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Pattern formation in crystal growth under parabolic shear flow

K. Ueno*
Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan

~Received 19 February 2003; published 12 August 2003!

Morphological instability of the solid-liquid interface occurring in a crystal growing from an undercooled
thin liquid bounded on one side by a free surface and flowing down inclined plane, is investigated by a linear
stability analysis under shear flow. It is found that restoring forces due to gravity and surface tension is an
important factor for stabilization of the solid-liquid interface on long length scales. This is a stabilizing effect
different from the Gibbs-Thomson effect. A particular long wavelength mode of about 1 cm of wavy pattern,
observed on the surface of icicles covered with a thin layer of flowing water is obtained from the dispersion
relation, including the effect of flow and restoring forces.
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I. INTRODUCTION

The interaction between an imposed shear flow an
phase transition underlies a broad range of phenomena@1#.
The stability of order under the influence of shear flow
fundamental for engineering to understand frictional wear@2#
and lubrication@3#. In pattern formation in nature, rippl
formation in sand induced by water shear flow, is w
known @4#. In theoretical works, the effect of shear flow o
the morphological stability has been studied@5–7#.

An example of morphological instability of the solid
liquid interface in the long wavelength region of about 1 c
under shear flow bounded on one side by a free surface,
wavy pattern occuring on the surface of icicles~see Fig. 1 in
Ref. @8# and Fig. 9A in Ref.@9#!. In a relevant experiment o
a crystal growth from a thin liquid flowing down an incline
plane with angleu, sketched in Fig. 1, it is found that mea
wavelength of the wavy pattern of the solid-liquid interfa
is proportional to 1/(sinu)0.6;0.9 @10#. Ogawa and Furukawa
have recently proposed a model for the mechanism of oc
rence of the wavy pattern and obtained reasonable value
wavelength on the icicles@8#. However, in order to explain
more quantitatively the experimental result mentioned abo
we modify their dispersion relations in the form that includ
the effect of restoring forces due to gravity and surface t
sion on stability of the solid-liquid interface. Furthermor
we improve their formulations by using a linear stabili
analysis under forced flow, developed first by Delves@5#.
From the dispersion relation in the long wavelength appro
mation, we present an amplification rate and phase velo
for the fluctuation of the solid-liquid interface, different from
that of Ogawa and Furukawa’s model.

This paper is organized as follows. In Sec. II, we deve
generally the dispersion relation for the fluctuation of t
solid-liquid interface. In Sec. III, a perturbed normal flo
induced by deformation of the solid-liquid interface is det
mined in the long wavelength approximation. In Sec. IV
general solution of the perturbed temperature distribution
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the liquid is obtained. In Sec. V, we determine the dispers
relation for the fluctuation of the solid-liquid interface in
crystal growth from a thin liquid flowing down an incline
plane by applying the solutions in Sec. III and IV to th
general formulation in Sec. II. Section. VI is devoted to
discussion. The conclusion is given in Sec. VII.

II. DISPERSION RELATION FOR THE FLUCTUATION OF
THE SOLID-LIQUID INTERFACE

We consider a crystal growth from an undercooled th
liquid flowing down an inclined plane with angleu @10#.
Hereafter, the analysis will be restricted to two dimension
a vertical plane (x,y) sketched in Fig. 1. The primary shea
flow is parallel to thex axis and the mean velocity varie
only in the y direction. The shear flow is bounded on on
side by a free surface. We note thath0 is the mean thickness
of the liquid andu0 is the velocity at the free surface. In th
section, we develop, generally, the dispersion relation for
fluctuation of the solid-liquid interface by following th
ideas given in Refs.@5,11#.

s,
0, FIG. 1. Schematic diagram of crystal growth from liquid flow
ing down an inclined plane.
©2003 The American Physical Society03-1
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In the frame of reference moving at the solid-liquid inte
face velocity V̄, the equations for the temperature in t
flowing liquid, Tl , and that in the solid,Ts are

]Tl

]t
2V̄

]Tl

]y
1u

]Tl

]x
1v

]Tl

]y
5k lS ]2Tl

]x2
1

]2Tl

]y2 D , ~1!

