
VOLUME 84, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S 14 FEBRUARY 2000
Twirling and Whirling: Viscous Dynamics of Rotating Elastic Filaments
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Motivated by diverse phenomena in cellular biophysics, including bacterial flagellar motion and DNA
transcription and replication, we study the overdamped nonlinear dynamics of a rotationally forced fila-
ment with twist and bend elasticity. Competition between twist injection, twist diffusion, and writhing
instabilities is described by coupled PDEs for twist and bend evolution. Analytical and numerical methods
elucidate the twist /bend coupling and reveal two regimes separated by a Hopf bifurcation: (i) diffusion-
dominated axial rotation, or twirling, and (ii) steady-state crankshafting motion, or whirling. The conse-
quences of these phenomena for self-propulsion are investigated, and experimental tests proposed.
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Dynamics and stability of rotationally forced elastic
filaments arise in several important biological settings
involving bend and twist elasticity at low Reynolds num-
ber. In the context of DNA replication, when two daughter
strands are produced from a duplex, it was noted [1] long
ago that energy dissipation for rotations about the filament
axis is so much smaller than that for transverse motions that
axial “speedometer-cable” motions are favored, and are
energetically and topologically feasible. During DNA tran-
scription, in which a polymerase protein moves down the
double-stranded filament, progressive unwinding of the
helix can lead to an accumulation of local twist that
may induce “writhing” instabilities of the filament [2].
Energetic and dynamical aspects of these processes are of
great current interest [3,4].

At the cellular level, bacteria are propelled through flu-
ids by helical flagella turned by rotary motors in the cell
wall [5]. Recent studies [6] have revealed the details of
two competing crystal structures assumed by flagellin, the
protein building block of flagella, corresponding to helices
of opposite chirality. Both local and distributed torques
can change the conformation of flagella; during swimming
these motors episodically reverse direction [7], and the re-
sultant torques can induce transformations between these
states [8], while uniform flow past a pinned flagellum may
induce such inversions [9].

To elucidate fundamental processes common to these
systems, we consider here the model problem shown in
Fig. 1: a slender elastic filament in a fluid of viscosity h,
rotated at one end at frequency v0 with the other free. We
study competition between three processes: twist injection
at the rotated end, twist diffusion, and writhing. Analytical
and numerical methods reveal two dynamical regimes of
motion: twirling, in which the straight but twisted rod
rotates about its centerline, and whirling, in which the
centerline of the rod writhes and crankshafts around the
rotation axis in a steady state.

This work is a natural outgrowth of recent studies of
forced filaments in the plane [10,11] and dynamic twist-
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bend coupling [12–14]. The balance considered between
elastic and viscous stresses complements that between
elasticity and inertia in the inviscid limit (as in whirling
shafts [15,16]), where twist waves propagate [15,17].

An elastic filament is characterized by two geomet-
rical quantities, its radius a, and contour length L, and
two material quantities, its bending modulus A, and twist
modulus C. The total elastic energy cost E for curva-
ture k and twist density V is an integral over arclength
s parametrizing the position r�s, t� of the filament cen-
terline [15],
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where the Lagrange multiplier L�s� enforces local in-
extensibility, �rt�s ? rs � 0. Thus arise two dimension-
less ratios: G � C�A and the aspect ratio a�L. At
zero Reynolds number, elastic forces per length f �
2dE�dr [18] balance the viscous drag from slender-
body hydrodynamics [19]:

zkt̂t̂ ? rt 1 z��I 2 t̂t̂� ? rt � f , (2)

where t̂ � rs is the unit tangent, and the trans-
verse and longitudinal drag coefficients are z� �
2zk � 4ph��ln�L�2a� 1 c�, with c a constant of order
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FIG. 1. An elastic filament, rotated about z at the left end,
surrounded by a fluid of viscosity h.
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unity [19]. Likewise, the axial elastic torque per unit
length m � CVs [14,15] balances the local rotational
drag: m � zrv, where v�s, t� is the local rotational
velocity about t̂ and zr � 4pha2 [19]. We also define
e2 � zr��z�L2�, so that e � �a�L�, apart from loga-
rithmic corrections.

The dynamics are closed by a geometric constraint,

Vt � vs 1 �2Vrs 1 rs 3 rss� ? �rt�s , (3)

which shows how twist changes due to differential rates of
angular rotation, stretching (e.g., extension of a straight,
twisted rod decreases V), and out-of-plane bending mo-
tions (writhing) [12–14]. The constraint (3) is a conserva-
tion law for twist density V, with twist current 2v, and
with the stretching and writhing terms acting as sinks or
sources. The velocities v and rt enter (3) through their
space derivatives, since rigid motions cannot change V.
With the local torque balance zrv � CVs and assuming
inextensibility we obtain

Vt �
C
zr

Vss 1
1

z�

rs 3 rss ? fs . (4)

The second term of (4) is nonzero [20] when the filament
is both out of elastic equilibrium �f fi 0� and either non-
planar (with torsion t fi 0) or twisted �V fi 0�, and then
acts as a sink or source of twist.

