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Intracellular cargo transport can arise from passive diffusion, active motor-driven transport along
cytoskeletal filament networks, and passive advection by fluid flows entrained by such motor/cargo
motion. Active and advective transport are thus intrinsically coupled as related, yet different repre-
sentations of the same underlying network structure. A reaction-advection-diffusion system is used
here to show that this coupling affects the transport and localization of a passive tracer in a con-
fined geometry. For sufficiently low diffusion, cargo localization to a target zone is optimized either
by low reaction kinetics and decoupling of bound and unbound states, or by a mostly disordered
cytoskeletal network with only weak directional bias. These generic results may help to rationalize
subtle features of cytoskeletal networks, for example as observed for microtubules in fly oocytes.

PACS numbers: 87.16.Wd, 47.61.Ne, 47.63.Jd, 87.19.rh

Intracellular transport of proteins, vesicles or entire
organelles is required by virtually all cells to perform
functions as diverse as cell division, intracellular traf-
ficking and patterning of morphogens during develop-
ment. To realize these different functions, eukaryotic
cells can utilize three different forms of cargo transport:
passive diffusion by thermally driven Brownian motion,
active transport by motor proteins on cytoskeletal net-
works [1], and passive advection by intracellular flows of
bulk cytoplasm. Such cytoplasmic flows have been stud-
ied in plants [2] as well as animals, including rats, mice,
worms and flies [3–6]. While some cytoplasmic flows re-
sult from contractions of actin networks [4, 5, 7], cyto-
plasmic streaming in flies, Characean algae and pollen
tubes is driven by forces from the motion of the actively
transported cargo itself [8, 9] (Fig. 1A). Hence, active
and advective transport can be intrinsically coupled as
two related, yet different representations of the underly-
ing cytoskeletal network. This raises intriguing questions
of how changes in cytoskeletal network architecture and
binding kinetics affect the distribution of cargo when ac-
tive and advective transport are coupled (Fig. 1B,C).

Existing theoretical work has largely focused on the
physical mechanisms of flows [10] and either on the com-
bination of diffusion and active transport [11–13], or
on the combination of diffusion and advective transport
[14, 15]. The system-level implications of interactions
between all three transport mechanisms are poorly un-
derstood [16]. Here, we study implications of coupled
active and advective transport for cargo localization to a
target zone in a confined geometry, a situation relevant to
establishment and maintenance of cellular asymmetries.
Examples include asymmetric cell divisions, cellular mor-
phogenesis, embryonic and pre-embryonic development
[17, 18]. A perfectly aligned cytoskeletal network may be
optimal for cargo localization to a target zone if consid-
ered alone. Our main finding, however, is that a perfectly

aligned network can become suboptimal for localization
when coupled to its corresponding recirculatory fluid flow
that washes away the cargo once it is dropped off in the
target zone (Fig. 1B). Instead, a mostly disordered net-
work with only weak directional bias can become optimal
for persistent accumulation of cargo in the target zone by
balancing an on-average directional active transport with
the suppression of fluid flow caused by it (Fig. 1C).
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FIG. 1. Coupling of active transport and advection and its
system-level implications. A) Active motor-driven transport
of cargo bound to a cytoskeletal filament (left) entrains sur-
rounding fluid and causes advective transport of unbound
cargo (right). B) A perfectly aligned cytoskeletal network
(red arrows) causes recirculatory fluid flows (blue arrows) out
of a target zone (green dashed area). C) A mostly disor-
dered cytoskeletal network with only weak directional bias
suppresses range and magnitude of fluid flows.
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To formalize this concept, we construct a reaction-
advection-diffusion model for the transport of a passive
scalar tracer that is advected by two coupled, yet differ-
ent velocity fields. A motor-velocity field vm that advects
the bound-state cargo concentration cb captures active
motion on a dense cytoskeletal network, while the fluid
flow field u that advects the unbound cargo concentra-
tion cu represents the cytoplasmic flow. Cargo exchanges
between bound and unbound states via interconversion
reactions that conserve total mass. The partitioning of
cargo between these two states is regulated by a param-
eter 0 ≤ β ≤ 1. Together with a diffusion term in the
unbound state, the nondimensional transport part of the
model is defined as:

∂cb

∂t
+ ∇ · (vm cb) = 2 Da [−(1− β) cb + β cu] (1)

∂cu

∂t
+ ∇ · (u cu) = 2 Da [(1− β) cb − β cu] + Pe−1∇2cu.