]Ts

]t
2V̄

]Ts

]y
5ksS ]2Ts

]x2
1

]2Ts

]y2 D , ~2!

wheret is time,u andv are the velocity components in thex
and y direction, respectively, measured in the laborato
frame in which the crystal is at rest, andk l and ks are the
thermal diffusivities of the liquid and solid, respectively. W
substitute Tl5T̄l1Tl8 , Ts5T̄s1Ts8 , u5Ū1u8, and v
5DrV̄1v8 into Eqs.~1! and ~2!, whereT̄l , T̄s , andŪ are
unperturbed steady fields andTl8 , Ts8 , u8, and v8 are per-

turbed fields, respectively. Here,DrV̄ is the advection flow
due to the density difference of the liquid and solid,Dr
5(r l2rs)/r l , r l andrs being the density of the liquid an
solid, respectively. Then, the equations for the unpertur
fields are

d2T̄l

dy2
1

rV̄

k l

dT̄l

dy
50, ~3!

d2T̄s

dy2
1

V̄

ks

dT̄s

dy
50, ~4!

and the equations for the perturbed fields are

]Tl8

]t
2rV̄

]Tl8

]y
1Ū

]Tl8

]x
1v8

dT̄l

dy
5k lS ]2Tl8

]x2
1

]2Tl8

]y2 D , ~5!

]Ts8

]t
2rV̄

]Ts8

]y
5ksS ]2Ts8

]x2
1

]2Ts8

]y2 D , ~6!

wherer5rs /r l .
Suppose that perturbations of the solid-liquid interfa

temperature, and normal flow are expressed in the follow
forms:

z~ t,x!5zk exp@st1 ikx#, ~7!

Tl85gl~y!expS 2
rV̄

2k l
yD exp@st1 ikx#, ~8!

Ts85gs~y!expS 2
rV̄

2ks
yD exp@st1 ikx#, ~9!

v85vk exp@st1 ikx#, ~10!

wherek is the wave number ands5s r1 is i , s r being the
rate of amplification or damping and2s i /k being the phase
velocity of the disturbance,zk andvk are the amplitudes o
02160
y

d

,
g

perturbed interface and perturbed normal flow, respectiv
gl andgs are the amplitudes of perturbed temperature of
liquid and solid, respectively. Substituting them into Eqs.~5!
and ~6! yields

d2gl

dy2
2H k21S rV̄

2k l
D 2

1
s

k l
1

ikŪ~y!

k l
J gl

5
vk

k l

dT̄l

dy
expS rV̄

2k l
yD , ~11!

d2gs

dy2
2H k21S rV̄

2ks
D 2

1
s

ks
J gs50. ~12!

The following calculations are to first order only in th
amplitude of the initial perturbation. The continuity of th
temperature at the perturbed solid-liquid interface,y
5z(t,x), is

~ T̄l1Tl8!uy5z5~ T̄s1Ts8!uy5z5Tm1G~k!z, ~13!

whereTm is the melting temperature andG(k)z is the tem-
perature difference fromTm due to a deformation of the
solid-liquid interface. The form ofG(k) will be specified
later. Linearizing Eq.~13! at y50, Eq. ~13! gives, to the
zeroth order inzk ,

T̄l uy505T̄suy505Tm ~14!

and to the first order inzk ,

dT̄l

dy
U

y50

zk1gl uy505
dT̄s

dy
U

y50

zk1gsuy505G~k!zk .

~15!

It follows from Eq. ~15! that the amplitudes ofgl uy50 and
gsuy50 are of orderzk :

gl uy505S 2
dT̄l

dy
U

y50

1G~k!D zk , ~16!

gsuy505S 2
dT̄s

dy
U

y50

1G~k!D zk . ~17!

The heat conservation at the perturbed solid-liquid int
face is

LS V̄1
]z

]t D5Ks

]~ T̄s1Ts8!

]y
U

y5z

2Kl

]~ T̄l1Tl8!

]y
U

y5z

,

~18!

whereL is the latent heat per unit volume andKs andKl are
the thermal conductivities of the solid and liquid, respe
tively. In the same way we linearize Eq.~18! at y50; Eq.
~18! gives, to the zeroth order inzk ,
3-2
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LV̄5Ks

dT̄s

dy
U

y50

2Kl

dT̄l

dy
U

y50

~19!

and to the first order inzk ,

Lszk5KsS d2T̄s

dy2 U
y50

zk2
rV̄

2ks
gsU

y50

1
dgs

dy U
y50

D
2KlS d2T̄l

dy2 U
y50

zk2
rV̄

2k l
glU

y50

1
dgl

dyU
y50

D .

~20!

