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ABSTRACT We present an analysis of the planar motion of single semiflexible filaments subject to viscous drag or point
forcing. These are the relevant forces in dynamic experiments designed to measure biopolymer bending moduli. By analogy
with the “Stokes problems” in hydrodynamics (motion of a viscous fluid induced by that of a wall bounding the fluid), we
consider the motion of a polymer, one end of which is moved in an impulsive or oscillatory way. Analytical solutions for the
time-dependent shapes of such moving polymers are obtained within an analysis applicable to small-amplitude deformations.
In the case of oscillatory driving, particular attention is paid to a characteristic length determined by the frequency of
oscillation, the polymer persistence length, and the viscous drag coefficient. Experiments on actin flaments manipulated with
optical traps confirm the scaling law predicted by the analysis and provide a new technique for measuring the elastic bending
modulus. Exploiting this model, we also present a reanalysis of several published experiments on microtubules.

INTRODUCTION

Attempts by theoretical physicists to contribute in someviscously overdamped dynamics have been studied in great
useful way to the study of biology have, so far, been mostletail and with exciting results in bulk for polymer gels
successful in systems in which all forces and motion can bélsambert and Maggs, 1996; MacKintosh and Janmey,
modeled and mathematized explicitly, or in those governed 997), the application of viscous dynamics to single poly-
by equilibrium statistical mechanics, for which equipartition mers and connections with experiment have not been fully
can be invoked. One specific example of such success is thstucidated. We intend this paper to be a complement to the
analysis of structural microfilaments, essentially one-di-important works done in the inertial and bulk contexts.
mensional mechanical objects with no moving parts. De- Specifically, we here couple elasticity theory and over-
spite this unassuming mechanical description, these semitamped viscous hydrodynamics (as is appropriate in the
flexible biopolymers are essential for innumerable functionspiological context) to explore elastohydrodynamics. Al-
and processes at the molecular and cellular level. though equations with the appropriate units will be suffi-
Depending on the bending modulus of the filament ingjent to determine the scales of forces and velocities, if we
question, experiments investigating the elastic properties qf;ish to extract numbers from the experiments it is necessary
these biopolymers largely rely on either mechanical Org perform a thorough analysis. The slenderness of the
statistical techniques. _Mlcrotubules, Wlth a pe_rS'Ste_”CGfilaments allows us to simplify greatly the hydrodynamics
length of ~5 mm, are quite amenable to micromanipulation g arrive at a local partial differential equation of motion.
or forcing via hydrostatic drag. Actin and nucleic acids, e find that coupling to hydrodynamics allows us to extend

with persistence lengths near 18n and 50 nm, respec- yhe range of mechanical experiments to much smaller bend-
tively, fall in the realm of statistical mechanics (note that Weing moduli. For example, whereas measurements of actin's

are here addressing the bending elasticity, not the stretchi idity so far have been via fluctuation analyses invoking

il.asuflti/’ alr;c;tg.eélarealt Otf glreiggécnsemtehnt tanld Sllézcgsseéquipartition and thus statistical mechanics, we present here
Ig\r?a?éé'n h"chL(J:Z?efe Igﬁ'al sis ha?l;ee(ra] I:s.é o ;I'enan experimental method that does not rely on nonzero
n wh u ysl prev {emperature. Furthermore, the method allows investigation

however, is Investigations of dynamics at the single pOIy'into questions that have been raised about whether actin can
mer level. Such a theoretical program has only recently been

. .~ ~even be treated as a semiflexible polymer, or is in fact
made experimentally relevant through the advent of optica . . S -~
. . o . scale-sensitive (Kaet al., 1993) or dynamic in its elasticity.
tweezers and the proliferation of similar techniques for

precise and controllable micromanipulation. Whereas trea Such a purely mechanical treatment obviates the possible

ments of the undamped, inertial case have a long historjompl'cat'ons of statistical treatments like dimensionality

(Harris and Hearst, 1966; Landau and Lifshitz, 1986), an Ott et al., 1993), correlations among sampled images, or
’ ' ' "~ self-avoidance.

It is our hope that this new experimental method, as well

Received for publication 2 April 1997 and in final form 6 November 1997.as the general analytic techniques here outlined, will con-
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yses should prove useful in the study of other examples of

dynamic elastic filaments, such as supercoiled fiberB.of

subtilis (Mendelson, 1990). We intend this investigation to

be the necessary precursor to such promising extensions.
A useful starting point for developing the dynamics of an

elastic filament in a viscous medium will be to consider the

simplest time dependencies possible. To that end, recall the (I

classic problems introduced by G. G. Stokes (Stokes, 1851),

illustrated in Fig. 1, involving the motion of a viscous fluid

bounded by a wall that is either (I) moved impulsively or

(I) oscillated. These easily solvable problems capture the y,cos(wt)

essential ideas of viscous diffusion of velocity. The exper-

imental geometry is such that the Navier-Stokes equation

for the velocity fieldu(x, t) is simply the diffusion equation a

Ve = "Vxxxx

Up = Pl (1) FIGURE 2 Geometry of elastohydrodynamic problems | and Il.

wherev = u/p is the kinematic viscosity, and andp are

the fluid viscosity and density. Subscripts on functions

indicate differentiation throughout unless otherwise indi-semiflexible biopolymers (Barkley and Zimm, 1978; Am-
cated. The salient features of the solutions are the relatiors|ard et al., 1996; Gittes et al., 1993), primarily in the
ships between length scales, time scales, and material Pgpntext of scaling arguments for relaxation times; our goal
rameters. Specifically, in the impulsive case, the velgglty ahere is to provide a complete solution, given arbitrary initial
any pointx and timet depends only on the rat/(1)™5  anq poundary conditions as dictated by experiment. (Nota

likewise, in the oscillatory case, deformations decay with 3ene: In Amblard et al (1996), Eq. 2 should include a minus
characteristic length that scales &gw) = (v/w)'2 sign: as written, the equation is ill-posed.)

We introduce here the analogous two problems in elas- An analysis similar to that presented below of the oscil-

tohydrodynamics, illustrated in Fig. 2. They involve (]) the latory passive elastica was carried out a number of years ago

deflection of a polymer anchored at one end after th . . :
instantaneous introduction of a uniform fluid velocity, y K E. Machm (Machin, 1958, 196.2)' who_con3|dered the
otion of a driven flagellum. Machin was interested spe-

and (Il) the steady undulations of a polymer, one end of "¢ s S .
which is oscillated. Rather than a diffusion equation as irciically in a semiinfinite active flagellum that was bent
the Stokes problems, the dynamics of small deformationd/ith @ set of boundary conditions amenable to analysis.
y(x, t) of the filament are governed by a fourth-order partial Ours will be more malicious, but not subtle.

differential equation of the form We first recall some general features of equations of
motion for elastica embedded in viscous flow. By illustrat-
Y1 =~ P (2)  ing the geometrically exact equation, we hope to make clear

where? = A/Z plays the role of a “hyperdiffusion” coeffi- how higher order terms will affect the results of linearized
cient, A is the bending modulus, anglis the drag coeffi- analysis. We then apply this dynamic to a number of ex-

cient. This equation has appeared before in the literature Oplerimentally relevgnt scengrios. Inspired by Stpkes prob-
lems | and Il in fluid dynamics (Sl and SlI), we first solve

problems | and Il of elastohydrodynamics (EHDI and EH-
DIl), each of whose dynamic mimics its hydrodynamic

U=Vl analog. Problem | requires some mathematical details fa-

miliar from elasticity theory to assist our physical intuitions.
v T T T Specifically, we use a set of basis functions appropriate to
[ LT = the equation of motion and specified boundary conditions.

All of the pleasant features found when applying Fourier
space to unbounded or periodic systems are found here as
well, in what we term'-space. Unlike Fourier space,
W-space respects both the compact support and the bound-
ary conditions of the elastica and thus diagonalizes the
equation of motion. We then discuss an experimental real-
ization of problem Il and its analysis, which provides a new
I technique for the measurement of a polymer's bending
modulus. Finally, we comment on experiments by a sepa-
FIGURE 1 Geometry of Stokes problems | and II. rate group to which the EHDI analysis may be applied.

Ucos(wt)
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ELASTIC FORCES (whereg, is the unit vector in the direction), with bound-

. . .ary conditions
A bent elastic polymer exerts a restorative force per unit

length given by the functional derivatife = —&é/ér of a V=0 and y, =0 atfreeends. (6)
bending energy,

The specification of the filament dynamic is complete upon
f definition of the hydrodynamic drag, which balanégsWe

1
€=-A| dsk? (3)  now turn to this problem.