Here, the nondimensional motor Péclet number Pe =
V L/D and Damköhler number Da = LK/V are deter-
mined by the typical motor velocity V , mean reaction
rate K, system length L and diffusion constant D. The
advection fields vm and u are coupled since u is the solu-
tion to the Stokes equations for a viscous incompressible
(∇ · u = 0) Newtonian fluid driven by forces from the
motor velocity field. Suitably rescaled these are

0 = −∇p + ∇2u + f , f = avm. (2)

In general, the forces will depend on the concentration of
bound cargo, with a = a(cb), but this more complex case
is left to future work. Here we focus on the simplest case
of constant proportionality between forces and motor ve-
locities, and set a = 1 for convenience. The solution of
(2) with no-slip conditions on the domain boundary was
obtained with a finite volume discretization on staggered
grids in Matlab using the SIMPLE algorithm [19].

Consider first the fluid flow field u for various degrees
of order in the motor velocity field vm. Before normal-
izing to a peak magnitude of 1, we define on a two di-
mensional square vm(x, y) = h1(x, y) h2(x, y) wherein h2

attenuates the magnitude of h1 in the form

4h2(x, y) = {erf[m(b− x)] + erf[m(b + x)]}
×{erf[(m(b− y)] + erf[m(b + y)]} ,

with erf(x) denoting the error-function, m = 3, and b =
0.3. The function h1 is a weighted sum of the form

h1(x, y) = (1− α)
(

sin(kx) cos(ky) + ζx

− cos(kx) sin(ky) + ζy

)
+ α

(
1
0

)
,

where k = 4π and 0 ≤ α ≤ 1 acts as an order param-
eter for the directional bias of the motor velocity field.
For α = 0, h1(x, y) consists of an array of vortices per-
turbed by random numbers ζx,y from the open interval
(−0.5, 0.5) such that streamlines of neighboring vortices
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FIG. 2. A perfectly aligned motor velocity field causes re-
circulatory fluid flow. Shown are topology (vector field) and
magnitude (color coding) of motor velocity fields (left column)
and the corresponding flow fields (right column) for varying
network order parameter, α = 0, 0.1 and 1, as indicated. To
aid visibility only every second vector of the field is shown.

connect (Fig. 2, top left). Similar vortex arrays have
been employed extensively for example in percolation
theory [20]. Using this as the force field input to the
Stokes equations, we find a fluid flow field that mirrors
the vortex structure of the forcing, but with a magnitude
reduced by a factor of 103 (Fig. 2, top right).

For α = 1, the motor field is perfectly aligned along the
x-direction (Fig. 2, bottom left), giving rise to a Stokes
flow field that in the center is aligned along the abscissa as
well. In the periphery, however, mass-conservation and
incompressibility result in pronounced recirculatory flows
in the opposite direction (Fig. 2, bottom right). This
demonstrates that the topologies of the motor velocity
and fluid flow fields can differ strongly.

For intermediate and even small values of α (Fig. 2,
middle left), the averaging properties of Stokes flow still
yield recirculatory flow fields similar to the perfectly
aligned case (Fig. 2, middle right), albeit with ten-fold
lower magnitudes. Thus, while the flow topology remains
approximately constant over a wide range of the direc-
tional bias, variations of α represent a possible mecha-
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FIG. 3. The parameter Da regulates the coupling of bound
and unbound states. For strong coupling Da = 1, the steady-
state distributions of bound cargo cb (A) and unbound cargo
cu (B) are shown, with coloring on an arbitrary scale for each
panel individually. (C) Fraction of cargo localized in the tar-
get zone cl in the simulation in A, B for the two-state system
(1) (solid lines) as well as for the effective one-state system
(3) (dashed line). (D) Fraction of cargo localized in the tar-
get zone cl analogously to panel C, but for the simulations of
bound cargo (E) and unbound cargo (F) for weak coupling
Da = 4× 10−4 with coloring as in panels A-B. All transport
simulations use Pe = 102, β = 0.15 and the motor velocity
and fluid flow field with α = 1 (Fig. 2, bottom row).

nism to tune the magnitude of the fluid speed and hence
its impact on cargo transport.

We next explore the consequences of these flow fields
with fixed α for the localization of a chemical species
to a target zone. Depending on the system described,
different initial conditions may be of interest, including
a homogeneous distribution or a deposit localized in a
starting zone. Final concentration patterns are insensi-
tive to this choice, and results are shown for the homoge-
neous case with cargo in the unbound state. Cargo found
at the end of a simulation in the stripe 0.75 ≤ x ≤ 1 is
considered as localized in the target zone (dashed area in
Fig. 1B,C). We first study the effects of the Damköhler
number Da that regulates the strength of chemical ex-
change between bound and unbound states.