By substituting Eqs.~16! and ~17! into Eq. ~20!, the disper-
sion relation for the fluctuation of the solid-liquid interfac
becomes

s5
Ks

L H d2T̄s

dy2 U
y50

1S 2
rV̄

2ks
1QsD S 2

dT̄s

dy
U

y50

1G~k!D J
2

Kl

L H d2T̄l

dy2 U
y50

1S 2
rV̄

2k l
2Ql D S 2

dT̄l

dy
U

y50

1G~k!D J , ~21!

where we have defined the so-called propagator in the liq
and solid as follows@5#:

Ql52

dgl

dy U
y50

gl uy50
, Qs5

dgs

dy U
y50

gsuy50
, ~22!

which describe the motion of the interface in response to
propagation of a temperature disturbance, here it is the la
heat release. The general formulation above will be app
in Sec. V.

III. THE PERTURBED NORMAL FLOW OVER THE
SINUSOIDAL INTERFACE

It is first necessary to know the primary shear flow fie
Ū(y) and amplitudevk of the perturbed normal flow in Eq
~11!. We determine the perturbed normal flow over the int
face to first order only, in the amplitude of initial perturb
tion by following the formulation of Benjamin@12#. In his
treatment, the bottom is flat interface and does not mo
When the crystal grows, however, the solid-liquid interfa
moves and it may not be flat if a morphological instabil
occurs. Therefore, it is necessary to modify several bound
conditions in his formulation. We make use of the same
mensionless variables as those used in Benjamin’s pa
which are different from those used in Ogawa-Furukaw
paper@8#. Hereafter, we refer to their models asO-F model.

With reference to Fig. 1, the primary shear flow, assum
to be steady, is pararell to thex axis, with velocityŪ varying
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only with y. In the frame of reference moving at the soli
liquid interface velocityV̄, the Navier-Stokes equations ar

]u

]t
2V̄

]u

]y
1u

]u

]x
1v

]u

]y
52

1

r l

]p

]x
1nS ]2u

]x2
1

]2u

]y2D
1g sinu, ~23!

]v
]t

2V̄
]v
]y

1u
]v
]x

1v
]v
]y

52
1

r l

]p

]y
1nS ]2v

]x2
1

]2v

]y2D
2g cosu, ~24!

where t is time, u (v) the velocity components in thex ~y!
direction,p the pressure,r l the liquid density,g the gravita-
tional acceleration,n the kinematic viscosity, andu the angle
of the inclined plane. The equation of continuity is

]u

]x
1

]v
]y

50. ~25!

In this section, the coordinates (x,y) and velocities (u,v)
are made nondimensional by taking the mean thicknessh0 of
flowing liquid as the unit of length and velocityu0 at the free
surface as the unit of velocity, respectively. By substitutio
of (x* ,y* )5(x,y)/h0 , (u* ,v* )5(u,v)/u0 , p* 5p/r lu0

2,
and t* 5tu0 /h0, the equations of motion and continuity ca
be written in the following dimensionless forms:

]u*
]t*

2V̄*
]u*
]y*

1u*
]u*
]x*

1v*
]u*
]y*

52
]p*
]x*

1
1

ReS ]2u*
]x

*
2

1
]2u*
]y

*
2 D 1

sinu

F2
, ~26!

]v*
]t*

2V̄*
]v*
]y*

1u*
]v*
]x*

1v*
]v*
]y*

52
]p*
]y*

1
1

ReS ]2v*
]x

*
2

1
]2v*
]y

*
2 D 2

cosu

F2
, ~27!

]u*
]x*

1
]v*
]y*

50, ~28!

where Re5u0h0 /n is the Reynolds number andF
5u0 /(gh0)1/2 is the Froude number.

Let

u* 5Ū* 1u
*
8 , v* 5DrV̄* 1v

*
8 , p* 5 P̄* 1p

*
8 ,

~29!

whereŪ* and P̄* are the dimensionless velocity and pre
sure of the primary flow and primed quantities are the
mensionless velocity and pressure perturbations. Substitu
Eq. ~29! into Eqs.~26!–~28! yields
3-3
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1

Re

d2Ū*
dy

*
2

1rV̄*
dŪ*
dy*

1
1

F2
sinu50, ~30!

dP̄*
dy

1
1

F2
cosu50, ~31!

]u
*
8

]t*
2rV̄*

]u
*
8

]y*
1Ū*

]u
*
8

]x*
1

dŪ*
dy*

v
*
8

52
]p

*
8

]x*
1

1

ReS ]2u
*
8

]x
*
2

1
]2u

*
8

]y
*
2 D , ~32!

]v
*
8

]t*
2rV̄*

]v
*
8

]y*
1Ū*

]v
*
8

]x*
52

]p
*
8

]y*
1

1

ReS ]2v
*
8

]x
*
2

1
]2v

*
8

]y
*
2 D ,

~33!