2
0

(Note that we may also include any forces of ConStraim‘SLENDER-BODY HYDRODYNAMICS
such as a Lagrangian tension to enforce inextensibility

(Goldstein and Langer, 1995), but such terms will be ofWe consider experiments taking place on cellular biological
higher order in the curvature than we will consider in thisscales, with typical lengthisin microns, timeg in seconds,
investigation.) Herex is the curvatures is the arclength, and a dynamic viscosity that of water, in centipoise. The
and A is the bending stiffness constant, with units of en-Reynolds number ilL/v ~ L%ty ~ 10"%/107% ~ 10" °, so
ergy X length. This may also be expressed as the proBlct we are safely in the low-Reynolds number or Stokesian
of Young’s modulusE and the moment of inertia(Love,  regime. In this Aristotelian overdamped limit, forces bal-
1892). For a polymer of persistence lendgthat absolute —ance velocities rather than accelerations. For a body whose
temperatureT, exploring all configurations irD dimen-  length is much greater than its width, the well-developed set
sions, we may also derive by equipartition the equivalenc®f calculations known as slender-body hydrodynamics ap-
A= (D — 1kgTLy2. plies (Keller and Rubinow, 1976; Cox, 1970, 1971). If this
Henceforth we consider elastic filaments lying in the filamentous polymer has diamewrlengthL, and an aspect
plane, the geometry best suited to data acquisition via miratio d/L << 1, we have to lowest order in 1/l/d) the
croscopy. The curvaturemay then be expressed exactly as simplified, local, anisotropic proportionality between the
de/ds, where# is the angle between the tangent to the curvedrag forcef, and the velocityr,,
and some fixed axis (see Fig. 3), or equivalentlyxas

Vio/(1 + y2)*2 Taking the functional derivative of the fo= (AR + Btt]- (r, — u) )
energy (Eq. 3), we find the force per unit length, exerted
purely in the normalf{) direction, Heref4(s) is a force per unit length exerted on the filament,

andi(s) andf(s) are unit vectors in the normal and tangen-

3\ tial directions at arclengts along the polymer. The prod-

fe = A<KSS+ oK )n (4)  ucts AR and tt indicate tensor multiplication, projecting
velocities normal and tangential to the curve and relating
and the boundary conditions= k¢ = 0, indicating torque- them via their respective drag coefficients to the applied

lessness and forcelessness at free ends of elastica (Weiiarce. The velocity of the polymer is denotegs), andu is

stock, 1974; Landau and Lifshitz, 1986). At hinged orany background velocity that may be present in the prob-
clamped ends different boundary conditions hold, as will bdem; the drag should be a function of the former relative to

discussed below. the latter. The anisotropy, evident when dragging a pencil
_ For small deviations from a horizontal lingy,( << 1),  through molasses, between motions parallel and perpendic-
t =28, n = — &, and the linearized force is ular to a slender object’s long axis is embodied by the
R parameterd, which depends logarithmically on the aspect
fo = —A¥oudy + 0y ®) ratio, with asymptotic behavigp — 1/2 asL/d — «. For
small d/L, the viscous drag coefficient has the limiting
behavior
A
f _
/ . £= In(Ud) + ¢ ®

° wherec is a constant of order unity, which depends on the
shape of the body (Keller and Rubinow, 1976; Cox, 1970,
1971; Lighthill, 1975; Childress, 1981; Shelley and Ueda,
1996).

FIGURE 3 Geometry of an elastic filamerR.= local radius of curva- We now equate the elastic force per unit length with the

ture = 1/k; t, n = unit tangent and normal, cas=t - &,; d = diameter  drag force {y = f¢) to derive the equation of motion:
of the filament; arclengtls varies from 0 toL, the total arclength. Within

the approximations of slender-body hydrodynamics, a local anisotropic » 1

proportionality is satisfied between an external force per unit lehatid L[AR 4 Btt] - (ri—u) = A(Kss + = K3)ﬁ 9)
the velocityv. 2
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Linearizing the expression for the drag (Eq. 7) for nearly Defining ¢ = x/(it)Y4, the scaling ansaty = utF(¢)
straight polymers and noting that its tangential componentsransforms Eq. 2 inté¢ — YaéF, = —F.,. Demanding that

are of ordery, the dynamic reduces to F(>) — 0, we find that the slopg, = utF/(¥t)"* grows in
time without bound, thus failing to meet the criterion on
Vi = W) = — AV (10)  which the linearization of Eq. 9 was predicateéy)] << 1.

We therefore turn instead to the case of the finite elastica,
?Iamped at one end and free at the other, and subject to
impulsive hydrodynamic drag. Our analysis is applicable to

xperiments in which either the coverslip is moved or, as a
%pecial case, in which the elastica is allowed to relax from
some initial condition in the absence of flow.

To make the mathematics as transparent as possible, we
first nondimensionalize the equation of motion (Eqg. 10).
Distances irx are rescaled by the total lendthtime by the
ELASTOHYDRODYNAMIC PROBLEM | elastohydrodynamic. timg sca_te‘.‘/A,' and dista.nces iy by

the (constant) velocity times this time scale:
Now that we have established the equation of motion ap- L4 L4
proprlate. to these ela§tohydrOQynam|c analogs, we rega;!: L t= TL, y(x, 1) = ug—h(a, 7 (11)
the solutions to the fluid dynamics problems Sl and SlI in A A
hopes of exploiting the analogy as much as possible. |
Stokes | (Sl), a semiinfinite plane of fluid is driven by a wall
that is motionless for time< 0 and has velocityg, for t > h,—1=—h,.. (12)
0. In Stokes Il (SlI), the wall oscillates &% cos(t)g,, and o
we solve for the behavior after transients have died away. The homogeneous equationgs= —g,qq.- Well versed

As illustrated in Fig. 1, velocity gradients are in tie in the litany of Fourier transforms, we first left-multiply by
direction in both Stokes problems, and hence are perper@h as yet arbitrary functio(a) (wherek indicates a
dicular to the direction of flow (along thg axis). In the — parameter rather than a derivative) and integrate over the
absence of an imposed pressure gradient, the Navier-Stokégmain ofa,
equation for the fluid velocityu(x, t) parallel to the wall is

Hereu = u - §,. In the absence of any background flow we
recover Eq. 2. This is the simplest linearized expression o
elastohydrodynamics: elastic forces, characterized by

fourth spatial derivative, balance viscous drag. It share
many similarities with the diffusion equation (Eq. 1) and
may be thought of as “hyperdiffusion” of displacement in
analogy with hyperviscosity.

The governing equatiory, — u = —y,..., then becomes

. . . . . 1 1
simply the linear diffusion equation (Eq. 1), = vu,,. _ 4

A convenient method of solving SI with the associated doWid-g docWid.g (13)
boundary condition is to postulate a scaling solution in- 0 0
spired by dimensional analysis(x, t) = UF(§), with § = Integration by parts of the fourth-order derivative introduces

X)), The scaling functiorF then obeys a nonautono- gjgnt separate surface terms. The boundary conditions im-
mous ordmary dlfferentlal equatior¥2eF, = Fy the  plied by the functional derivative dictate the vanishing of
solution of which isF = erfc (g/\fZ).,.where erfc is the  he second and third derivatives at the free end=(L).
complementary error function. Rewriting Eq. 1 in this form requiringg to satisfy these conditions eliminates two of the
illustrates the scaling behavior alluded to after Eq. 1. eight terms.

Armed with some understanding of SI, we now turn t0  The |eft end of the polymer is clamped at the origin, so
problem | of elastohydrodynamics (EHDI). In problem |, we y(x = 0) = y,(x = 0) = 0. Demanding this behavior af
consider an elastic filamentous polymer that is anchored &|iminates two additional surface terms. We now chditige
the origin. Fort < 0 it lies along the line segmeny{= 0;  , satisfy the same boundary conditions yasg, and h:

0 < x < L}. We then may consider forcing the filament by W (0) = 9, W (0) = %W\ (1) = a3W (1) = 0. This anni-
moving one end relative to the fluid (moving the anchor) orpjjates the remaining four surface terms. Finally, we choose
moving the fluid relative to the polymer (moving, for ex- W, to obey

ample, the coverslip). We will first attempt to do this in a

way as analogous to Sl as possible. 0% W\ = KW, (14)

The strict analog of Sl involves a polymer of infinite . 4 . )
extent, obviating the problem of boundary conditions at the”€fiNing g = Jo daWg, the equation of motion becomes
“right” end. Although this scenario is of limited value in 0,0« = —K'gi, the solution to which is
comparing to experiments on actin or microtubules, where gd(1) = g(0)e K" (15)
thermal fluctuations dominate on scales longer than the
persistence length, it is useful both in illustration of how If we wish to describe the dynamics in such terms, we must
Egs. 1 and 2 differ, and in application to more rigid bio- construct the’,, which necessitates that we identify the
filaments, e.g., filaments dB. subtilis whose persistence allowed values ok.
length is ~10 m (Pederson and Goldstein, unpublished A moment’s thought reveals that tH€, cannot simply
data). be constructed out of the familiar sin’s and cos’s of Fourier
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space, which are incompatible with boundary conditions in
which successive derivatives vanish. A countably infinite
family of such®W', can, however, be constructed by includ-
ing hyperbolic trigonometric functions as well in the basis
of the function space. The general solution of Eq. 14 is 1
(Landau and Lifshitz, 1986)

IIlII|I|||||I|I||III

W, = asin(ka) + a,cogka) =
(16) = 0
+ assinh(ka) + a,coshka) =
The expression has four unknowns, as a solution to a
fourth-order problem must. Inserting the four boundary
conditions leads to a solvability condition f&r

-1

L1 | I | I N A | | | I S | l 11 1|

III|IIII|IIII||III]IIII

0.2 0.4 0.6 0.8 1.0

This transcendental equation has an infinite number of o
solutions. For large values df, as 1/coshk — 0, the
solutions approach the solutions of the Fourier-like solv-FIGURE 4 The first three eigenfunctions for EHD problem I. The dotted

ability condition cosk = 0, i.e.,k,, ; — 7/2 + 7n. The first line indicates the normalized third-order polynomial describing an elastica
few solutions are bent by a point force at the right end. Note the surprising overlapWith
as exploited in the text (The Simple EHDI Experiment).

cosk = — a7

'O_||l|||1|||

coshk

=]

k = 5 +0304= 1875,
conditions break translation invariance, reflected in the fact
K, = 3777_ 0.018 = 4.694 that9 cannot be expressed &« — «'; 7).
2 ’ (18) We note from the solution (Eq. 20) that each mayle
decays independently and exponentially with time. This is
Ky = 5777+ 0.001 = 7.855 to be compared with diffusive problems, in which each
2 ’ mode decays exponentially in time, except for the zero
(average) mode, which is constant. In this experiment, the
k, = 7777 ~ 10.996. . .. boundary conditions are incompatible with the existence of
2 ’ a zero mode. The system “hyperdiffuses” to homogeneity.

