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Pattern formation in crystal growth under parabolic shear flow
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Morphological instability of the solid-liquid interface occurring in a crystal growing from an undercooled
thin liquid bounded on one side by a free surface and flowing down inclined plane, is investigated by a linear
stability analysis under shear flow. It is found that restoring forces due to gravity and surface tension is an
important factor for stabilization of the solid-liquid interface on long length scales. This is a stabilizing effect
different from the Gibbs-Thomson effect. A particular long wavelength mode of about 1 cm of wavy pattern,
observed on the surface of icicles covered with a thin layer of flowing water is obtained from the dispersion
relation, including the effect of flow and restoring forces.
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[. INTRODUCTION the liquid is obtained. In Sec. V, we determine the dispersion
relation for the fluctuation of the solid-liquid interface in a

The interaction between an imposed shear flow and &rystal growth from a thin liquid flowing down an inclined
phase transition underlies a broad range of phenorficha plane by applying the solutions in Sec. Ill and IV to the
The stability of order under the influence of shear flow isgeneral formulation in Sec. Il. Section. VI is devoted to a
fundamental for engineering to understand frictional wear discussion. The conclusion is given in Sec. VII.
and lubrication[3]. In pattern formation in nature, ripple
formation in sand induced by water shear flow, is well
known[4]. In theoretical works, the effect of shear flow on !l. DISPERSION RELATION FOR THE FLUCTUATION OF
the morphological stability has been stud[&d-7]. THE SOLID-LIQUID INTERFACE

An example of morphological instability of the solid-
liquid interface in the long wavelength region of about 1 cm,
under shear flow bounded on one side by a free surface, is
wavy pattern occuring on the surface of iciclese Fig. 1 in
Ref.[8] and Fig. 9A in Ref[9]). In a relevant experiment of
a crystal growth from a thin liquid flowing down an inclined
plane with anglef, sketched in Fig. 1, it is found that mean
wavelength of the wavy pattern of the solid-liquid interface
is proportional to 1/(si)% %°[10]. Ogawa and Furukawa
have recently proposed a model for the mechanism of occu
rence of the wavy pattern and obtained reasonable values
wavelength on the icicleg8]. However, in order to explain
more quantitatively the experimental result mentioned above,
we modify their dispersion relations in the form that includes
the effect of restoring forces due to gravity and surface ten-
sion on stability of the solid-liquid interface. Furthermore,
we improve their formulations by using a linear stability
analysis under forced flow, developed first by Dely&%
From the dispersion relation in the long wavelength approxi-
mation, we present an amplification rate and phase velocity
for the fluctuation of the solid-liquid interface, different from
that of Ogawa and Furukawa’s model.

This paper is organized as follows. In Sec. Il, we develop
generally the dispersion relation for the fluctuation of the
solid-liquid interface. In Sec. lll, a perturbed normal flow
induced by deformation of the solid-liquid interface is deter-
mined in the long wavelength approximation. In Sec. 1V, a
general solution of the perturbed temperature distribution in

We consider a crystal growth from an undercooled thin
liquid flowing down an inclined plane with anglé [10].
Hereafter, the analysis will be restricted to two dimension in
a vertical plane X,y) sketched in Fig. 1. The primary shear
flow is parallel to thex axis and the mean velocity varies
only in they direction. The shear flow is bounded on one
side by a free surface. We note thmtis the mean thickness
of the liquid anduy is the velocity at the free surface. In this
section, we develop, generally, the dispersion relation for the
fluctuation of the solid-liquid interface by following the

eas given in Refd5,11].

X
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Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, FIG. 1. Schematic diagram of crystal growth from liquid flow-
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In the frame of reference moving at the solid-liquid inter- perturbed interface and perturbed normal flow, respectively,
face velocityV, the equations for the temperature in the 9 andgs are the amplitudes of perturbed temperature of the

flowing liquid, T,, and that in the solidT are liquid and solid, respectively. Substituting them into E@s.
and(6) yields
aT vaT, . aT . aTy [T . 9%, L , 0 o
a VT Ty T e Ty @ do —[k2+(ﬂ) L2 'ku(y)]
> 2 9
dy K K K
Ty T PTy T - V2
(9_{5_ 07_52 S( 2S+ 25)' 2) _Uk ﬂe ﬂ (12)
y X ay “ dy X 2 Y|
wheret is time,u andv are the velocity components in tixe ) —
and y direction, respectively, measured in the laboratory d 9s | .» ﬂ +g —0 12
frame in which the crystal is at rest, ang and x4 are the dy? 2K Ks 9s= 0 (12
thermal diffusivities of the liquid and solid, respectively. We
substitute T\=T,+T,, Ts=Ts+T., u=U+u’, and v The following calculations are to first order only in the

=ApV+v' into Egs.(1) and(2), whereT,, Ts, andU are  amplitude of the initial perturbation. The continuity of the
unperturbed steady fields afg, T., u’, andv’ are per- temperature at the perturbed solid-liquid interface,

turbed fields, respectively. Herd,pV is the advection flow ={(tx), is
due to the density difference of the liquid and soliklp
=(p,—ps)pi, pi andpg being the density of the liquid and
solid, respectively. Then, the equations for the unperturbed

(Ti+T)ly= =T+ TDly= =T+ G(K)Z, (13

fields are whereT,, is the melting temperature ar@l(k){ is the tem-
perature difference fronT, due to a deformation of the

d’T, pV dT, solid-liquid interface. The form of5(k) will be specified
—2+—d—=0, (3)  later. Linearizing Eq.(13) at y=0, Eq. (13) gives, to the
dy= @« dy zeroth order in,,
2 — —
d TS_,.X%:Q (4) Tl|y:0:Ts|y:O:Tm (14
dy? s dy