]u
*
8

]x*
1

]v
*
8

]y*
50, ~34!

if quadratic terms in the perturbation quantities are
glected. Using the typical values ofV̄;1026 m/s andu0
;1022 m/s in the experiments@9,10#, we can neglect the
rV̄* term in Eqs.~30!, ~32!, and~33! becauseV̄* is the ratio
of V̄ to u0.

Under the boundary conditions,

Ū* 50~y* 50!,
dŪ*
dy*

50 ~y* 51!, P̄* 5P0* ~y* 51!,

~35!

the solutions of Eqs.~30! and ~31! are, respectively@13#,

Ū* 52y* 2y
*
2 , ~36!

P̄* 5P0* 1
cosu

F2
~12y* !, ~37!

where P0* is the dimensionless pressure of atmosphe
Equation ~34! allows the use of a stream functionc8, in
terms of which,u

*
8 andv

*
8 can be expressed as follows:

u
*
8 5

]c8

]y*
, v

*
8 52

]c8

]x*
. ~38!

Equations~32! and ~33! can then be written as

]2c8

]t* ]y*
1Ū*

]2c8

]x* ]y*
2

dŪ*
dy*

]c8

]x*

52
]p

*
8

]x*
1

1

ReS ]3c8

]x
*
2 ]y*

1
]3c8

]y
*
3 D , ~39!
02160
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]2c8

]t* ]x*
1Ū*

]2c8

]x
*
2

5
]p

*
8

]y*
1

1

ReS ]3c8

]x
*
3

1
]3c8

]x* ]y
*
2 D .

~40!

If the perturbation of the solid-liquid interface is repr
sented in a dimensionless form

z* ~ t* ,x* !5dbexp@s* t* 1 imx* #, ~41!

the corresponding perturbations of the stream function, p
sure, and the liquid-air surface may be written as, resp
tively,

c85dbf ~y* !exp@s* t* 1 imx* #, ~42!

p
*
8 5dbP~y* !exp@s* t* 1 imx* #, ~43!

j* ~ t* ,x* !511d t exp@s* t* 1 imx* #, ~44!

in which db5zk /h0 andd t5jk /h0 are dimensionless ampli
tudes of the solid-liquid interface and the liquid-air surfac
respectively,m5kh0 is the dimensionless wave number a
s* 5sh0 /u0. When we substitute Eqs.~42! and ~43! into
Eqs.~39! and ~40!, andP is eliminated from them by cros
differentiation, the linearized equations of motion lead to t
following Orr-Sommerfeld equation:

d4f

dy
*
4

22m2
d2f

dy
*
2

1m4f

5 imReH S Ū* 2 i
s*
m D S d2f

dy
*
2

2m2f D 2
d2Ū*
dy

*
2

f J .

~45!

The perturbed flow was assumed to be stationary from
outset in theO-F model. This formally amounts to neglec
ing the s* /m term in Eq. ~45!. This assumption will be
justified in Sec. VI. Since the value of mean thicknessh0 is
about 1024 m and the typical value of wavelength of th
wavy pattern observed on the surface of icicles is about 1
@9,10#, the value ofm5kh0 is about 631022 @8#. Therefore,
in the long wavelength approximation, retaining up to t
first order inm, Eq. ~45! becomes

d4f

dy
*
4

5 imReH ~2y* 2y
*
2 !

d2f

dy
*
2

12 f J , ~46!

where we have substituted Eq.~36! for Ū* . We note that Re
becomesO(1) when we use the typical values ofu0 andh0
used above andn51.831026 m2/s of water, therefore, the
primary shear flow is laminar@8–10#.

The problem entails five boundary conditions as follow
Since both velocity components must vanish at the pertur
solid-liquid interface, we have

v
*
8 uy

*
5z

*
2Dr

]z*
]t*

50, ~47!
3-4
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~Ū* 1u
*
8 !uy

*
5z

*
1DrV̄*

]z*
]x*

50. ~48!

The kinematic condition at the free surface is

]j*
]t*

1Ū* uy
*

5j
*

]j*
]x*

5v
*
8 uy

*
5j

*
. ~49!

At the free surface the shear stress must vanish and the
mal stress must just balance the normal stress induce
surface tension:

]u*
]y*

U
y
*

5j
*

1
]v*
]x*

U
y
*

5j
*

50, ~50!