The first three normalized eigenfunctions are shown in Becausey(a, 7) decays to zero, we halga, 7) = h(a)
ast — », where

Fig. 4.

Note that had we chosen other boundary conditions, a _ 1
different solvability condition and eigenfamily would have ha) = 54(a" — 4a® + 6a) (21)
resulted (cf. Appendix B). For example, in the case of the
elastica with free ends, we employ an expansioly wfith Returning to the clamped polymer in the presence of
the basis functions of Eq. B2. some background flow, we project the definitional state-

With appropriate boundary conditions, the operayr menth(e, 7) = g(e, 7) + h(a) onto the' W' (a):
can be proved to be self-adjoint, and thus the eigenfunctions _
constitute a complete basis in function space onto which we h(7) = g(7) + hy (22)

may project initial data and relate to later-time solutions viaWhich implies the initial conditiong,(0) = h(0) — hy
Eq. 15 in the standard Green’s function way: Recalling the simple time dependence of the magldsom

1 Eqg. 15, we see
g(a, 7) = f da’Y(a, a'; T)g(a’, 0) (19) h(s) = (L — &5 + O+ (23)

0
The dynamic thus mimics that of a capacitor, charging up
with the final shape state and draining of the initial shape
ooy — g state, each mode governed independently by decakréte
e, a'i ) %Wk(a)owk(a e @) i the experiment considered, the initial condition is a flat
polymer: h(a, 7 = 0) = 0. Becauseh is the solution to
This is the exact solution of the linearized homogeneous,,., = 1, with boundary condition$y(0) = h,(0) =
equation. Note that the compact support and the boundary, (1) = h,,.(1) = 0, we find upon integrating by parts

where the Green'’s function is
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thath, = k= *I’,, whereW, = [% da'W\, h, = [ da'W'h, The experimental setup is shown in Fig. 5: F-actin is
and thus bound to a latex bead, which is optically trapped. As the
position of the bead oscillates sinusoidally in time, the

B * W, filament wiggles back and forth, propagating waves of

h(e, 7) = h(a) — >, “Wk(a)Fe’kaT (24)  displacement down its length. The motion relative to the

k=ki fluid is opposed by the fluid viscosity, and the “wiggles” are
opposed by the elasticity of the polymer.
Evaluating the first few integrals, we find fa hy, = The elastic constar has units of energy length, and

6><10’2hk29><10’4hk~7><105hk~1>< . i ; ‘
5 the viscous force per unit length per unit velocity has the
10~ . Each mode withk > k, decays exponent|ally . . . . o
dimensions of a viscosity or action densjiy

faster in time than the lowest mode, which thus dominates
asT — «, SO mass

lengthx time

__energyX time
length?®

(] =[u]= 28)
h — h—h.e " =h-0.06,e 23  (25)
Thus the natural length obtained frofy ¢, and the fre-

Our picture of the impulsive dynamic of elastica in vis- quency of oscillationw is

cous flow is thus as follows: we project onto a special
function space in which the long-time solution and the

difference between initial data and the long-time solution
exponentially charge and decay, respectively, each mode
behaving independently. We are left with only the long-time

solution as the asymptotic limit — oo,

ELASTOHYDRODYNAMIC PROBLEM i

In Stokes I, the driving force is exerted by a wall oscillating

with velocity u = U, cos (t), or positiony = y, Cos (t).
To solve the steady-state limit of Sll, we postulafg, t) =

UNR(€“'G(n)), wheren = x(w/v)? and 9 (2) indicates the

real part ofz Inserting into Eq. 1, we then see th@t
satisfies

iG=G,, (26)

for which the solution vanishing ag — < isG = e~ Vim,
We then find thati(x, t) = Ue™ V2 cost — 7/\/2), or, in

A)ll4_ (kBTLp>1/4
¢\ wg

Nota benethat ¢(w) is not a mere rescaling of the persis-
tence length.

With a previously published persistence length for actin
of L, = 15 um (Ott et al., 1993), a viscosity = 0.01 cp,
kg T~ 4 >< 10 * erg atT = 300 K, and measuring in
units of s'*, we obtain

@) = ( (29)

{(w) = (2.8’;5?)0)1/4 (30)

Thus for frequencies on the order of 1 Hz, we obtain length
scales on the order of microns, somewhat below the persis-
tence length. This range of frequencies seems quite advan-
tageous for experiment.

This elastohydrodynamic lengthi(w) is precisely the
length found upon nondimensionalizing the equation of
motion (Eq. 2). By analogy to SlI, we define the dimen-

a form useful for comparison to the elastohydrodynamicsionless coordinate = x/(vw)** =

case,

u(x, t) = Ue >"cogCn — wt) 27)

X(w) = X(ANwl)

slide

where C = cos@@/4) andS = sin(sr/4). This solution de- |

scribes right-moving waves of velociylJ/C, decaying as
x — o with decay lengtif (/S

We now consider a polymer held by an optical trap that
moves with positiory(x = 0) = y, cos (@t). Because we
have shown in the previous section that all modes satisfying
the homogeneous equation of motion with homogeneous
boundary conditions decay exponentially, we must only
find a solution in the presence of inhomogeneity (here, the
driving) to find the long-time limit of the dynamic.

To verify the validity of our analysis as well as the
plausibility of EHDII as a method for measuring biopoly-
mer rigidity, we conducted the experiment (Riveline et al.,
1997) and analyzed image data as described below. A
scaling relation predicted by the analysis was confirmed,
and a new method for measurement of the persistence
length of actin was demonstrated.

bead ~g g F-actin
‘/I’\/—\/-\/ 20um
o v ium
coverslip
0 0 ]
N S
,-"microscope
* objective
Nd:YAG laser beam
A=1.064un

FIGURE 5 Experimental setup.
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and rewrite the solution as The solution consistent with the two left-end boundary
X, O = yo{en(m)} @y oondrense
and Eq. 2 as y= % [eS1coSn + wt) + e S1cogCn — wt)] (34)
ih=—h,., (32)

whereC = cos@@/8) andS = sin(n/8). Compare with the
The solutions of Eq. 32 are of the forhfn) = ce”™, where  gojytion to SII (Eq. 27). The semiinfinite solution (Eq. 34)
y may be any one of the four distinct (complex) numbersijs shown at the bottom of Fig. 6 fast = n2m/6,n=1. ..
such thaty" = —i. These arey; = i’ exp(~in/8),j = 1...4. g In the hydrodynamic case, the solution of Eq. 27 de-
The general solution is the sum of these four solutions, g¢ribes exponentially decaying right-moving traveling
. waves of transverse velocity. In the elastohydrodynamic
_ izo case, the higher order derivative allows more complicated
h(n) = %Cjé ! (33) behavior: right- and left-moving waves of displacement,
g with different decay rates and velocities. In this case, the
wherez, = e~ = 0.92 — 0.38. The unpleasant (but right-movers have a slower decay (becase: 0.38 <
certainly not subtle) remainder of the problem is to solve for0.92 = C), and might be expected in some sense to domi-
the fourg’s, given some four boundary conditions. At the nate over the left-movers. This mechanism will be elabo-
left (x = 0) end, we enforce the position and the condi-rated on below (under Propulsive Force).
tion of torquelessness (as appropriate for an optical trap):
Y.x(0) = 0. The right end must satisfy the free end boundary
conditions (Eg. 6). The; derived from these conditions are Finite polymer
functions of a rescaled polymer length= L/{(w) and may
properly be written as;().

im/8

In the limit of a short or stiff polymer¥ << 1, we rewrite
n=a¥, a =xL € (0, 1) and expand, yielding

Semiinfinite polymer h < (a) = <1 - g oz)

The exact solution foh(n) is presented in Appendix C; it (35)
simplifies greatly, however, for extreme valuesldf(w). o 5 s .

