian curvature 1/R

2
0, the Euler-Lagrange

equation (5) in the spherical region of the vesicle reduces
to the Young-Laplace law, 2H = ∆p (even in the presence
of bending resistance). If we measure lengths in units of
R0 (for this paragraph only), then the Euler-Lagrange
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equation in the region of the tether becomes

²

2a3
− 1

a
+ 2 = 0, (29)

since the pressure jump is everywhere uniform. For small
², the three solutions are

a = ±
p
²/2 + ²/2 +O(²3/2) (30)

a = 1/2− ²+O(²2). (31)

The solution a = −p²/2 + O(²) is unphysical. The so-
lution a =

p
²/2 +O(²) corresponds to the tether in the

case ∆p = 0. Thus, to leading order, the tether radius is
unchanged and the effect of pressure appears at order ².
Finally, the solution with a radius near 1/2 corresponds
to a balance of pressure and tension, and is not relevant
for tethers.
Returning to our model problem with ∆p = 0, an ap-

parent paradox arises. Since an axial force is required to
pull the tether out of the membrane disc, there must be a
tension in the membrane. This tension is isotropic, since
the membrane is fluid. But consider the cylindrical por-
tion of the tether between two fixed values of z. If this
cylinder is cut in half along the long axis (Fig. 5), then
each half apparently experiences a force due to the ten-
sion. What force balances this tension force if ∆p = 0?
The paradox is most readily resolved by comparing

the Euler-Lagrange equations of the variational approach
with the equations which follow from force and moment
balance on a membrane element, given the lipid bilayer
membrane constitutive relation [1]. In the appendix we
recapitulate the comparison between the two approaches
to the equilibrium shape equations. There it is shown
that the coefficient µ of the area term in the varia-
tional energy is the tension only for minimal surfaces:
µ = Σ+ ²H2, where Σ is the tension. Since the pressure
jump ∆p = 0, the cylindrical region of the membrane is
in a state of pure bending: Σ = 0. But due to the dif-
ferential stretching inherent in bending, the outer sheet
is stretched and the inner sheet is compressed (Fig. 5).
Since the sheets are fluid, the tension or compression in
each sheet is isotropic. The compressive and tensile forces
along the lines of longitude of the cylinder cancel (con-
sistent with ∆p = 0). However, since the outer sheet is
longer than the inner sheet along a line of latitude, there
is a net axial tension. The axial force at zero pressure
jump is a manifestation of the liquid properties of lipid
bilayer membranes.

3 The tether always necks twice

We have seen that the shape of a membrane subject
to a point force and under high tension is best described
as a boundary layer problem, with tension dominating
in the outer region and bending dominating in the inner

FIG. 5: Axial force due to the greater circumference of
the outer leaf.

region. This situation is reminiscent of the coating prob-
lems studied by Landau and Levich [15], and Brether-
ton [16], in which the shapes of different regions of an
interface are determined by different balances. The anal-
ogy goes further: Bretherton showed that the trailing
edge of a large air bubble rising in a capillary tube filled
with viscous liquid has a slight ripple [16]. We now show
that there are slight ripples in the shape of a lipid mem-
brane at both ends of the cylindrical tether region. These
ripples have been noticed in the numerical work of ref. [6].
Since we expect bending and tension to be equally im-

portant in the junction region, we must rescale the vari-
ables to balance these two effects. Let s1 be the arclength
corresponding to a point in the transition region; we will
not specify s1 any further, except to assume that the ra-
dius r(s1) is small and close to

p
²/2. It is therefore nat-

ural to rescale the radius as in section V., r = ρ
√
². The

further rescalings σ = (s−s1)/√² and ζ = (z−z(s1))/√²
leads to a balance of the bending and tension terms:

∇̄2H̄ + 2H̄3 − 2H̄K̄ − H̄ = 0, (32)

where

H̄ =
1

2

∙
ρσσ
ζσ

− ζσ
ρ

¸
(33)

K̄ = −ρσσ
ρ

(34)

∇̄2 = 1

ρ

d

dσ
ρ
d

dσ
, (35)

(36)

and ρ2σ + ζ
2
σ = 1. Therefore, the transition region is

governed by the full nonlinear Euler-Lagrange equation,
and there are no further simplifications arising from the
smallness of ². However, we can use perturbation the-
ory to study the shape of the transition region near the



9

-1.0 -0.5 0.0 0.5 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

FIG. 6: Membrane shape for various ring separations;
² = 0.005 and r0 = 0.005.

tether. Let ρ = 1/
√
2 + η, with η ¿ 1. To leading order

in η, Eq. (32) becomes

ησσσσ + 4η = 0. (37)

Note that Eq. (37) also follows immediately from Eq. (28)
with appropriate rescalings. There are four independent
solutions to Eq. (37), each of the form ηα = Cα exp(ipσ),
where p = ±(1 ± i) and α = 1...4. The shape near ei-
ther end of the tether region is an exponentially damped
sinusoid with wavelength 2π/

√
² and decay length

√
².