and to the first order i,
and the equations for the perturbed fields are

_ dT, dT.
aT| 9T 9T  dT, T 97T — Gt Oily=0=——| Lt Gely=0=G(K) &y
— ==+ U—Fv' =k — + — |, (5 dyl, o dy |,
at ay X dy Xz gy? (15)
oT,  _JT. PTL 97T It follows from Eq. (15) that the amplitudes of|,-, and
Tt PV T e + Pt (6)  gdy— are of orderg,:
wherep=ps/p; . — _@
Suppose that perturbations of the solid-liquid interface, g'|y:° dy :0+G(k) S (16
temperature, and normal flow are expressed in the following Y
forms: -
_(-9Ts G(k 1
§(t,x)=§kexp[ot+ikx], (7) gs|y=0_ _d_y y=o+ ( ) gk- ( 7)
, pV _ The heat conservation at the perturbed solid-liquid inter-
T/ =g/(y)exp — Z_:qy exd ot +ikx], ®  faceis
, oV , — g ATHATY aTHT))
Tszgs(y)exp( -5 y|exiot+ikx], (9) L(V+ E>_KST U v N
s y=¢{ y

geL)
v'=vexdot+ikx], (10
whereL is the latent heat per unit volume akd andK; are
wherek is the wave number anad=o,+io;, o, being the the thermal conductivities of the solid and liquid, respec-
rate of amplification or damping and o, /k being the phase tively. In the same way we linearize E(L8) at y=0; Eq.
velocity of the disturbance;, andv, are the amplitudes of (18) gives, to the zeroth order ify,
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only with y. In the frame of reference moving at the solid-

_dT. dT, e
LV:st—ys - K'd_y (19 liquid interface velocityV, the Navier-Stokes equations are
y=0 y=0
- i du —Jgu  Ju  du 14 u  d°u
and to the first order i, ou _+u_+v_:___p+v cu_ ou
_ _ ot ay IX ay p| X x> ay?
Lof=K (dsz pV dgs
O6k=Rs k Js v +gsinég, (23
dy2 y=0 2Ks y=0 dy y=0 g
2 V2 v —dv v 19 v v
—K, dTl K pvgl % E—Va—+ua—+va—=——a—p+v(—2+—2)
dy? J=o 2k y=0 dy y=0 y X y pi oy axs ay
(20) —gcosé, (24)

By substituting Eqs(16) and (17) into Eq. (20), the disper- wheret is time,u (v) the velocity components in the (y)
sion relation for the fluctuation of the solid-liquid interface direction,p the pressurep, the liquid densityg the gravita-

becomes tional accelerationy the kinematic viscosity, ané the angle
_ _ of the inclined plane. The equation of continuity is
Ks[dsz +( A S Gk
0‘: —_— —_—— —_——
L | dy? 2kg <% dy | _ au
- y70 FR— [—
_y 0 B B I + oy 0. (25
K, | d2T, pV dT,
T dy? T2k Y\ dy Y In this section, the coordinates,§) and velocities ¢,v)
y=0 y= are made nondimensional by taking the mean thickhgss
flowing liquid as the unit of length and velocity, at the free
+G(k) ] , (2D surface as the unit of velocity, respectively. By substitutions
of (X« ,Ye)=(X.Y)/ho, (Uy,v,)=(u,v)/Ug, Ps=Pp/pf,

andt, =tug/hg, the equations of motion and continuity can
where we have defined the so-called propagator in the liquighe written in the following dimensionless forms:
and solid as follow$5]:

Ju — Jdu Ju Ju
d d oV, e Uy ety
3 3 ey,
dy |, _ dy |, _
y=0 y=0
T o T g (22) p, 1 [d%u, d°u,| sing
Hy=0 sly=0 =— + = >t — |t — (26)
. . . . . Xy e IX; Y4 F
which describe the motion of the interface in response to the
propagation of a temperature disturbance, here it is the latent p P P p
heat release. The general formulation above will be applied Ur g Oy D TOx
in Sec. V. ) A
2 2
Ill. THE PERTURBED NORMAL FLOW OVER THE I K P T COSG, 27
SINUSOIDAL INTERFACE dy. Rel g2 = gy2 F2

It is first necessary to know the primary shear flow field
ou, Jdu,

U(y) and amplitudey of the perturbed normal flow in Eq. + =0, (28)

(11). We determine the perturbed normal flow over the inter- MKy IYx

face to first order only, in the amplitude of initial perturba- )

tion by following the formulation of Benjamifil2]. In his ~ Where Re=ughs/v is the Reynolds number and-

treatment, the bottom is flat interface and does not move="Yo/(gho)*is the Froude number.

When the crystal grows, however, the solid-liquid interface Let

moves and it may not be flat if a morphological instability . . .

occurs. Therefore, it is necessary to modify several boundary u,=U, +u;, v,=ApV,+v,, p,=P,+p;,

conditions in his formulation. We make use of the same di- (29

mensionless variables as those used in Benjamin’s paper,

which are different from those used in Ogawa-Furukawa'syhereU, andP, are the dimensionless velocity and pres-

paper[8]. Hereafter, we refer to their models @sF model.  syre of the primary flow and primed quantities are the di-
With reference to Fig. 1, the primary shear flow, assumednensionless velocity and pressure perturbations. Substituting

to be steady, is pararell to thkeaxis, with velocityU varying  Eq. (29) into Egs.(26)—(28) yields
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L d°U, VdU+1'0o 30
Re ay2 +pVi dy, sin (30)
dP, + 6=0 31
dy 5C0s6=0, (31
du, — du, — du, dU, |
ot _pv*ﬁ * Uy
* y Xy dy,
apr 1 [d%u,  d*ul
_ * _( 2* 2*), (32)
Xy Re\ gx2 - gy2
v, — v, — v, p, 1 (v, v
—pV, +U, = — > T > |
Ity Y IXy Y,  Rel ox Iy,
(33
du,  du,
=+ =
Xy Yy 0, (34)
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(73¢/
2 |-
9%, 9y?