For this reason we include a discussion of the polymer of + 1680(_16 + 700" — 700 + 21a)

infinite extent. In this limit, the two coefficients for which
y; has a nonnegative real part must be zero, allowing onlyEquivalently, we may derive this polynomial by truncating
decaying solutions ag — . a series expansion fdrin « and enforcing the equation of
motion (Eg. 32) and the boundary conditions (Eqg. 6). Using
Eq. 35, all four boundary conditions are satisfied exactly,
whereas Eq. 32 is solved to ord&(*?).

The exact solution is shown in Fig. 6 fét = 1, 2, 4, and
o andwt = N27/6,n = 1. .. 6. Note the existence of a pivot
point atx = 2L/3 as¥ — 0. This behavior is described by
the O(£°) term in Eq. 35: asf — 0, the polymer acts as a
rigid rod. As a consequence, it is impossible to tell if a
movie of such a polymer is being played forward or back-

0 L/Nw)=1

2 ward. Indeed, this is a filamentous version of the famous

“one-armed swimmer” or “scallop” example, illustrating the

lack of net propulsion for rigid objects executing time-

B 4 reversible motions in low Reynolds number flow (Purcell,

1977; Childress, 1981).

Propulsive force

1 1 1§t | | I I | F I T | l | N I | 11

Problem Il and its associated experiment are sufficiently
reminiscent of flagellar hydrodynamics to motivate a cal-
2 4 culation of the propulsive force generated in the direc-
nzx/l(w) tion by the wiggling. This can be done by integratingthe
force exerted by the polymer on the fluid, along the length
FIGURE 6 Solutions to EHD problem Il for filaments of various Of the filament. We then contract this instantaneous total
rescaled length&. force with & and average over one period. This force is

o]
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equal to and opposite the propulsive force exerted by thd0) shows good agreement with the exact solution for
fluid on the polymer. ¥ =< 3, as does the largé- approximation (Eq. 39) for
Noting that the force per unit length in Eq. 4 is a total £ = 3. The approach to the asymptotic limit is oscillatory,
derivative, with a maximum neaff ~ 4, the value at whicti{h,}
acquires its first root, and a local minimum néér= 6, the
1 . . R
fo = Aas( P K2t> (36) value at whichg¥{ hﬂ} acquires its second root.. The unex-

2 pected local maximum indicates that there is an optimal

combination ofA, w, and a finiteL.

and recalling the boundary conditions imposedkamnd k., i i ) )
g y P s Inserting typical numbers from the experiment (in cgs),

we have
w= 1072 vy, = 4x10*

F = _J dsf, - & = Aksin 6(s = 0) (37) L

w = 2, ale3

This is geometrically exact. We now wish to calculate the
time averageE over one period. Within the linearized so- We find thatF(«) ~ 2 X 10"° dynes= 3 x 102 pN. For
lution, Ks sin 6 = VaooYx- Reca"ing the expression f(yrm a trap stiffness 0f~0.02 pN/nm, this would induce a dis-
Eq. 31, we obtain placement of 1.5 nm, at the lower limit of experimental
observation. The production and measurement of propulsive
E :yéng<L> force by an artificial flagellum were attempted by G. I.
4\,5 {(w) Taylor (Taylor, 1952), using a glycerine-filled tub to mimic

) o ] ] the low Reynolds numbers found in vivo. Taylor struggled

where {(w) is the characteristic length and is a scaling {5 grive the flagellum without inducing unwanted torque or

function conveniently normalized (see below). disturbing the flow, a difficulty obviated by the use of
The exact solution to EHDII given in Appendix C can be optical traps.

used to calculate the functiohfor all values of the polymer
length. The asymptotic behavior &— « is

(38)

Returning to the asymptotic expressions licderived in
the previous two sections, we observe a pleasant accordance
_oBp i with the qualitative features of Fig. 7. In the semiinfinite
Y(&#) — 1+ 4e*sin2C) (39) case, we noted the presence of right- and left-movers, with
When the length is short compared to the characteristi¢ight-moving waves of displacement exhibiting slower de-
length, the polymer flexes very little, so cay. Such a dominance accounts for the nonzero propulsive
force in theZ — <o limit, where a net propulsion to the left
Y ~ £$4+ 0(F?) ~ ii‘” L4 (40) survives. In thef — 0 case, we recovered a shape that
3360 3360 A approaches a pivoting rigid rod, not unlike a one-armed
swimmer. As we expect from life at low Reynolds number
(Purcell, 1977; Childress, 1981), such a motion, invariant
undert — —t, can produce no net propulsion.
As a further illustration of the relationship between low-

As Fig. 7 illustrates, the short-length approximation (Eg.

1.5 T 1 1T T LI LI LI L LI . . . .
| i Reynolds-number swimming and cyclic motions, we ob-
| ! i serve that the lowest-order expression for the time-averaged
i i | force is equal to
i
i ! 27l L
{w d
1.0 — - =
~ I F o dt y, qt dx y(x) (41)
3 i 0 x=0 0
} r or, noting thatf dx y(x, t) is simply the aread(t) under the
= r curvey(x, t), and that the slope at the left is to first order
05— simply the tangent anglé,,
I Rl L TR TR
- oo LOogr =2, 9 0 (42)
r 0
O.o 1 1 | 14 1 1 | | N | | | T | | | T |
0 2 4 8 8 10 This result can be interpreted quite simply: the propulsive

L/1(w) force results from pushing aside some volume (or in two
dimensions, an area) of fluid, projected in the direction of

FIGURE 7 Scaling functio® for propulsive force. The largé expan- pr0pU|Si0néx an amqunt pr0p0rti0r"a| t'eo- Note that had
sion is plotted for# > 2, and the smali¢ solution is plotted for < 3.5.  we been interested in the propulsion in the transvegge (
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direction, thef, would not appear, leaving the absence of L et e T B By LB
net forcing:F « ¢ d«d = 0, as we would expect. R

The net force, then, is the area enclosed by a trajectory in L i
A — 6 space during some cyclic motion. This representa-
tion is independent of the particular motion exhibited, al-
though we have here considered simple periodic motion, for
which the trajectory is always an ellipse. A& — 0, the _—|_
elliptical trajectory thins to a straight line, encloses no area,
and thus produces no force.

This representation makes clear that in an inertialess
world, net motion is principally geometric in origin rather - .
than dynamic (Shapere and Wilczek, 1987). In a manner I I
analogous to the importance of path rather than kinetics in L.=7.37+0.25um
generating net work in a Carnot diagram, we see that we can LF .
remove time entirely from the expression and consider
instead a path in a low-dimensional projection of the infi-
nite-dimensional shape space. YL R —— P R B

0 10 20 30 40
w [Hz]

I
|

1(w) [um]

ANALYSIS OF EXPERIMENTS
. FIGURE 8 The characteristic length scdl@) versus frequency. The
Actin
smooth curve is a fit to Eq. 41 foc, = 7.4 um. The scaling of the
As mentioned in the previous section, the EHDII eXperi_characteristic length with the fourth root of time suggests that actin is well
’ . i Eq. 2 is th iflexible pol ith le-
ment was performed and the data compared to the soIutloﬁzsecgff;e:tyeIazﬁcityand 's thus a semiflexible polymer, with a scale
of Eqg. 32. In this way we were able to confirm the results of
the analysis and investigate a new method for measuring

biopolymer bending .mod_ull.. Materials used in the EXPEMque to such driving by looking at the relevant terms from the
ment may be found.m Riveline et. "’?I' (1997). geometrically exact equation of motion:

Knowing the amplitude of the driving of the beag)and
the frequency &), and reading off the projected length) ( Vi . Yix
and the phasaxt) directly from the images, we are left with (1+ y2)» - _V((l T y§)3’2) (44)
a one-parameter fit of the images to the solution of Eq. 32, s
varying only£(w) to minimize y°>. We can then observe the If we wish to approximate this with Eq. 7, we are measuring
dependence of on w, as illustrated in Fig. 8. The variation an “effective” v (or “7") where
in error bars can be attributed to the widely varying number -
of images taken at different frequencies. € v (45)
Comparing with the earlier analysis (cf. the previous (1+y)»

section),_ we can extract fro'm this scaling a measurement %here the brackets indicate averaging over the data, and
the persistence length. Fitting to thus the trueA will be underestimated by a factor of

kT4 (1 + y2)?, which is always greater than unity. Inspecting
t(w) = ({) L ™ (43)  Fig. 9, we see that there are data for whighis not
necessarily small. For this reason, the data we collected can
we determind., to be 7.4+ 0.2 um. only put a lower bound o\. We anticipate that the true

There are a few limitations with this realization of the value may be greater by a factor of up tal.5; clearly,
experiment which, upon correction, will improve this tech- future experiments should employ smaller amplitude driv-
nigue and make the data more conclusive. An obviousng.
mechanism for improving the error bars is to accumulate We also anticipate that a more accurate treatment of the
more data. Image-taking was entirely manual; automatiomeometry and hydrodynamics would refine the technique.
of this process would clearly be advantageous and improvéhe true geometry is nonlinear and the hydrodynamics
the low statistics used here. Furthermore, with careful connonlocal, but neither is intractable and both are amenable to
trol of the timing, images of equal phase can be superposetumerics. The geometrically exact, intrinsic formulation
to average out thermal fluctuations or experimental variainvolves some enjoyable mathematics of curve dynamics,
tion in the images before fits are performed. whereas the linearized treatment presented herein is more