For boundary conditions, we assume that the forced
end �r�0� � 0� of the rod is clamped �rs�0� � ẑ�
and the free end experiences no force or torque
�rss�L� � rsss�L� � 0; V�L� � 0�. Local torque balance
sets Vs�0� � zrv0�C.

Before solving these partial differential equations
(PDEs) numerically, we use dimensional analysis to
understand the main features of the motion. We focus on
small-amplitude bend and twist deformations of a straight
filament (thus ignoring zk). Of the seven parameters
�A, C, L, a, zr , z�, v0), four remain after introducing G

and e and noting that a appears only through zr , so
suitable rescalings of length, time, and V leave only one
control parameter. This can be chosen proportional to the
rotation frequency v0.

For low turning rates v0, the filament remains straight,
with twist diffusion and injection balancing. The twist den-
sity at the clamped end follows from a balance of viscous
and elastic twisting torques, zrv0L � CV�0�. Instability
occurs when the twist torque CV is comparable to the fil-
ament buckling torque A�L [15]. At this point, the balance
of viscous and twist torques implies
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where the second and third results follow from the rela-
tions A � �p�4�a4E between the bending modulus and
the Young’s modulus E [15] and A � kBTLp , with Lp the
persistence length. Interestingly, vc is independent of the
twist modulus C, and since the twist density scales with
the drag, vc varies inversely with zr .
1624
The result (5) is central, because naive dimensional
analysis predicts vc � E�h. With E � 107 dyn�cm2 and
h � 0.01 P as for rubber in water, vc would be enormous
if not for the prefactor �a�L�2. Since a�L is reasonably
1023, we find vc � 103 s21, similar to flagella rotation
rates [5] and achievable in the laboratory. The rightmost
form in (5) readily shows the frequency scales for sys-
tems of varying length and stiffness. Consider the elas-
tic filaments DNA (Lp � 5 3 1026 cm, a � 1027 cm),
microtubules (Lp � 0.5 cm, a � 1026 cm, and bacterial
filaments (Lp � 25 cm, a � 3 3 1025 cm) [21]. The
frequencies kBT�zrLp are then 8 3 106, 0.8, and 1.3 3

1025 s21, respectively. Thus, for the instability to appear
at, say, 103 s21 requires a minimum ratio L�Lp of 90, 0.03,
and 1024. A strand of DNA with L�Lp � 102 is clearly
not straight in isolation, so this instability would be hard
to realize in DNA, but the stiffer examples of microtubules
and bacterial filaments are indeed candidates.

Linearizing (2) and (4) about a straight filament along ẑ,
with r 	 sẑ 1 r�, we see that twist diffuses with diffu-
sion constant C�zr , while the backbone obeys a “hyperdif-
fusion” equation z�r�t � 2Ar�ssss 1 Cẑ 3 �Vr�ss�s.
For crankshafting motions, we set r�t � x ẑ 3 r�. Thus
we find two characteristic lengths [10],

���x� � �A�z�x�1�4, �r �v0� � �C�zrv0�1�2. (6)

These are analogous to the penetration depth in the familiar
theory of oscillations in a viscous fluid [22]. The primary
instability is given by �r �v� � L.

The crankshafting frequency x for whirling can
be estimated by assuming that the transverse drag,
force per length, z�xjr�j, is roughly equal to the
elastic force per length, Ajr�4sj � Ajr�j�L4. Thus
x � A�z�L4 � �a�L�2vc (C 	 A for typical materials
[15]), and ���x� � �r�vc� � L at the transition. The
whirling rod of course does not undergo simple rigid body
rotation; the speedometer-cable rotational motion is faster
than the backbone crankshafting motion by a factor of
�L�a�2. This steady-state shape is possible because diffu-
sion can homogenize the twist as fast as backbone motion
relieves it. We describe this process quantitatively by
integrating (3) along the rod for inextensible, steady-state
�Vt � 0� crankshafting. The difference Dv in rotational
velocities about the local tangents at s � L and s � 0 is

2Dv � x�1 2 ẑ ? t̂�L�� . (7)

Equivalently, Dv is the injected twist current minus the
twist current leaving the free end. Thus, writhing acts as
a twist sink in steady-state crankshafting motion when the
rod’s free end is not aligned with the z axis.

When the twist diffusion time, zrL2�C, is longer
than the bending time, x21, buckling can relieve twist
faster than it is replenished by diffusion, and steady-state
crankshafting would likely be unstable. One possible
new behavior would consist of repeated sequences of
transient whirling followed by quiescence as twist builds
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up anew. Scaling arguments yield a critical frequency
of v0 � E�h, a factor of e22 higher than the rate at
the onset of the first instability, and thus unreachable for
typical materials.