C Tether: numerical solution

In the last section we have shown that a description
of the membrane shape in the junction region requires
the solution of a nonlinear differential equation with no
small parameters, despite the smallness of ². Rather than
solve this equation numerically and match the solution
onto the tether and catenoid regions, we simply solve for
the complete shape numerically. We use standard relax-
ation techniques [40] to solve for the shape as a func-
tion of ring displacement h0, using a small ring of radius
r0 = 0.001 to mimic the point force. Figure 6 displays the
membrane shape for various h0. For small h0, the shape
is well-approximated by the linearized catenoid with an
elastic boundary layer at small radius (see section V.).
As h0 increases, the amplitude of the catenoid increases
until the limiting catenoid with b =

√
² is reached. For

larger separations, a tether forms. The axial force as a
function of displacement is shown in Fig. 7. Note that
the force increases to a maximum and then decreases
slightly before saturating to

√
2². This behavior is re-

flected in Fig. 6, where the limiting catenoid lies inside

0.25 0.50 0.75 1.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

h0

b

FIG. 7: Force vs. displacement; ² = 0.005, r0 = 0.005.

the catenoids with slightly lower values of h0, since these
catenoids have slightly larger values of the minimum neck
radius b = F/(2π). Figure 8 shows the ripple in the
junction region. The radial scale has been magnified for
clarity.

VI. CONCLUSION

We have seen that tethers in our model problem are a
type of boundary layer phenomenon. In the cylindrical
tether region, bending dominates, whereas tension dom-
inates at larger radii. The insights we have gained carry
over to the more complicated problem of tether forma-
tion in closed lipid bilayer membrane vesicles, where the
quantitative details of the force vs. extension will be dif-
ferent since tension depends on extension. An important
extension of the problem considered here would be to
study membranes with varying degrees of in-plane order,
ranging from liquid-crystalline to solid-like, since the liq-
uid nature of fluid membranes seems crucial for tether
formation.
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APPENDIX A: PLATE THEORY VS.
VARIATIONAL PRINCIPLE

In this appendix, we recall the force and moment bal-
ance relations for axisymmetric shells [1, 41], and review
the constitutive relations for fluid membranes [1]. This
approach is equivalent to the variational approach taken
in the text, and elucidates the apparent paradox dis-
cussed in section VB2. Figure 9 shows the forces and
moments acting on a small element of fluid membrane.
Only the forces and moments that enter the shape equa-
tions are shown. τm is the force per unit length parallel
to the meridian acting on an element edge along the az-
imuthal direction. τϕ is the force per unit length in the
azimuthal direction acting on an element edge along a
meridian. The shearing force Qm acts along the surface
normal on an element edge along the azimuthal direc-
tion. The external stresses pn and pt are forces per area
acting on the element in the normal and meridional di-
rections, respectively. The curvature along the meridian
cm = dθ/ds, and the curvature in the azimuthal direction
cϕ = sin θ/r.
The balance of forces and moments is just the same as

in shells. Normal stress balance requires

pn = τϕcϕ + τmcm − 1
r

d

ds
(rQm). (A1)

Tangential stresses balance when

−pt = 1

r

d

ds
(rτm)− τϕ

r

dr

ds
+ cmQm, (A2)

where we have used cos θ = dr/ds. Moment balance
about the ϕ-axis relates the shearing force Qm to the

r

n
s

Mm
M

Qm

m

p
n

p
t

FIG. 9: Forces and moments acting on an element of an
axisymmetric membrane.

moments per unit length Mm and Mϕ:

Qm =
1

r

d

ds
(rMm)− Mϕ

r

dr

ds
. (A3)

It is useful to have an expression for the total axial
force acting on a circle of latitude. Consider the resultant
of the normal and axial stresses along the axial direction:

r(pn cos θ−pt sin θ) = d

ds

µ
rτm sin θ−rQm cos θ

¶
, (A4)

where we have used eqns. (A1,A2). In our model prob-
lem, the external stresses vanish, pn = pt = 0. Thus,
rτm sin θ − rQm cos θ is a constant, which we identify as
the total axial force (up to a factor of 2π) by comparison
with the axial force on a soap film, Eq. (12):

F

2π
= rτm sin θ − rQm cos θ. (A5)

Returning to the derivation of the shape equations,
consider now the tangential forces per unit length τm
and τϕ. If x denotes the coordinate across the thickness
of the membrane, then

τm = τ̄ + cϕMm, (A6)

τϕ = τ̄ + cmMϕ, (A7)

where τ̄m =
R
τmdx, τ̄ϕ =

R
τϕdx, Mm =

R
xτmdx, and

Mϕ =
R
xτϕdx. Part of the “tension” in the membrane

comes from the bending moments.
The constitutive relation for the fluid membrane com-

pletes the specification of the shape equations. Since the
fluid nature implies isotropy, τ̄m = τ̄ϕ. We define the
common value of tension as τ = τ̄m = τ̄ϕ. Likewise,

Mm =Mϕ = κc̄ (A8)
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Thus, the shearing force is known once the curvature of
the membrane is known:

Qm = κ
dc̄

ds
. (A9)

Tangential force balance, Eq. (A2), becomes

−pt = d

ds
(τ̄ +

1

2
κc̄2). (A10)

In the absence of flow, the external tangential stresses
are zero, and τ ≡ τ̄ + κc̄2/2 is constant. However, τ̄ and
c̄ need not separately be constant.
Inserting the constitutive relations into Eq. (A1), the

normal stress balance becomes

pn = τ c̄− 1
2
κc̄(cm − cϕ)2 − κ1

r

d

ds

µ
r
dc̄

ds

¶
. (A11)

But since c̄ = 2H and K = cmcϕ, Eq. (A11) reduces to
the Euler-Lagrange equation (5) with µ = τ .
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