Most importantly, because our aim was to verify theillustrative and more easily connected with experiment.
plausibility of the experiment, we did not limit ourselves to Similarly, in an attempt to make the analysis as clear as
small-amplitude wiggling, thus leaving the realm of validity possible, we have omitted from Eq. 7 the background flow
of the smally, approximation. We can estimate the error due to the trapped bead.
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A AR ALY RARRN ALY rameter, did not exceed 0.1. Hence the linearized treatment
outlined for EHDI is appropriate.

t= 0ms We will first investigate the analysis appropriate to a

t= 80 ms special case of EHDI in which a polymer relaxes to a
straight configuration in the absence of a driving flow. We

t=160 ms then investigate a more complicated experiment in which an

optical trap exerts a point force in the middle of the polymer.
t=240 ms

y [um]

t=320 ms The simple EHDI experiment

t=400 ms In the first experiment (Felgner et al., 1996), a microtubule
is initially clamped at the left to an axoneme and trapped
R/ IS O Y directly at the free end; the polymer is bent out of its
0 2 4 6 8 mechanical equilibrium configuration (cf. Fig. &). When
% [um] the trap is shut off, the polymer relaxes back to the straight
shape in a way that we may describe as before: the initial
FIGURE 9 Series of typical images of driven actin filaments in EHDII. condition is projected onto the appropriate space, in which
Also shown are fits to the solution of Eq. 32. each mode decays independently.
What remains, then, is merely to determine the initial
data: the shape of a biopolymer clamped at one end and held
Some amount of discussion has been entertained in tHY @ trap at the other. For the elastica exerting a bending
biophysical community about the possible scale or timemomentm under some external fordg, the (geometrically
dependence of the elasticity of biopolymers, including bothHexact) general equations of force and torque balance for the
actin (K3 et al., 1993) and microtubules (Kurachi et al., elastica may be combined into the single equation
1995). One of the more powerful features of this technique .
is that, becauses and thus€(w) are controlled by the mSZEXJ do f(o)
0

. - . . a7
experimenter, specific scales and frequencies can be inves- (47)

tigated to attempt a spectroscopy of elasticity. Equation 4

can be extended without difficulty to include a characteristicwheret = r. is the unit tangent. In two dimensions, cross
plasticity time scaler or a continuum of times, in an attempt products are scalars, ama, becomes the scalan,.

to model a characteristic rate of bond-breaking in the pres- Using m = Ad,, and considering point external forces
ence of bending. Similarly, one can include additional bend{exerted by the axoneme and the trap) that act at the left and
ing moduli that depend on higher-order derivatives. Forright ends, we rewrite Eq. 47 (for & s < L) as

oscillatory motion, occurrences éfare simply replaced by )

d, + l/roriw + 1/7. Including higher order derivative terms Abss = —F, cost + F,sin 6 (48)

simply results in replacing\ys, with Ay;, + Byj, in the whereF,, ., are the components of the force exerted by the

bending energy andly,, with Ay,, + B, in the equations  rap, rather than by the axoneme. We expgct 0 andF,
of motion. We then may recover such an equation as

1
§<at + T) y= _Ayxxxx - By8x (46)

which can be solved in the manner of Eq. 2. This more
general expression makes possible the experimental confir-
mation or refutation of such hypothesized mechanisms.

Microtubules

A recent pair of elastohydrodynamic experiments involving
microtubules (Felgner et al., 1996), brought to our attention
as the original version of this paper was being completed,
provides an excellent opportunity to apply the spirit of

analysis that we have developed for EHDI. In both, the
crucial experimental observable is the motion of the free
end of a microtubule; the analysis must then relate this
motion to the bending modulus. Experiments were con- FGURE 10 EHDI experimentsaj A simple special case.bf End-
ducted such that the tangent angle, the relevant small pakiving as well as driving via a point force.

(b)
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> 0. Equation 48 is geometrically exact and can be solvedo the transcendental equation (Eq. 17), is crucial, as it is
in terms of elliptic integrals. physically manifested in the decay rate.

Note that there is no reason to assume the trap exerts a The model of Felgner et al. (1996) is based first on the
force only in theg, direction—the oft-quoted “cantilevered computation of the deflectiory, of the free end of the
beam” problem from introductory civil engineering texts. clamped elastica experiencing a flow linearly increasing in
However, assuming that the polymer is homogeneous alongand constant in time, with a drag coefficighSuch a flow
its arclength, there is no energy cost upon moving the trapvould be appropriate for a rigidly rotating rod with constant
along the axis of the polymer. Therefore the trap can exerangular velocity, rather than for the bent elastic filament, for

no force in the tangential direction. Accordingly,/F, =  whichy(x, t) is nonlinear in both variables. Second, to find
—dy/dx, and Eq. 48 linearizes to the decay rate of Felgner et al. (1996), the exponential
relaxation of the tip must correspond to some first-order
Ao = —Fy(1 + 0(y5)) = —Fy (49)  gifferential equation. Although this equation is not stated,
We now must consider the boundary conditions. TheWe must assume it to bg(t) = —(v/y)y(t), (wherev is the
axoneme clamps the left end of the polymer; ty®) =  Maximum flow velocity used in the computation gj to

y,(0) = 0. Because there is no energy cost to rotating d€cover the reported decay rate,
polymer held in an optical trap, there should be no bending

moment, implying thay, (L) = 0. Given these three bound- r = @Ni (52)
ary conditions, the solution to (49) is 11 I
y - AL where ‘A” refers to the value oA that would be extracted
X) = 5 (3a? — &), =vyl)= 1
Y 2( o ) § =) 3A (50) from data, using the simplifications described above.

L A careful analysis of the drag coefficient in slender-body

where againg = x/L. : . "
- S hydrodynamics employs a matched asymptotics for the fluid

Now that we have our initial data, we project it onto a : .
: . : : . velocity and is dependent on the shape of the slender body.
function space in which the dynamics are simply exponen: . ; X .
. . . . . Treating a microtubule as a cylinder, the appropriate drag
tial relaxation. In keeping with the experiment we seek here O
. coefficient is (Cox, 1970a)
to model, we focus on the motion of the free end, whose raté
of relaxation provides a direct means of measuring the
bending modulu®A. Given the dramatic increase in relax-

ation rates for each subsequent mode (cf. Eq. 15), we expect
only the lowest mode to be relevant beyond negligible

initial times. Mpreover, Inspecting Fig. 4, we observ_e that(1996) is that appropriate to tangential rather than normal
the eigenfunctiorfit’, well approximates the normalized

. _ . - flow, with numerator Zru, and further suffers from the
third-order polynomial that describes the initial data H

. ’replacement of the constant terms in the denominator of Eq.
whereas higher modes more closely resemble Fourleé3 with —In 2

modes. This close agreement, rather surprising from a sum We may now compare the results of a differential equa-

of trigonometric _and hyperbolic fcrigqnome_tr@q functions, tion-motivated analysis with the model of Felgner et al.
leads to the dominance of the projection of initial data 0nt0(1996)' Given some measuredolding timet, , the eigen-
the first mode; specificallyy,,(0) = 0.48%; yi(0) = 1,40 analysis yields the bending modulias

—0.01%, where we defing, = /5 da yW, in analogy to

Eq. 15. Inserting typical numberé (= 5 X 10 *° dynes e

cn?, L ~ 10 X 10 um, and the drag coefficient from Eq. 8 A="—k* (54)
with d =~ 20 nm andu. ~ 0.01 erg s/crf), we see that for
times beyond 0.01 s, the amplitudes of subsequent modes ) o
are, at most, 1% that of the first mode. The shape is theif'hereas the rodlike treatment implies (from Eq. 52)
described byy(x) = W' (X)yy,(t) and decays as ", with -

r = AKJ/ZL*. In the model accompanying the experiment, it “pr — LLAE
was assumed that the shape was described by a single ot 120
decaying mode for all times beginningtat 0. Fortunately,

as we have showrilyy well approximates the initial data |nserting typical numbers from the experiment= 10 wm,
such that this introduces only an erf@L0 ). Withinthese 4 ~ .02 um, we see that

approximations, the free end decays as

_ 4
E=nUd) + 2In2— (1/2)

(53)

Unfortunately, the drag coefficient used by Felgner et al.

(55)

“A”
;/((LL;)) 097" ~ gt (51) A _113° = 0700 (56)

A '
so that a measurement of tledfolding time yieldsr and  a systematic underestimate beyond the uncertainties of
henceA. It is now clear that the identity d{;, the solution experiments.
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The discontinuous EHDI experiment intermediate point along the curve by an optical trap, while
the right and left sides perform some coupled motion.