The bend relaxation time suggests the rescaling,

t̃ � �A�z�L4� . (8)

A natural pair of further rescalings of (4) is s̃ � s�L
and Ṽ � VL. If we parametrize the filament center-
line (Fig. 1) as r�s, t� � �X�s, t�, Y �s, t�, s 2 d�s, t��, in-
troduce the complex transverse displacement j � �X 1

iY ��L, and expand the dynamics up to third order in j

(immediately dropping the tildes), we obtain

jt � 2 j4s 2 �Ljs�s 1 iG
V�jss�1 2 ds� 1 dssjs��s
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This constraint also fixes ds � 1
2 jjsj

2. As anticipated,
apart from material properties G and e, the coupled twist/
bend dynamics are governed by a single control parameter
v0, which appears only in the (rescaled) boundary condi-
tion, Vs�0� � e2v0�G � a. The PDEs (9) are like those
of excitable media [23], with a separation of time scales
derived from the aspect ratio e. For the usual case e ø 1,
twist is the fast variable and bends are slow.

Linearized dynamics.—The twist profile in the straight
filament �j � 0� satisfies Vt � �G�e2�Vss. After tran-
sients die out, the steady-state profile is linear in s [3],
V � �zrv0�C� �s 2 L�. Using this in the linearized
filament evolution and taking j�s, t� � j�s� exp�ixt�, a
rigidly rotating, neutrally stable shape, we obtain

xj � ij4s 1 Ga��s 2 1�jss�s . (10)

Numerical solution [24] of (10) yields a critical value
ac � 8.9�G [confirming dimensional analysis of Eq. (8)],
below which the rod is straight and executes only axial
rotation (“twirling”), and above which the rod buckles
and rotates (“whirls”) at a frequency which for a � ac

is x 	 2.32Ga. This motion is the dynamical equivalent
of the static writhing instability of a twisted filament [15].
Inserting all numerical factors, the critical frequency and
rotation rate (at onset) are

vc � 0.563

µ
a
L

∂2 E
h

, xc � 20.9

µ
a
L

∂2

vc . (11)
FIG. 2. (a) Stroboscopic montage of the “whirling” filament,
viewed from along the z axis, as it rotates clockwise; (b) side
view at 2 times, drawn to a different scale.

Weakly nonlinear theory.—Numerical solution of (9)
with a pseudospectral method [14,25] shows that there is
indeed a steady state beyond the bifurcation. As a 2 ac

increases, the shape becomes more helical. The free end
of the whirling filament experiences more drag than points
closer to the driven end and thus lags behind (Fig. 2).
Since V depends quadratically on the backbone shape [see

FIG. 3. 3. (a) Amplitude R (with a square root fit), and
(b) crankshafting frequency of filament tip motion as a function
of frequency offset from primary instability. (c),(d) filament
shapes for �v0 2 vc��vc � 0.27 and 3.52, respectively, with
G � 1.
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FIG. 4. Propulsive force generated by steady-state whirling
motions, as a function of driving frequency.

Eq. (3)], near vc, where j is small, the twist density re-
mains nearly linear in s. Numerical studies show that the
free end traces out a circle with radius R � �v0 2 vc�1�2:
a supercritical Hopf bifurcation [23]. This can be under-
stood from (7) and dimensional arguments for the displace-
ment; �1 2 ẑ ? t̂�L�� � �R�L�2, so that v�0� 2 v�L� �
x�R�L�2. The twist that can be relieved by diffusion is
limited, so that v�L� 	 vc. From the linear dynamics,
x � vc, leading to R � �v0 2 vc�1�2.

Swimming.—Chirality of the whirling filament breaks
time-reversal invariance of the motion, thereby allowing
[26] a net propulsive force Fp along ẑ to be generated.
The elastic force density is a total derivative, so the total
force is expressible in terms of the filament properties at its
ends. For the clamped/free boundary conditions used here,
Fp � 2r3s�0� ? ẑ 2 L�0� � rss�0� ? rss�0� 2 L�0�. As
shown in Fig. 4, Fp rises linearly from zero near the bi-
furcation, as it is quadratic in the transverse displacement,
which in turn has the supercritical form shown in Fig. 3(a).
While we know of no organism that utilizes this precise
mechanism for self-propulsion, there is evidence [27] for
self-propulsion associated with twist-induced whirling in
growing bacterial macrofibers constrained at one end.

The possibility of observing instabilities driven by twist
accumulation along a filament hinges upon a balance of
material properties, fluid viscosity, and adequate forcing.
Flow- and rotation-induced bacterial flagellar conforma-
tional transitions [7–9] provide proof-of-principle that this
balance can be achieved in vivo. Like flagella, fibers of
B. subtilis cells have adequate material properties (e.g.,
Young’s modulus [21]) and aspect ratio to display insta-
bilities such as those described here. More complex phe-
nomena are associated with instabilities of rotating helical
flagella, as described elsewhere [28].
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