(731#/

(92¢/ . a2¢; _ap; N 1
ax3

I IX, * c?Xi - Y Re

(40)
If the perturbation of the solid-liquid interface is repre-
sented in a dimensionless form

Cu (e Xy )= dpexd o, t, +iux, ], (41)

the corresponding perturbations of the stream function, pres-
sure, and the liquid-air surface may be written as, respec-
tively,

' =opf(y)exdo,t, +iuX, ], (42
p:\- =opll(y,)exd o, t, +iux,], (43
Ec(ty X ) =1+ exgdo,t, Tiux,], (44)

in which 6,= {/hy and é,= &, /h, are dimensionless ampli-
tudes of the solid-liquid interface and the liquid-air surface,
respectively,u =khy is the dimensionless wave number and
o, =ohg/ug. When we substitute Eq$42) and (43) into

if quadratic terms in the perturbation quantities are ne£gs.(39) and(40), andIl is eliminated from them by cross

glected. Using the typical values of~10"% m/s andug

~10 2 m/s in the experiment§9,10], we can neglect the
is the ratio

pV, term in Eqs(30), (32), and(33) becausey,
of V to uy.
Under the boundary conditions,

1), P,=Pg (y.=1),
(35

— du,
=0(y,=0), 5~ =0 (Vu=
dy,

the solutions of Eqs30) and (31) are, respectively13],

U,=2y, -V, (36)
— cosé
P*ZPo*ﬂL?(l—y*), (37

differentiation, the linearized equations of motion lead to the
following Orr-Sommerfeld equation:

d*f ) d2f
dy; Mdyz

. — o, \[ d?f
=iuRe U, —i—|| — — u2f
K e{( * M)(dyi H

The perturbed flow was assumed to be stationary from the
outset in theO-F model. This formally amounts to neglect-
ing the o, /u term in Eg. (45). This assumption will be
justified in Sec. VI. Since the value of mean thicknagds
about 104 m and the typical value of wavelength of the
wavy pattern observed on the surface of icicles is about 1 cm
[9,10], the value ofu=kh, is about 6< 10~ 2 [8]. Therefore,

in the long wavelength approximation, retaining up to the

+ ,u,4f

d?u,
-—f1.
dy;

(45

where Py, is the dimensionless pressure of atmospherefli'st order inu, Eq.(45) becomes

Equation (34) allows the use of a stream functiaft’, in
terms of which,u, andv, can be expressed as follows:

, oy

u*=07y* , U= %, (39
Equations(32) and (33) can then be written as
521711, &2171,1 dU* al//,
at, Y, *ox, 0y,  dy, dX,
K 1( & 03 '
- A e
Re| 5x2 ﬁy* y;

d*f

ayt (46)

) d?f
_I/J*R (2y*_y*)_2+2f ;
dy;
where we have substituted E@6) for U, . We note that Re
becomegO(1) when we use the typical values af andhg
used above ana=1.8x10"°® m?/s of water, therefore, the
primary shear flow is lamindi8—10].
The problem entails five boundary conditions as follows.

Since both velocity components must vanish at the perturbed
solid-liquid interface, we have

Iy
P,

=0, (47)

! J—
vily,=c,
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e

(U, +ul, Ny, =¢, +ApV, — 7,

=0. (48

The kinematic condition at the free surface is

Iy

9%, | o%,
at,

«ly, =¢, X, (49

:U*|y*:§*.

PHYSICAL REVIEW E 68, 021603 (2003

N(N—1)(N-2)(N-3)Ay
=2i uRe(N—3)(N—4)Ay_3
+iuRe2— (N-4)(N=5)}Ay 4, (58)

for N>3. Equation(58) gives every otheAy in terms of the
first four coefficientsA, to A;. The approximation to the
series solution up to the first order inrequires seven coef-

At the free surface the shear stress must vanish and the ndicients of the expansion E¢57). Therefore, the other coef-
mal stress must just balance the normal stress induced Higients are given as follows:

surface tension:

ou, v 4
=0, 50
W Vi =&, X Vi =g 0
2 v, 9%,
_p*|y*=§* Reay* e _Sﬁxi = —Pq, (51

where S=y/p,hou3, y being the surface tension of the
liguid-air surface. Linearizing Eq$47) and (48) aty, =0
and Egs.(49—-(51) aty, =1, Eqgs.(47)—-(51) become, re-
spectively,

g
fly, —o=iAp—, (52)
* %
df
* y*:o
fly =15b—(|—*—1)5t, (54)
d?f )
a2 +pfly, =1 | =28, (55
* y*fl
d3f Re co
— | | S uRes ),
dy, y, -1 F
) Oy df
={ipRe 1—i—|+3u?
[ M % Iu’ ,LL dy* y*71
— d?f
X 8,—pV,Re— Sy - (56)
* y*fl

If we formally put

o

> An

fy,)= Y, (57)
then this series is seen to constitute a solution of #§)
when coefficientsAy are made to satisfy the following re-
cursion relation:

A,=0, (59
szilé_seAl"‘ i/v;_seAZv (60)
Ao= e (61)
A= HEn, (62

Hence, the approximate series solution can be written as

,uR
f(y*) 1+_y* A0+ Vit y*

,u iuRe
y*+ y* A2+ y* 30 yi
iuRe

—z—my*)As (63

The four constant®\; to A; of the solution of the fourth
order Eq.(46) are determined from boundary conditions Egs.
(52—(56) in the form neglecting the terms including, ,
o, lw, andu?.

First, the boundary conditions Eq&2) and (53) give,
respectively,

Ao: O, (64)
(65)

Eliminations of 8, from Egs.(54) and (55 and from Egs.
(54) and (56) yield, respectively,

ﬁ —2f|y -1, (66)
avil, .,
ﬁ +iaf|, -1=iuRe;— af : (67)
ail, ., dyel, _
where
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Equation(68) represents the restoring forces due to gravitylf we substitute Eq(75) into Eq. (74), §;= &,, which indi-

and surface tensiofl12,13. When we use the typical values cates that the liquid-air surface fluctuates with the same am-
of ug~10 2 m/s andnhy~10"* m in the experimentf9,10],  plitude as the solid-liquid interface and phase shift of each
and the physical properties of watgr,=1.0x 10° Kg/m?, interface does not occur. If we regaedasO(1) with respect
r=1.8x10 % m?%/s, and y=7.6x10 2 N/m, a becomes to u, however, Eq(75) cannot satisfy the boundary condi-
0O(1) for the wavelength of wavy pattern occurring on thetion Eg. (67). On the other hand, if we substitute EJ.3)
icicles and the inclined plane. Therefore, we treats zeroth  into Eq.(74), it is found that the amplitude and the phase of
order in terms ofu in the following calculations. Sinca, the liquid-air surface depends on the wavelength of fluctua-
andhg are not independent quantities, this rough order estition of the solid-liquid interface because of the restoring
mate will be justified more quantitatively in Sec. VI, by us- forcesa.