A more complicated example of EHDI that was also con- At the free end, we impose forcelessness and torqueless-

ducted includes driving the axoneme, so that we must in-

corporate an inhomogeneous boundary condition, and poirﬁﬁiﬁggé(lgn; ?h : nF? o)I/;/)Fr(:_e)r :5 ?:I aﬁzzzcgemé A;Xghneem e
forcing by an optical trap (Felgner et al., 1996). In this '

iti t); thusy(0) = ya(t), Y,(0) = 0. The above-listed
experiment, the axoneme (attached to the coverslip) igOSI lony (1); thusy(0) = Ya(t), %(0) © above-isie

d with tant velocity. bet : ; oundary conditions constrain four of the arbitrary con-
moved with constant VEIoCity, between two extreme po-  giqni5 the remaining matching equations constitute the re-

sitions. During this motion, the polymer is constrained bymaining four, and we may thus completely specify the
the optical trap to pass through some intermediate pgint (oo tion.
Yp). From the position and velocity of the free end, it iS e goveming equation is linear, allowing us to separate
possible to determine the bending modulus. Enumerating al} into two separate solutions of Eq. 5¢:= y,(h + g)
of the relevant forces, we consider the force at the left en herey, is some typical length scale. We cf?ocg(da) to'
due to the axonemds,, the point force due to the rdf,,  gatisfy the (in)homogeneous boundary conditions and equa-
and the force per unit length due to dragdy; (cf. Fig.  tion of motion. Compare this with the first example solution
10b). We insert these terms into the equation of force ancyt EHp), in which h was chosen to satisfy an inhomoge-
torque balance for the elastica (Eq. 47) to find the equationgegys equation of motion but homogeneous boundary con-
of motion. ditions.

We adopt an expansion # keeping only the first-order A5 described above, the axoneme moves with constant
terms. Identifying the external force as the drag, and definye|ocity v, from y, = A to y, = —A: ya(t) = —Vd;
ing v, as the constant coverslip velocity, the integrand in Eq.—Afy, < t < A/v.. We must now merely solve for the

47 becomed® (y; + Vo). inhomogeneous solution, expressed as
Noting, as in Eq. 49, the constraint that the force on a

polymer due to an optical trap must have no tangential "

component, and taking the axoneme to exert a fércat h@t (x, 1) = E @ (t)x" (59)
x = 0 and the trap to exert a point forég ats = s, (x = o

X5), they component of the linearized equation reduces to

Abss = Fy — F0(s — 55) — £[ds(y; + Vo), which upon  Hawever, we are considering a Stokesian dynamic, in which

differentiation implies the time dependence is first-order and the equation of mo-
tion is linear; the driving is a constant in time, and thus time
LY + Vo) = = Ao — Fpd(X — %) (57)  should enter only linearly into any steady-state solution for

the position (cf. Landau and Lifshitz, 1987). Constraining
This is our working equation, obtained from the linearizedo?c®® = 0, enforcing the eight matching and boundary
second derivative of the equation of net torquelessness. conditions, and respecting the relationship betwigenand
Because we do not know the magnitudd-gfa priori, we ¢, , dictated by Eq. 58, we completely specify the solution.
must perform a matching ofi(x), the curve describing the To make explicit the qualitative behavior in limiting cases,
anchored end, ang(x), the curve describing the free end, and to write the equations as compactly as possible, we

which solve employ three nondimensionalized variables:
aft 4 y) = —Ayah 58 X X — A

L0+ v = — AV (58) a= X L2 XTh A )
% L =% o6

subject to matching conditions at the point of forcing. This

provides an example of a biopolymer subject both to dragrhe coordinatesd, o} € (0, 1) measure distance on the left

and to micromanipulation via some point force and bound{rom the axoneme and on the right from the trap, aisthe

ary condition. We will separate the solutions into the ho-time rescaled by the characteristic elastohydrodynamic time

mogeneous and the particular, and in a procedure that #&r the anchored section. The fact that rather than =

now familiar, construct the appropriate function space inL — X,, appears explicitly in our choice of definition efis

which the dynamic is simple. reflected in the equation of motion, in that the functions now
Inspecting the equation of motion (Eq. 57), we see that iolve slightly different equations for the two sides:

supports a discontinuity in,.; howevery,, is continuous,

as arey and y,. Moreover, if we wish to describe an v, §X§
. . . . . . . a ¢ a
experiment in which the filament position is constrained at h? + Vo A = ~Maaa
the point of forcingx,, we have not only the matching (61)
conditiony*(x,) = yf(xp), but the stronger conditioyf(x,) = v, 0¢ 4
yf(xp) = Y, here we choosg, to be 0 without loss of h + ij — _()?’> h oo
0

generality. We thus describe a polymer pinned at a certain
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The natural choice foy, is clearlyy, = vchg/A, whereupon tion way,
we are left with the dimensionless equations of motion,

b’ y(x', 0)
R+ 1=—h gx t) = T&@(x, X'; 1) Yo h(x’, 0) (65)
T (67670703 0
62) 0
hf +1=— 4hf (
T p o000 Where
where we have introduced the ratio of lengths G = Ek: &Y (X)W (X) (66)
P=1 ipxp =|§ (63)  and we see that all modes die.

We now solve for the countably infinite set&}{and
which describes the location of the point of forcing ~ {Wi}. The general solution ob W = KW is
relative to the “extra” length. As x, nears the anchored {aft — gfafl gj {af
(x = 0) end,p — 0, and asx, nears the freex(= L) end, Wi ag™ sinflog + 85 coky (67)
p — . The solutions to (62) are presented in Appendix D. + al*? sinhkx) + a? coshkx)

As described before, the solutitrto the inhomogeneous ) ) )
boundary conditions will describe the long-time behaviorwhere the eight arbitrary constants will solve the four
remaining after transients decay exponentia”y_ We nov\poundary and four matChIng conditions. The insertion and
turn our attention to the transiegt which must satisfy the €limination of these constants is not a joyful task and will be

homogeneous boundary conditiay(®) = g,(0) = g, (L) = omitted here. The most important fact is that the set of eight
Go(L) = 9(x,) = 0 and matching conditionsgf(x))] = equations for eight unknowns dictates a solvability condi-
[0 (%)] = O, where the brackets indicate discontinuity attion, written explicitly in Appendix D and graphically con-

the optical trap. structed in Fig. 11, which determines the allowed values of

The fact that all the boundary conditions are 0-valuedk given some fixed ratip. The first three normalized eigen-
suggests constructing a self-adjoint operator, consisterfinctions are illustrated in Fig. 12 for = %2.
with these conditions, from the relevant differential opera- The complicated solvability condition can be expressed
tor: 2. To do so, we left-multiply the equation of motion by compactly as the separable equation
an _as—yet a_rb|trary func_tloiW «(X) and integrate over the % = aF(PH(Q) + F(p)agH(g) = 0 (68)
entire domain. Becaudeis constructed to solve the (linear)
equation of motion (Eq. 57 must as well, and we derive whereF(p) = cosf) coshf) — 1, H(g) = cos(y) coshg) +

an equation of motion for the quantiteg, = 1, p = kx, andq = kl. This differential relation describes
I W (X)g(X): the motion along each of the branches shown in the figure
as p varies, each branch indexed by arbitrary constants
1 L introduced upon integrations of Eq. 68, and separated by the
5 0% = —J AXW'(X) G (64)  singularity lines H{ = 0, F = 0} at which the differential
0 equation is not invertible. The geometry chosen by the

experimenter dictates,, |, and thereforex/l = p/q = p.

We then integrate the right-hand side by parts. However, Wenspecting the figure, we see that we choose a set of modes
must admit the possibility thaf supports a discontinuity in

its higher-order derivatives, i.e.g.(x,)] # 0. For this
reason, we definedf(x, t), W3(x)} and {g'(x, t), WL(x)}, as

in Eq. 58, defined on the anchored and free sections, re- 8

spectively. If we choos#l" to obey the same homogeneous

boundary conditions ag, we eliminate all but four of the p

surface terms from the integration by parts in Eq. 64), the

remaining terms vanish upon choosifif to obey and q

W(x,) = 0 and the same matching conditionsga$Ve now 4

chooseW {2 to obey the eigenvalue conditiaw{®? = —
KW Because we have constructed a self-adjoint oper- 2

ator, the eigenvalues are real and positive. We are left with >

a0 = — 7Kg, the solution of which is, as beforg,(t) = % % ) I T

- 6
gk(O)e*V"dt for k # 0. Fortunately, the boundary and match- ¢

ing conditions do not admit a solution tp,,, = 0, and we
need not considea 0 mode. FIGURE 11 p — gplane showing roots of the solvability condition. Here
Given some initial conditiony(x, 0), we project it ont p = kx, andq = kI = k(L — x;). The geometry of the experiment dictates
. : WX L), project it onto p, as described in the text. Vertical and horizontal lines correspond to
this strange eigenspace spanned BY,J. We then con-  sojutions of F(p) = 0 and H(g) = 0, respectively. The diagonal line
structg(x, t) for all later times in a standard Green’s func- indicates the solution ta/L = 0.8.
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by drawing a line of slopep through the origin; each displacement) nor hinged,{ = 0, as might be considered
intersection with a branch corresponds to one mode. appropriate for a straight rod); it is in fact experiencing a
A further curiosity is that each of the four equatiorfs { torque atx, due to the side of the filament between the trap
H, Fp, Hgt = 0 is itself a separate solvability condition and the axoneme.
associated with a separate experimental geometry. In the Summing 1) the end displacemeg(v,; ¢;) of a clamped
language of Appendix D, we may rewrite the conditior= elastica in constant flow (using the first drag coefficient)
0, with the first letter below indicating the boundary con- and 2) the end displacemeyn(v,,; ¢,) of an elastica subject
dition for the left end of one side, and the second for theto the linearly increasing flow it would have experienced
condition at the right, were it a rigid rod (using the second drag coefficient), the
total deflectionys; from a straight line is obtained (see
D = (cH)(hf) + (ch)(ff) (69)  equation 20 of Felgner et al., 1996):