When reactions are fast, cargo transport on a perfectly
aligned motor network (α = 1) and its corresponding flow
field (Fig. 2, bottom row) show that the steady-state
distributions in bound and unbound states are virtually
identical, only scaled by the amounts of cargo in the re-
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FIG. 4. Parameter space for transport and localization on
a 2D square. Contour plots show the fraction of total cargo
localized in the target zone 0.75 ≤ x ≤ 1 at the end of sim-
ulation time t = 104, with β = 0.15, as a function of the
parameters α and Da for three different motor Péclet num-
bers Pe = 102, 103 and 104 as indicated. Arrows highlight
parameter values used in Figs. 3A-C, 3D-F, 5A-B and 5C-D.

spective states (Fig. 3 A, B). Cargo deposition in the
target zone also occurs with the same dynamics for the
two states (Fig. 3C, solid lines). In the limit of very fast
reactions (Da � 1) the system can be reduced to a single
equation for the total cargo concentration c = cu + cb,

∂c

∂t
+ ∇ · [(β vm + (1− β) u) c] = (1− β)Pe−1∇2c , (3)

in which motor velocity and fluid flow fields mix to form
an effective advection field supplemented by an effective
diffusion term [12]. This approximation works well even
for Da = 1 (Fig. 3C, dashed line).

Transport simulations for slow reactions (Da � 1)
show bound cargo accumulating at the extreme distal
boundary, while unbound cargo remains mostly homo-
geneously distributed by diffusion (Fig. 3E, F). Simi-
larly, the dynamics of cargo accumulation separates into
a roughly constant contribution from the unbound state,
and into a slow increase due to the gradual recruitment of
cargo to the bound state (Fig. 3D). Hence, cargo trans-
port in bound and unbound state proceeds virtually in-
dependently from one another. Thus, by regulating the
strength of chemical reactions between bound and un-
bound states, Da controls the degree of coupling of motor
velocity and fluid flow fields.
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FIG. 5. A perfectly aligned motor velocity field is not optimal
at high motor Péclet numbers. (A) Steady-state distribution
of total cargo c = cu + cb with coloring on an arbitrary scale
for the motor velocity and fluid flow fields with α = 1. (B)
Fraction of localized cargo cl in the two-state system Eqs.
(1) (solid lines) as well as the effective one-state system Eq.
(3) (dashed line) for the simulation in A. (C) Steady-state
distribution of total cargo analogous to panel A, but for α =
0.1. (D) Fraction of localized cargo analogous to panel B,
but for the simulation in C. All transport simulations use
Pe = 104, Da = 1 and β = 0.15.

We now vary both the network order parameter α and
the coupling strength Da. For Pe = 102 we find (Fig.
4, bottom) that the highest amount of cargo localization
occurs for a perfectly aligned motor field (α = 1) and
fast reaction kinetics (Da = 1). Strikingly, however, this
combination of perfect alignment and strong mixing of
bound and unbound states ceases to be the optimal con-
figuration for cargo accumulation if Pe is increased.

For values of Pe = 103 and 104, respectively, the
regime of high cargo accumulation in the target zone first
moves towards smaller α (Fig 4 middle), and finally (Fig.
4 top) forms a ridge circumventing the point (α = 1,
Da = 1). Simulations at this point for Pe = 104 show a
rapid accumulation of cargo at t ∼ 102 (Fig. 5B). This
accumulation, however, remains transient due to the im-
pact of the recirculatory backflows that move the bulk
cargo towards the sides of the domain and eventually
out of the target zone (Fig. 5A). Strong accumulation
of cargo in the target zone still occurs for lower reaction
kinetics Da ≈ 10−2 (Fig. 4, top) that partially decouple
bound and unbound states. Alternatively, high reaction
kinetics combined with a strong reduction in directional
bias to α ≈ 0.1 also lead to strong accumulation, albeit at
the expense of slow dynamics (Fig. 5C, D). Such changes
in α have limited effects on the recirculatory flow pattern
(Fig. 2). Instead, the reduction in fluid flow velocities
stabilizes cargo accumulation in two ways: first by re-
ducing directly the amount of material transported away
from the target zone, and second by increasing the time
for cargo to bind to the motor velocity field, hence in-

creasing the amount of material that is returned to the
target site. This counter-intuitive effect occurs over the
wide range 0.1 ≤ β ≤ 0.75 for which the fraction of
localized cargo at low values of α is more than 10 per-
centage points higher than at α = 1. The qualitative
features of the parameter space also remain unchanged
for simulations performed in a circular geometry, thereby
highlighting the generality of the concept.

Any biological cell that requires long-time or persistent
cargo localization, for example prior to an asymmetric
cell division, or to provide positional information during
development, needs to limit dispersive effects. In gen-
eral, biochemical mechanisms may contribute to stabilize
cargo accumulation at the target site. Yet, the coupling
between active and advective transport in our model in-
dicates that an only weakly biased cytoskeletal network
provides an alternative, physical strategy to balance an
on-average directed active transport with suppressed cy-
toplasmic flows. Rough estimates for organelles or vesi-
cles in Characean algae (Pe ≈ 5 × 103) or mRNA in fly
oocytes (Pe ≈ 5× 103) show that biological systems can
reach the high Péclet number regimes explored here. This
concept may therefore help to rationalize subtle direc-
tional biases recently discovered in microtubule networks
of fly oocytes [21].
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