ing other parameters being controlled easily in the actual By rewriting the second equation of E9) in the di-

experiment. mensional form
Using Egs.(63)—(65), Egs. (66) and (67) give, respec- )
tively, , ap .
v ——uOhOW——|kuof(y)§kexp[ot+|kx], (76)
11 uRe 6i uRe 11i uRe
4+ 15 Axt| 8+ 7 Ag=4+ 15 and by comparing it with Eq(10), we obtain
(69) .
vi=—ikuef(y) Ly, (77
ia( 1+ @ A2+<ia+6— ,uR_ea> A3=ia(2+ @) wheref(y) is given by Eq.(73) in the long wavelength ap-
30 35 30 70 proximation, retaining up to the first order pn.

IV. GENERAL SOLUTION FOR THE PERTURBED

Retaining up to the first order ip, the solutions of these
TEMPERATURE DISTRIBUTION IN THE LIQUID

simultaneous equations féy, and Az are expressed as fol-

lows: In the preceding section, we have determingg/) and

vy in Eq. (11). Next, we must determine the amplitude of the

2:M+M ﬂ (71) perturbed temperature in the liquid under this primary s_hear
6-ia 1056—ia)? flow and the amplitude of perturbed normal flow. Since
Peclet numberVh,/k, associated with the crystal growth
dia velocity is very small when the typical values of

Az= (72

~10 % m/s, ho~10"% m in the experiment§9,10], and k,
=1.3x10 7 m?/s of water are used, we can neglect the sec-
When these expressions Af, to A, are substituted into Eq.  ond term of Eq(3); then, the solution is

(63), the final form up to the first order ip is

o
b pRew——
6—ia 7 356-ia)?

Ti(Y)=Tm=Gyy, (78
3(2-ia) , e o

FY)==2yet o Vet g, Vx where G, = (T,,— T;5)/h is unperturbed temperature gradi-

ent in the liquid, T, is the temperature of the liquid-air sur-

—96-8ia dia 3 face. If we make the substitutions of=hy(1—2), w
+ uRea 1056 )zy*+ 35(6—i )zy* =khy, andughy/x;= Pe, which is the Peclet number asso-
H6-ia ta ciated with the flow velocity at the free surface, into ELf),
1 s 1 . we obtain
56 i) Y*  306-ia)’* — 2
d?g, , . [ PVho ohy . . 5
— - ut + —+iuPe g, +iuPe g,
N 1 7 73 dz? 2k K|
2106—ia) * [ _
| uP (2) p{ Mo 4 >}€ (79
=i z)exp — -z ,
Applying this result aty, =1 to Eq.(54), we can know the " 2k 14k

relation between the amplitude and the phase of perturbation
of the solid-liquid interface and that of the liquid-air surface: Where we have used Eq&6), (77), and(78). When we put
the right hand side of Eq.79) equal to zero, Eq(79) be-

S=—fly —18p. (74)  comes the equation for a parabolic cylinder function:
. . . . g2 Vh 2 sh2
In Ref. [8], the following function was obtained: _¢_[ 2+(P o 4 —0+i,uPe b+iuPe?h=0.
) dz? 2K K|
fys)=—2y,. ty;. (79 (80)

021603-6



PATTERN FORMATION IN CRYSTAL GROWTH UNDR . . . PHYSICAL REVIEW E 68, 021603 (2003

Using the confluent hypergeometric functiofr,, the  where T, is the temperature of the air at=~ and |,

general solutions of Eq80) are given by{14] =k,/V is the thermal diffusion length of the air. Suppose
that the perturbed temperature distribution of the air is ex-
¢1(z)=ex;< _ %(—i,uPe)l’zzz) pressed in the following form:
2 T, ()l{ V( ho) [exflot+ikx], (87)
+iuPe| 1 =day)expg — —(y— exd ot +ikx],
SO e e ey R P e 2k, 0
A7 (~ippet?'2
where
(81)
9a(y)=TkaeXd —a(y—ho)], (88)
1
¢2(z)=zexp< - E(—i,uPe)l’zzz) iFil 5+ 7 andT,, is the amplitude of the perturbed temperature of the
air. Substituting Eq(87) into Eq. (85) gives
2. —
ut+iuPe| 3 . 2
X1+ ————|, =, (—iuPe¥%?|. (82 g
(_i/LPe)llz 2 ( u e) z ) ( ) g= \/k2+ 2Ka +K_a. (89)
Then, we can show that the Wronskisv of the two solu- In the quasistationary approximatim/,(ak2<1 and k|a
tions ¢,(z) and ¢,(z) becomes >1, we can approximatg=Kk.

The continuity of the temperature at the liquid-air surface,

W(Z) = ¢4(2) dg{:;(z) — b, Z)d(Z;;[(Z) =1. (83) y=&(t,X) =hg+ éexd ot+ikx], is
4 4

M+ Ty e=(Tat TD|y—e=Tia- (90)
Therefore, the solution of Eq79) is given as follows: HTDl=e=(Tat Tolly-¢=Ta
Linearizing Eq.(90) aty=h,, Eq.(90) gives, to the ze-
. ,
1(2)=B161(2) + Bodhol2) +iuPe| {420 61(2') foth order infi
_ Tl|y=hO:Ta|y=h0:TIaa (91
—1(2)ho(2')}1(2")dZ' Gy ¢y, (84)

whereB,; andB, are constants with respect zpand in Eq. _
(84) we have omitted the exponential term on the right hand — pVhg
side of Eq.(79) because/hy/x;<1. In Egs.(81) and(82), ~Giéict Bily-n, exp( 2k

we have omitted the termspVhOIZK,)2 and ah%/x, in Eq. (92)
(80) because we can evaluate the ratio of the second term to — . .
the first one. pVhO/ZIq)Z/,uZ:(pV/2K|k)2<1, and the ratio whereG,=(T,,—T.)/l,. Hereafter, we omit the terms in-

of the third term to the first onezh§/K|M2:a/K,k2<l. We cluding Vhy/k; becausevVhy/x;<1. Heat conservation at

are concerned with the wave number region that satisfies thtge liquid-air surface is

former condition, while the latter condition amounts to ne- AT+ T))
glecting the time dependence of the perturbed temperature I#
field. This was assumed from the outset in theé= model. ay