Otherwise stated, the total solvability condition determining m(11v,, + 30v )14
relaxation rates for a biopolymer clamped at the left, trapped Ys = "60A In(217d) (72)
in the middle, and free at the right is an average of those for
1) the left side clamped at 0 and freexgtwith the right side This end displacement is then used to approximate the
hinged atx, and free aL, and 2) the left side clamped at 0 deflection that would have been experienced had the fila-
and hinged ax,, with the right side free at, and free aL. ~ ment in the calculation not been initially horizontal, but
Armed with a set of decaying modes, we may solve therather constrained to a nonzero slope at the trap, i.e., that of
equation for all times. We now attempt, as in Eq. 50, tothet — o solution for the shape;y.
construct a polynomial solution that describes the initial This deflectionys, from the right tip position at = < to
data. The polymer initially sits at rest witf0) = A and is  that att = A/v,, when the axoneme halts, is the first
subject to the stated matching and boundary conditionsxperimental observable. The second is the velocity at this
Noting that the shape must be described by polynomials ofip att = A/v,, which is then equated with the maximum
less than fourth order, because we wish to describe awelocity v,, in the expression fos;. Dividing ys by the
elastica experiencing no forces, we find the polynorgial weighted sum of velocities appearing in the numerator, one
obtains the combination of two observablgs ¢,,,) and one
Ve) = A(l _ § o2+ } ag) (70) 9xperi_mental parametech whi(_:h, acgording to thﬁs model,_
2 2 is equivalent to a simple quotient with units of time and in
which A appears explicitly,

_ 30
Y(o) = —A 20 (71) o~ Vs B 1lmml*
J = 11y, + 30v) _ “A” 60 In(2i/d)

(73)
The final configuration, after the axoneme comes to rest and o o

all transients have died, will be'y: a third-order polyno- Where “A” indicates the rigidity that would be extracted
mial on the left and a straight line on the right. A pleasantfrom th_e data using this model. Note that the expression is
fact is that this polynomial can also be derived by taking the2 function only ofl, the length of the free segment of the
limit as v, — 0 of yoh®% in Egs. D1, D2.

We now wish to use this information to arrive at a
measurement of. Hoping to verify the plausibility of this SR R
analysis, we compare with the results and accompanying
model published with the experiment.

The model presented by Felgner et al. (1996) ignores the
left end (0< x < x,), seeking to describe the dynamics of
the free end X, < x < L), and can be summarized as
follows. First, the forces are calculated on a slender body
subject to 1) a constant flow and 2) a flow linearly increas-
ing from O at the origin to some,, at the end. The linearly
increasing flow describes that experienced by a rigidly
rotating rod, approximating the force experienced by the
actual (curved) filament. Inexpliciably, different drag coef-
ficients are used for these two forces. - ]

The forces are then used to compute end displacements, oo b b b b 0T
using the results for the elastica clamped at the origin. 0.0 0.2 0.4 0.6 0.8 1.0
Caveats to this approximation include inconsistency with x/L
both the assumption of a rodlike shape and with the exper-

imental geometry, in which the polymer af is neither FIGURE 12 The first three modes for the discontinuous EHDI experi-
clamped ¥, = 0, as was assumed for the calculation of endment. The circle indicates the pinning poigfL = p/(p + 0).

Wk(X/L)
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polymer. In this modell is taken to be “the hydrodynami- Arr—TTT7T T T T T T T T T T T T
cally relevant length” (Felgner et al., 1996). r

Returning to the partial differential equation treatment of I
the problem, we see that the solutions to Eqg. 58 for the L .
post-transient polynomial shape relate the velocity of the 3 —
free end to the constant stage velocity as

31

Vi = Vch5—|rr=1 = é XT) Ve (74)

A/”A”

This simplification allows us to solve for the ratio in Eq. 72
of observables and parameters in terms of the polynomials L .
in Egs. 71 and D1: - T

a4 (—16p* + 2100% + 420 + 231) L |

o — L E

7= 25200 A1+ 20p) (75) i ]
whereA indicates the value of the bending modulus that one T BT B
would calculate had one used the same data and thus the g 0.2 0.4 0.6 0.8
same quotieng. x,/L

The ratioA/*A” is a simple expression and allows us to
compare the factor by which this differential equation-basedIGURE 13 Quotient of values derived for the bending modulus using
analysis differs from the published model, given some exthe model of Felgner et al. (1996) and that presented herein.
perimental datay (). Equating the two expressions f&r
and isolatingA/“A,” we find

L1 driving, and thereby help determine conclusively the exis-
In( ) ( tence or nonexistence of scale-dependent or time-dependent

A d2(1+ p) 210p° — 16p4> (76) elastic behaviors in biopolymers as well as the value of

‘A L 4 231+ 420 bending moduli via in vitro assays. It is our hope that the
In(a \,g) analysis associated with this experiment will also encourage
renewed interest in the problems of flagellar motion and
where we have moved tHg1) constants into the argument slender-body hydrodynamics in general.
of the logarithm for compactness. The dominant behavior is Moreover, we have seen that attentiveness to equations of
captured by the polynomial dependencepphut we can see  motion and boundary conditions for the elastica has mea-
that the function will be~2, indicating a systematic under- surable consequences, and that construction of the appro-
estimate by the published model of the bending modulus. Agriate function space associated with these conditions leads
plot of the ratio, with typical values taken from experiment, to a pleasant union of mathematical and physical intuitions,
is shown in Fig. 13. relating transcendental equations to physical effects and

Note that we have arrived at this expression by ignoringexperimental observables. We believe that the significance
the transient component in the exact expression. This i8f boundary conditions and the natural function space for
valid only in the range where the polynomial (asymptotic)the elastica has been overlooked in existing treatments of
solution dominates over the transients, a condition that ishe dynamics relevant to experiments being performed and
violated abovep = 4, x /L = pl(p + 1) = 0.8. discussed by the community.

We expect, then, that results obtained with the model in  We |ook forward to the extension of this analysis to
Felgner et al. (1996) will be comparable, but will system-arbitrary geometries, reflecting distortions beyond small
atically underestimate the bending moduhuby a factor of  order and hydrodynamics beyond the lowest-order approx-
~%2. imation of slender-body flow. Although the exact equation
of motion is nonlinear, the Stokesian dynamic and the
CONCLUSIONS vanishing of succes;ive derivatives at ends remain, anql we

expect the mechanisms and effects that we have outlined
We have attempted to show that a systematic treatment dfere to persist.
linearized elastohydrodynamics for filamentous biopoly- Natural extensions of this research include nonplanar
mers can be formulated with fruitful results. Furthermore,geometries and the incorporation of twist. These would be
we have proposed and demonstrated a new techniquemplementary to recent work on the Hamiltonian dynam-
(EHDII) that exploits viscous hydrodynamics to extend theics of twisted elastic rods (Goriely and Tabor, 1997; Olson
range of mechanical experiments of bending moduli to morend Zhurkin, 1996). The dynamics of twist are especially
flexible polymers. We expect this experiment to produceintriguing in light of recent work on twist-bend coupling
more accurate results when repeated with lower-amplitudéKamien, 1998) and the proposal that this coupling creates
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scale-dependent elasticity in actin'@et al., 1993). We are indicating that¥ is a monotonically decreasing function in time (Cross and
currently formulating the analysis appropriate to thesgtohenberg, 1993).

.. L. . . We must now only show that for the clamped (hinged) polymer this
promising appllcatlons, armed with the lessons learned Ir(‘energy functional is (is not) bounded from below. Rewriting =c(7)a",

this investigation (Wiggins et al., 1997). we can evaluate the energy explicitly as
. oG
APPENDIX A: DIGRESSION ON F=-3 " LR (Ad)
BOUNDARY CONDITIONS oont 1
Itis useful to pause momentarily and reflect on the importance of boundary
conditions and how they enter into the analysis. To this end, we considephere
an experiment analogous to EHDI in which the left side of the polymer is
hinged rather than clamped. This would be realized by holding the polymer 1 2 n(n _ 1)m(m _ 1)
in an optical trap, for example, rather than some torque-exerting anchor R == E - (A5)
like an axoneme fixed to a coverslip. For this experimental setup we 2 =2 n+m-3

replace the boundary conditidn,(0, 7) = 0 with h_(0, 1) = 0.
|ntuitive|y, we expect the polymer to align itself with the flow as> If h(o) =h (0) =0 Co=10C, = 0. and the sum in Eq. A4 runs from 2 to

> in the absence of any torque at the left end. Mathematically, we may,, \ye see that we cannot simply makearbitrarily negative by introduc-
think _of the cha_ngg in poundary conQitions _via some curious pathologies-mg a large and positive; for somej, because this term will appear
The first complication is that there is no time-independent fourth-orderq 5 yratically (and always positively) in the second term. However, replac-
polynomial in « that is consistent with the boundary conditions. This ing the conditiorh,(0) = 0 with h_(0) = 0 changes the conditiory = 0
prevents us from constructing a stgtic attractgr fgr the problemz asin Edg ¢, = 0; ¢, appears in the first term in Eq. A4, but not the second. Now
21. However, we note that the equation of motion is solved by a fn‘th-order,the energy can become arbitrarily negative,i= h'(0) becomes arbitrarily

time-dependent polynomial ia: positive. A divergent slope simply means the curve points straight up, in

~ 3 1 3 accord' with our intuition for the long-time behavior of a polyme'r free to
h(a, T) I (T + C)a + o —lPtadt— b (Al) rotat_e in some baclfgr_ound flqw. Note such‘a Iong—tlr_n(_e behavnqr means
2 41 10 leaving the smalh, limit for which the dynamic was originally derived.

To derive this polynomial, we first express the solution in the form
2.c.(1)a". However, as in the derivation following Eq. 59, we expect this
solution to depend only linearly on the driving and thus linearly on time.

Constr.aining6[2cn =0and respepting the rglationship bEthequ and If we equate functions related by the reflectiorn> 1 — «, there are 4(4

Cn.4 dictated by Eq. 12, we uniquely specify the polynomial up to the 1)/2 = 10 distinct eigenfunctions af?, determined by boundary condi-

corjrsr:an]tc. h | . luti . bi tions, for which this operator is self-adjoint. Each has an associated
e fact that our long-time solution contains an arbitrary ConStantsolvability condition for the eigenvaluds We list the solvability condi-

should lead us to rethink splitting the solution into a polynomial and a set;,\s ang the unnormalized eigenfunctions, indexed according to the con-
of only-decaying modes. Returning to the set of eigenvalues’pfve ditions at the ends:

discover a second complication for this new boundary condition: there now

exists a zero mode—a nontrivial solution, consistent with the boundary (f) free: h,=h, =0
conditions, to the equation®W, = 0, i.e., the normalized polynomial X XXX
V/3a. We then may choog@ to eliminate the overlap 6, with the initial

APPENDIX B: EIGENFUNCTIONS OF &%

data, i.e., 0= g, = (g[Wo) = (h(a, O)We) — (A()[W ). (c) clamped: h=h,=0
We now see how the change in boundary conditions creates drastically

different physical behavior. The long-time solution contains a term de- (h) hinged: h=h,=0

scribing a straight line whose slope grows with velocity2R without

bound. (t) torqued: hy, =h,=0

To illustrate further the relationship between a change in boundary
conditions and t‘he qualitative behavior_, note that‘ the dynamics, even in th?he general solution 8/, = a, coska + a, sinka + a, coshka + a,
presence_ of an |nr_10mogeneous equation of motion, can be cast in terms Qlfnh ka, wherea € (0, 1). The letters, ¢, h, t denote the boundary
the functional derivative of an energy: conditions at the left and right.
5% Note that for three special cases, the calculdtgdare merely a Fourier
h = — basis. The solvability condition for thief andf-c cases appear in Landau
T oh(a) and Lifshitz (1986, Sect. 25, problems 4 and 6). If we differentiatectbe
(AZ) expression and define, = k,/2, then we recover equation 28 of Gittes et
1 1 al. (1993). The expansion in terms kfhas the advantage of a single
da/[—h + (hM)Z] solvability condition cod(,) coshk,) = 1, rather than the two conditions
2 tanhg,) = (—1)" tan(,). The latter two conditions may be derived from
the former via half-angle formulae.

F

0

The first term represents the drag force acting in the positideection, iy
and the second is simply the nondimensionalization of the elastic bendin& :
energy term from which we originally derived the equation of motion. We
then find cosk coshk = 1;
(B1)
1 8% 1 Wy = (sinka + sinhka)(sink + sinhk)
9;7 = dO(_h.r m = - dOL(hT)2 (A3)
0 + (coska + coshka)(cosk — coshk)
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CcC—C:
cosk coshk = 1;

W\ = (sinka — sinhka)(sink + sinhk)

(B2)
+ ( + coska — coshka)(cosk — coshk)
f—c
cosk coshk = —1;
(B3)
Wy = (sinka + sinhka)(sink — sinhk)
+ (coska + coshka)(cosk + coshk)
h—h:
sink=0;
(B4)
W\ = sinka
t—t
sink = 0; (B5)
W = coska
h—t
cosk = 0; (B6)
W\ = sinka
f—h
tank = tanhk;
(B7)
Wy = (sinka + sinhka)(—cosk + coshk)
+ (coska + coshka)(sink — sinhk)
f—t
tank = —tanhk;
(B8)
W\ = (sinka + sinhka)(sink + sinhk)
+ (coska + coshka)(cosk — coshk)
c—1t
tanhk = —tanhk;
(B9)
Wy = (sinka — sinhka)(sink + sinhk)
+ (coska — coshka)(cosk — coshk)
c—h
tank = tanhk;
(B10)

W, = (sinka — sinhka)(cosk + coshk)

+ (—coska + coshka)(sink + sinhk)

Trapping and Wiggling 1059

APPENDIX C: EXACT SOLUTION TO EHD
PROBLEM II

The exact solution to EHDII can be written in somewhat compact form at
the cost of introducing new definitions. Employing the coordinate x/L,

the rescaled lengtff = L/¢, and the constard, = exp(—i=n/8) as in the
text (Elastohydrodynamic Problem II), we introdute exp(,£) and then
write

h(a, #) = h.(a) + h,(a, %) (C1)

whereh,, is the semiinfinite solution, and, — 0 as¥ — . Explicitly,

1 1 ) )
h=5CE — €9 +,CE — ¢ (C2)
where
—iET -+ L+
C(¥) =¢ (ig—(l—ili g—li — i»l—i _I)ig;m) (C3)
y (gt —&+(@1-i0)é)
Ci¥) =¢ (_ié—l—i _ §—1+i + gl—i ¥ iglﬂ)
and
1 :
ho=5E +&" (C4)

APPENDIX D: SOLVABILITY CONDITION FOR
DISCONTINUOUS EHDI

Associated with the discontinuous EHDI problem are the solutions to Eq.
58 satisfying the inhomogeneous boundary conditions. These solutions
may be written as polynomials on the left and right sides of the trap:

1 1 p 1 1
f5_ _ _ 4 LA _ -
h'p 800‘5 54 PO +(6+8>0‘3 4(p+l)a“2
(D1)
1,1, 1 3,
T\1os? """ T8l 2P7)7
1 1
a 3 7.3 _ 6.3 _ 3
p” = 1680% P " 220% P P
13 . 1 1 1.\,
“lseo” “8P g 27 (P2

1,1 1.3 .\,
+—%p +§p+§+§p7a

The notation and matching conditions are described in the text (The
Discontinuous EHDI Experiment).

The homogeneous boundary conditions are solved by an expansion in a
specially constructed set of piecewise-defined orthonormal eigenfunctions
of 97 with associated eigenvalues appropriate to the boundary and match-
ing conditions. Like the statement gkhj = O for determining the allowed
Fourier k values for a doubly hinged filament of length there is a
solvability condition forp = kx,, g = k(L — x;) = kI, derived by setting
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the determinant of an & 8 matrix to 0, an equation that can be written Goriely, A., and M. Tabor. 1997. Nonlinear dynamics of filaments.
Physica D.105:20-61.

0=%(p,q = Harris, R. A., and J. E. Hearst. 1966. On polymer dynandic€hem. Phys.
_ 44:2595-2602.
—sin(g)cogp)costig)costip) Isambert, H., and A. Maggs. 1996. Dynamics and rheology of actin
) solutions.Macromolecules29:1036—-1040.
— codg)sin(p)coshg)costp) Kamien, R. 1998. Local writhing dynamicEuro. Phys. J. B(in press).
. Kas, J., H. Strey, M. Baermann, and E. Sackmann. 1993. Direct measure-

+ cogg)cogp)sinh(g)coship) (D3) ment of the wave-vector-dependent bending stiffness of freely flickering
actin filaments Europhys. Lett21:865-870.

+ cogg)cogp)cosha)sinh(p) Keller, J., and S. Rubinow. 1976. Slender-body theory for slow viscous
flow. J. Fluid Mech.75:705-714.

— sin(g)coshq) + codq)sinh(q) Kurachi, M., M. Hoshi, and H. Tashiro. 1995. Buckling of a single
microtubule by optical trapping forces: direct measurement of microtu-

+ sin(p)coshp) — cogp)sinh(p) bule rigidity. Cell Motil Cytoskeleton30:221-228.

Landau, L., and L. Lifshitz. 1986. Theory of Elasticity. Pergamon, New
The ratiox,/(L — x,) = d/p = p, set by the geometry of the experiment,  York.

fixes a diagonal line passing through the origin and intersecting the set of andau, L., and L. Lifshitz. 1987. Fluid Mechanics. Pergamon, New York.

curves defined by this equation to define all of the allovkedalues, as 59.
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