This will be justified in Sec. VI. ConstanB; and B, must ) o o
be determined from the boundary conditions at the liquid-ait?Vhereé K, is the thermal conductivity of the air. Similarly,
surface. linearizing Eq.(93) at y=h,, Eq.(93) gives, to the zeroth

The equation for the temperature distribution in the air isorder inéy,

and to the first order i,

) == aagk"'Tka: 0,

T+ Th)
ay

. (93
y=¢§

a

y=¢

_ KiG=KsGa, (94)
(Ty+ T;),

(89)

AT+ Ty vﬁaw;) (az P
- = Ka

—_ + JE—
ot ay ax?  gy?

and to the first order i,

KiBo=uKaTka. (95
whereT, and T/ are unperturbed temperature and perturbe
temperature of the air, respectively, arg is the thermal
diffusivity of the air. The solution for the unperturbed tem-
perature field is

Cl:rom the first equation of Eq92), we obtain
B1=G &= —fl,-0Gi k. (96)
where we have used relatidi@4) in the dimensional form.

?a(y)=Too+(T|a—Tx)eXp( Y- ho)' (86) Herg,f(z) has the following form by substitution of, =1
la —z into Eq.(73):
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1 . . Hilz=1= = fl=o( @1l =1t ool ,=1) +ipPd[ =1
_ 2 3
f(z)—m(—6+|az+62 —iaz®) (104)
jRex ' and
— —————— {144+ (— 174+ 5i @) z— 1447°
2106—ia)? dH, d¢y dés .
Gzl = fleol gl TG +iuPel|,—q,
+(210-1lia) 23+ (— 42+ Tia)Z°+(6—ia)Z}. z=1 z=1 =1 (105
97)
and where
From the second equation of E®@2),
z
Teue Gt @9 I(z)=fo{¢z<z>¢>l(z )= $1(2) (2} (2)dZ,

o . (106
Eliminating T\, from Eqgs.(95) and(98) and using Eq(94),
we obtain which describes the disturbance of the steady state tempera-

ture distribution by fluid flow normal to the interface, and
v hB % e dy(2)
z 2 Z ! 1 Z ’ ! !

By substitutions of Eqs(96) and (99) into Eq. (84), we fi- ‘](Z):f [ q, (@) —g, (2 f(2)dZ".
nally obtain (107)

B . z , In the absence of flow, we put P® in Egs.(81) and
9(2)=| — Flo=o(¢1(2) T 1 bx(2)) +inPe 0{¢2(Z)¢1(Z ) (82). If we expand Eqs(81) and (82) with respect to the
powers ofu, up to infinity, using the recursion relation by

settinga,; = u?/2 anda,=0 (see the Appendix we obtain,

— $1(2) po(2')}(2')dZ |G =H (2)G . (100

atz=1,
p? ot
V. APPLICATION A e e TR THL (108
In this section, we apply the solutions obtained in Sec. llI ) 4
and IV to the general formulas in Sec. Il. If we assuiine bol,o1=1+ AR (109
=T, in the solid, Eq.(19) becomes 3! 5l
LV= K|€|- (101) lf 1the same way, the derivative of Eq81) and (82) at z
=1 are
We solve Eq.(12) in the quasistationary approximation do, P 5
olkk?<1 andklg>1, wherel,=k/V the thermal diffu- az| THetzrtertel (110
sion length of the solid11], and in the condition that the z=1 '
disturbance must vanish far from the solid-liquid interface, do I
the propagator in the solid is -T2 =1+ 4 4.
az | 1+ CTRVTI (111
dgs _ o
d_y Then, the propagator in the liquid becomes
=0y (102
a0 dH des| , dds
. . ) 1 dz | _ 1 dz|__ * 4z B
If we are interested in the long wavelength region such that = z=1_ = =1 2=l
Qi IV, QJ>1, using Eq(10D), Eq. (21) becomes ho Hil=1  ho  dale=1tuébale=s 112
— G(k — G(k i ibbs-
o=vay| 1+ L) £nv0, i) hﬁve take G(k) in Eq. (103 as the Gibbs-Thomson effect
G, G [11],
Tl
dH G(k) =~ —T=K, (113
vV azl [ G|, Gk
1+ — +ndT, (103) . o .
ho Hilz-1 | G wherel is the solid-liquid interface tension, E¢LOJ) re-
duces to the dispersion relation in the Mullins-Sekerka
where theory[11]:
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_ K| 1 13 1 )
g, =Vk 1—d07(1+n)k2 =0, (114 $2(z)=2+ —1—202 ﬁ)z —M)Z (uPe
1 1
wheren=K/K; anddy=T,,I'C,/L? s the capillary length, +'(62 ~ 202 ),uPe. (120
C, being the specific heat at constant pressure, and from Eq.
(10D,
We evaluate each function and its derivativezatl:
— Cox(Ti—Ti2)
— ~pfIitim la
=T hy (119 5 239

— . 2

It should be noted that thieterm in front of the brackets in
Eqg. (114) comes from Eqs(102) and(112). The u term in 7 13
Eq. (112 appears as a result of the assumption that the heat bol,—1=1+1 = uPe— ———(uPe?, (122
in the air is transported by thermal diffusion. 60 3360
On the other hand, in the presence of flow, in the long

wavelength region of about 1 cm, which is the typical wave- dey 2 13
length of the wavy pattern observed on the surface of icicles, dz 3,uPe— Zlo(ﬂpaz (123
we can neglect the Gibbs-Thomson effect, as discussed in P
Ref.[8]. From Eq.(16),
W2l yritipe 2 (uper, (124
(k) o = | —urPe— mPe
Oil- 1—(1+— Gidk (116 dz ], 4 1440
G
_ and we evaluate Eq97) atz=0:
and notingg,|,-1=H,|,=1G,¢x from Eq. (100), the follow-
ing relation must be satisfied:
-6 24uRex
- floo=6=Ta " e 2" (125
G(k)=(H[=1-1G. (117 « 346-ia)
Then, Eq.(103 can be written as Substituting Eq.(97) and Egs.(119—(124) into Egs.
(106) and (107) and integrating them gives respectively, at
vV (d | z=1,
it ey +nu(Hil-1—1) . (118
0 =1

13

2
a(1POT| 280" 3360% )“‘Pe)

5

We note that the second term on the right hand side of Eq."upd |Z:1_36+ a?
(118 represents the thermal diffusion of latent heat produced

by a disturbed solid-liquid interface into the solid. In the long

wavelength region, we can make approximation of neglect-

ing the 2 term in Egs.(81) and(82). This term originated

from diffusion termd®T|/dx? in Eq. (5). In this case, the

transport of heat in the liquid is dominated by shear flow.

Noting that uPe=ugh3k/x,~O(1) for the wavelength of

about 1 cm observed on the surface of icicles when the typi- i uPel|,_ 1=
cal values ofui,~10"2 m/s, hy~10 % m in the experiments

[9,10], and k;=1.3x 10"’ m?/s of water are usefi8], we 1 101
expand Eqgs(81) and(82) with respect to the powers @fPe —| 24+ Zaz) (uPe+ 336a(,uP® H
up to the second order, using the recursion relation by setting

a;=(uPe)?22 and a,=uPe/2- (uPe)'%2\2 (see the (127
Appendix as follows:

. 7 S 2
_(15+ a)a/ (MP(3)+4—2a’(,LLPe) )

(126)

5
> a(uPe+

78 17 ou?
36+ a2 35+ 120" | (#P®

where we have carried out integration by neglecting the first

1 7 1 order term inu in Eq. (97) because this term is expected to
_ _ = R R 2 e q p
$1(2)=1+ 24Z + 360Z 672" )(“Pe) give very small correction to Eq$126) and (127). By sub-
L . stituting Eqs.(12)—(127) into Eq. (118), the final forms of
o+ o, andv,= —o;/k for the fluctuation of the solid-liquid in-
i 2Z 12Z rPe, (119 terface in the long wavelength region are
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3 PO+ 1l 36— > (P A
V| ~ 3 ¥(uPe+u 36— 5a(uPe
“"he 36+ o 12.5x107
7 7 10.0x107*
— — (P + ul 36— —a(uPe | —a?
N 102 (#POTu 10 7.5x107
n , -
H 36+ a? 5.0x107
(128 2.5x107
1
_ ——az(,uP@+,u{6a+9(,u,Pe)} 200 400 600 800 ]&00
b V| _4 k (1/m)
ok 36+ a?

FIG. 2. The amplification rater, vs wave numbek for T,
21 =—0.06 °C,Q=160 ml/h, andd= /2. Solid line: with restoring
Ba+ g(MPe) forces. Dashed line: without restoring forces.

6 72P+
a= g (HPO+u

+nu

[ 2y
(129 2= Ngp sine’ (139

where we have neglected the first order termuinin Eq. We note that this capillary constant dependséand that
(125 by the same reason as mentioned above. Although w I prary P

, fhis typical value is about 3.9 mm fop=7.6x10"2 N/m
have expanded; and ¢, up to the second order with re- andp,=1.0x 10° Kg/m® of water wheng= /2.

spect touPe, as in Eqs(119 and(120), the values of coef- From Figs. 2—4 we use the values Bf,= —0.06 °C, Q
ficients of (uPey are very small compared to those;@t_’e. —160 ml/hr, éndl —0.03 m in the experimen@,lo], énd
Inde.ed, we have con_flrmed that the formafandv,, in- 4 physical properties of watet, =3.3x10° Jin, C,
cluding up to wPey, is almost the same as Eq428 and —4.2x10F J/(K 1) (=1.3x10"7 m¥/s =18
(129 in the long wavelength region, such thet10/m. . ;076 2/¢ y=7,6>< 10—'2 N/m. and n=K’s/K|=3 92
'I_'herefore,_lt Is sufficient to approximatg andup, up to the whereKg is the thermal conductivity of ice. The reason for
first order inuPe. L . choosing the value d@ =160 ml/hr is that the clearest wavy
Th? rate .Of volume-flow down the inclined plane in the pattern was observed at this value in the experinj&og.
experiment in Ref[10] is Since the crystal growth velocity observed in the actual
ol y 2 2 experiment is about I¢ m/s[9], from Eq.(115 we obtain
Q=ugl f ( 2—— —2) dy= = uphgl, (130  the value ofT;;=—0.06°C for water wherhy=10"% m.

0 Mo hg 3 Although T, is to be determined by the condition of the
surrounding air, we use this value fdy, to determine the
value ofV from Eq. (115 when varyingé.

ghg The solid line in Fig. 2 shows the amplification rate Eq.
UOZZsin 0 (131 (128) versus wave numbesfor 8= /2. This shows thatr,
takes a maximum value, .« at @ wave number. The char-
acteristic time for most unstable mode isol4.x and is

36+ a?

wherel is the width of the gutter and

is the surface velocity13]. If we eliminateu, from Egs.
(130 and (131, mean thicknes$, of the liquid can be

expressed with respect ©@ and 6: (Jz) k (1/m)
3vQ |18 137 0 400 600 800 1000
— -7
o \glsing (132 -2x10
. —ax10”’
Then, uPe anda can be expressed in terms lof, respec- 7
tively, ~6x10
-8x1077
siné _
ppe= N7 (133 -1x107°
2KV -6
-1.2x10
a=2 cotfhok+a’hgk?, (134  -1.4x107°

where we have defined the capillary constant associated with FIG. 3. Phase velocity ,= — o /k vs wave numbek for T,
surface tensiory of the liquid-air surfacg13]: =—0.06 °C,Q=160 ml/h, andd= /2.
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3

5

FIG. 4. The dependence af;,4x OF N\ mean ON the angle of in-
clined plane forQ=160 ml/h. Closed circles: present result. Closed
triangles: Ogawa-Furukawa’s res[#. Closed squares: experimen-
tal result[10].

about 30 min in this case. Indeed, it is reported in the experi

ment that a periodic structure as the original form of wavy

pattern is observed in about 30 njit0]. On the other hand,
the dashed line in Fig. 2 shows, when we neglect the

PHYSICAL REVIEW E 68, 021603 (2003

0.83

(singposos (M-

(137

Nmear™

Using Eq.(128), we determine wavelengthy,,, at the maxi-
mum point ofo, and its dependence on the angle is found to
be

0.98

(Sin 6) 0.6~0.65

N max (cm), (138

which is shown in the closed circles. We note that this de-
pendence oh 5, ON sinY comes from not onlyPe of Eq.
(133 but also co®, hy, andain Eq. (134). Our results are in
good agreement with experiment. On the other hand, the
amplification rate obtained in th@-F model is

239

o 2
=Vk -~ To08g 7 139
o= 1 239 P i 2 P 2" ( )
10080 #P97[ t|12#P¢

The closed triangles argen,,, at the maximum point of Eq.
(139. Then, the result is

0.47

(sing)*3

max (cm). (140

In this case, we note that the dependence\ gf, on sirg

restoring forces due to gravity and surface tension, i.e., whenomes from onlyuPe of Eq.(133).

we puta=0 in Eqg.(128). Then,o, is always positive in the
range of our interests.

Figure 3 shows the phase velocity equati@@9 versus
wave numbek for = m/2. This shows that the fluctuation
of the solid-liquid interface for the maximum point of in

VI. DISCUSSION

Some differences between our results and their refgilts
appear to arise from the following reasons. The main differ-

Fig. 2 moves upward along the icicle with the magnitude oféNce originates from the order estimate of E&g) or Eq.

about 0.&/. Indeed, there is evidence to support our predic
tions that many tiny air bubbles dissolved in the thin flowing
liquid are trapped in just upstream region of any protrude

part on a growing icicle, and its region migrates in the up-

ward direction during growtlisee Fig. 9B in Ref[9]). This
suggests that the velocity of ice growth is faster in the up
stream region of each protruded part. On the other hand, i
the O-F model, it was predicted that the fluctuation moves
downward along the icicle with phase velocity,

> P
0HPe
2
+

UDZV:

(136)

1 wPe?

~ 10080

2
1—2,LLPG]

If this prediction is correct, air bubbles would be trapped in
the downstream region of each protruded part and migrate i
the downward direction during growth.

Figure 4 shows dependence of wavelenggh,, obtained
theoretically or mean wavelengiy, .., Obtained in the ex-
periment on angl® of the inclined plane. The closed squares
represent mean wavelength obtained by the experifdét

(134). If we use the values ohy at Q=160 ml/h andk

=27/ Nmax, Whereh 4, is taken from Eq(138), the values
f @ and u for 0.1<sin#<1 take range 04 «<0.8 and
.03< 1 <0.06, respectively. Therefore, we have treated
as the zeroth order in terms pf. On the other hand, it was
regarded as first order ip in the O-F model. When we

Hetermine the perturbed stream function, these differences
cause different forms between E§83) and(75). As a result

of that, different dependence &f,,, on sind between Egs.
(138 and (140 has occured. The sfterm in Eq.(128) is
included not only inuPe but alsax. On the other hand, in
the O-F model, the sirg term in Eq.(139 appears in only
uPe. If we use Eq(73), in which the effect of restoring
forces due to gravity and surface tension on the liquid-air
surface is includedg, takes a maximum value at a wave
number. On the other hand, if we use E@5), in which the
effect of restoring forces is not includea, is always posi-
tive in the long wavelength region. In spite of the absence of
the « term in theO-F model, a similar curve as solid line in
Fig. 2 was obtainedsee Fig. 4 in Ref[8]). The existence of
maximum of theiro, is the result of expansion of the tem-
perature fluctuation in the liquid up tupPey, for example,

which is reflected in the numerator in E(L39. However,
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we have confirmed that it is sufficient to approximateup  characteristic time of evolution of mode,r’l. Therefore,

to the first order inuPe. The existence of maximum of our condition o,/ kk?<1 is satisfied. These mean that the per-

o, comes from the effect of and uPe. turbed flow field and the perturbed temperature field respond
These different results mentioned above and the differentelatively rapidly to the slow development of the solid-liquid

prediction of the direction of the phase velocity between Egsinterface.

(129 and (136) may also be due to the difference of the

poundary condition for the _tem_perature at the solid-liquid VIl. CONCLUSION
interface and that of the liquid-air surface between ours and
theirs. Instead of Eq$13) and(90), the following boundary The restoring forces due to gravity and surface tension
conditions were used in th®@-F model, respectively: determine the shape of free surface and do not directly act on
o . the solid-liquid interface. However, the effect of restoring
(T,+T,’)|y:§=(TS+T§)|y:£=Tm, (141)  forces has played an important role on stabilization of the
solid-liquid interface. Although the Gibbs-Thomson effect
(f+T|’)|y:§:(?a+ Ty (142  acts effectivley on the micrometer scale, we have found that

the effect of restoring forces is more effective for long wave-
In order to determine the two constaris and B, in Eq.  length fluctuation of the order of mm, which is of order of
(84) independently, and in the absence of flow, to recover théhe capillary constant associated with the surface tension of
usual Mullins-Sekerka theory from the general dispersion rethe liquid-air surface. Therefore, the wavy pattern observed
lation Eq.(103), we have used boundary conditi¢®0) in- on the surface of icicles and inclined plane occurs on longer
stead of Eq(142). For long wavelength fluctuation of about length scales compared to the wavelength predicted by the
1 cm of the solid-liquid interface, since we can neglect theusual Mullins-Sekerka theory.
change of the melting temperature due to the Gibbs- Since our calculations are based on the linear stability
Thomson effect, adopting Eq141) appears to be appropri- analysis, our formulations and the Ogawa and Furukawa’s
ate. In the presence of flow, however, Et[l7) suggests that formulations do not have direct correspondences. The rela-
there exists a shift of the melting temperature depending otion between our present formulations and previous ones is
the wave number. Therefore, we have used boundary condinder investigation by Ogawa and Furukawa.
tion (13) instead of Eq(141).

The u term in the numerator in Eq128) is the cause of ACKNOWLEDGMENTS
instability. This term originates from spatial derivative of the
perturbed air temperature distribution at the deformed liquid- The author would like to thank N. Ogawa and M. Sato for
air surface, as indicated on the right hand side of @§). very useful comments and remarks about the paper. The au-
From Eq.(68) or Eq. (134), since the value ofr is very  thor would also like to thank Y. Furukawa and E. Yokoyama
small in the long wavelength region, the effect of restoringfor helpful discussions.
forces due to gravity and surface tension on the liquid-air
surface is small. Therefore, in the low wave number region, APPENDIX
instability effect with positive terms in Eq128) dominates
stability effect with negative terms. On the other hand, as We separate Eq81) into the real part and imaginary part:
increasing the wave number, since the valuerdhcreases,
the effect of restoring forces is large. Ther(uPe) anda? (uP8Y? (uP8Y? |
terms with negative sign in the numerator in ER8) domi- $1(2)=exp — z|c z
. - . 2\2 2\2

nate the instability terms. As a result of that, we obtain the

solid curve in Fig. 2. In order to interpret correctly the physi- * 12

i [ (nP®
cal mechanism of instability and stability of the solid-liquid x| 14 a2j+1z21+2) —sinl 22>
interface and why the solid-liquid interface moves in the up- 1=0 22
stream direction, it is necessary to understand the relative o (uPeL?2
phase of modes at each interface using relatioh and a X| X @y 2812 +i[cog( s 22>
shift of melting temperature due to flow and restoring forces j=0 22
as suggested in Eq117). This will be shortly clarified in - o
another paper. «|S a, 2272 +sin (uPe 2

In Sec. Il and 1V, we have made some assumptions. Here = Tt 2.2

we justify them. We have assumed the time independence of
the purterbed flow, therefore we have neglected de u ” _
term in Eqgs.(45), (52), (54), and (56). This assumption is X 1+j§_:0 a2j+122]+2) H (A1)

valid because we see from Figs. 2 and 3 that-10 © for

V~10 % m/s. Therefore, conditiorr, /u<1 is satisfied. Using the first two coefficients

The same can be said for the fluctuation of the temperature.

For a deformation of wave numbkrthe characteristic delay 1 1

time of the fluctuation of the temperature is of order a,== pl+ —=(uPet? (A2)
Atghermar (K1k?) ™Y Atihermar is much smaller than the 2 2\2
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1 1
a,=5 uPe- ——(uPe™,

22

(A3)

the other coefficients; for odd numbers are obtained from

the following recursion relation:

1
32j+1:m[ A18pj- 1 Axayj

+ 2_j(MPe)l/2(az‘—1+az‘) (j=123...),
2 i i

(A4)

and for even numbers,

1
azj+2:m[ a a8zt aza5-1

o
- \/_JE(MPe)llz(azl‘—l_azj)] (J=123...).

(A5)

Next, we separate the derivative of Eg1) into the real
part and imaginary part:

de1(2) % (uPe? (uPe?
=exp — z°|| co z
dz 22 2\2
S (nPe™?
X b sz+1> —sin v
;0 2j+1 2\/5
S | ks
X b, 2j+1 + 2
JZO 2j+2Z '[ ﬁ( 202
* . - (Mpel/Z
X by 0z2 Y| +sin 2
jgo 2j+2 2\/5
X ;;)bz+1z”+1>}l (AB)
Using
1 1/2
b,=2a;— E(Mpe) : (A7)
1 1/2
b,=2a,+ E(Mpe) : (A8)

the other coefficienty; for odd numbers are obtained from

_ 1
boj+1=2(j+1)ay.1— —=(uPeY¥ay_,+ay)

V2

(j=1,23...), (A9)
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and for even numbers,
H 1 1/2,
Doj42=2(j+1)ay 2~ E(Mpe) (agj—1—ay))

(j=123...). (A10)

Equation(82) is separated into the real part and imaginary
part in the same way:

_ <MPa”22> {(MPSUZZ)
qbz(z)—exp( 2\/5 z°|| co 2\/5 z

C (nPe™?
X | z+ D, Cpiy12% 3)—sm 2
2 2j+1 2\/5
S (nPg'?
X Coi 1522173 +i{ co 2
jZO 2j+2 { { 2\/5
- [ (uPe!?
X Coi 2873 | +sin 72
]20 2j+2 2\/5
x| z+ 20 c, +122“3> ” (A11)
=
Using
1 1 12
Ci=gzart ﬁ(,uPe) ) (A12)
1 1 12
szgaz—ﬁ(ﬂpé : (A13)

the other coefficients; for odd numbers are obtained from

1
Czj+1=m[ a1Coj 17— 82Cy;

241 ,
2 (uPO™qcCyj_1FCy) ¢ (j=1,23...),

+
(A14)
and for even numbers,

1
Czj+2:m[ a;CpjtasCyj—1

2j+1 12 -
- W(MPQ (Cyj-1—Cz)p (j=123...).

(A15)

Finally, derivative of¢, is separated into the real part and
imaginary part:
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dea(2) (uPe™2 (uPO?
X 1+J§O d2j+1zj+2>_3in (MZP\/G)EM z)
(ool
X Jéo dyj 1228+ 2 | +sin ('U“Zp\gllzzz)
x 1+§O daj 12 2)] (A16)

whered;=a,;, d,;=a,, and other coefficientsl; for odd
numbers are obtained from

PHYSICAL REVIEW E 68, 021603 (2003

) 1
doj1=(2j+3)Cy5 11— E(Mpe)llz(czj'—fr Cyj)

(j=123...), (A17)
and for even numbers,
H 1 1/2,
dyj2=(2]+3)Cyj 42— E(Mpe) (Caj—1—Cy))
(j=123...). (A18)

It should be noted that all coefficients are obtained from
only a; anda,. Equationg(121)—(124) are valid only in the
long wavelength region because we neglect tifeterm in
Eq. (A2). This means that heat transport is dominated by
shear flow. On the other hand, in the absence of flow, we put
Pe=0 in Eqg.(A2). Then, Eqs(108—(111) are obtained. In
this case, heat transport is dominated by thermal diffusion.
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