2p* uy
*

5j
*
1

2

Re

]v*
]y*

U
y
*

5j
*

2S
]2j*
]x

*
2

5 2P0* , ~51!

where S5g/r lh0u0
2, g being the surface tension of th

liquid-air surface. Linearizing Eqs.~47! and ~48! at y* 50
and Eqs.~49!–~51! at y* 51, Eqs. ~47!–~51! become, re-
spectively,

f uy
*

505 iDr
s*
m

, ~52!

d f

dy*
U

y
*

50

5222 imDrV̄* , ~53!

f uy
*

51db5S i
s*
m

21D d t , ~54!

S d2f

dy
*
2 U

y
*

51

1m2f uy
*

51D db52d t , ~55!

d3f

dy
*
3 U

y
*

51

db2 i S mRe cosu

F2
1m3ReSD d t

5H imReS 12 i
s*
m D13m2J d f

dy*
U

y
*

51

3db2rV̄* Re
d2f

dy
*
2 U

y
*

51

db . ~56!

If we formally put

f ~y* !5 (
N50

`

ANy
*
N , ~57!

then this series is seen to constitute a solution of Eq.~46!
when coefficientsAN are made to satisfy the following re
cursion relation:
02160
or-
by

N~N21!~N22!~N23!AN

52imRe~N23!~N24!AN23

1 imRe$22~N24!~N25!%AN24 , ~58!

for N.3. Equation~58! gives every otherAN in terms of the
first four coefficientsA0 to A3. The approximation to the
series solution up to the first order inm requires seven coef
ficients of the expansion Eq.~57!. Therefore, the other coef
ficients are given as follows:

A450, ~59!

A55
imRe

60
A11

imRe

30
A2 , ~60!

A65
imRe

30
A3 , ~61!

A752
imRe

210
A3 . ~62!

Hence, the approximate series solution can be written as

f ~y* !5S 11
imRe

12
y
*
4 DA01S y* 1

imRe

60
y
*
5 DA1

1S y
*
2 1

imRe

30
y
*
5 DA21S y

*
3 1

imRe

30
y
*
6

2
imRe

210
y
*
7 DA3 . ~63!

The four constantsA0 to A3 of the solution of the fourth
order Eq.~46! are determined from boundary conditions Eq
~52!–~56! in the form neglecting the terms includingV̄* ,
s* /m, andm2.

First, the boundary conditions Eqs.~52! and ~53! give,
respectively,

A050, ~64!

A1522. ~65!

Eliminations of d t from Eqs. ~54! and ~55! and from Eqs.
~54! and ~56! yield, respectively,

d2f

dy
*
2 U

y
*

51

522 f uy
*

51 , ~66!

d3f

dy
*
3 U

y
*

51

1 ia f uy
*

515 imRe
d f

dy*
U

y
*

51

, ~67!

where

a5
mRe cosu

F2
1m3ReS5

gh0
3 cosu

nu0
k1

gh0
3

r lnu0
k3. ~68!
3-5
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Equation~68! represents the restoring forces due to grav
and surface tension@12,13#. When we use the typical value
of u0;1022 m/s andh0;1024 m in the experiments@9,10#,
and the physical properties of water,r l51.03103 Kg/m3,
n51.831026 m2/s, and g57.631022 N/m, a becomes
O(1) for the wavelength of wavy pattern occurring on t
icicles and the inclined plane. Therefore, we treata as zeroth
order in terms ofm in the following calculations. Sinceu0
andh0 are not independent quantities, this rough order e
mate will be justified more quantitatively in Sec. VI, by u
ing other parameters being controlled easily in the ac
experiment.

Using Eqs.~63!–~65!, Eqs. ~66! and ~67! give, respec-
tively,

S 41
11imRe

15 DA21S 81
6imRe

7 DA3541
11imRe

15
,

~69!

iaS 11
imRe

30 DA21S ia162
mRea

35 DA35 iaS 21
imRe

30 D .

~70!

Retaining up to the first order inm, the solutions of these
simultaneous equations forA2 andA3 are expressed as fo
lows:

A25
3~22 ia!

62 ia
1mRea

29628ia

105~62 ia!2
, ~71!

A35
ia

62 ia
1mRea

4ia

35~62 ia!2
. ~72!

When these expressions ofA0 to A3 are substituted into Eq
~63!, the final form up to the first order inm is

f ~y* !522y* 1
3~22 ia!

62 ia
y
*
2 1

ia

62 ia
y
*
3

1mReaH 29628ia

105~62 ia!2
y
*
2 1

4ia

35~62 ia!2
y
*
3

1
1

15~62 ia!
y
*
5 2

1

30~62 ia!
y
*
6

1
1

210~62 ia!
y
*
7 J . ~73!

Applying this result aty* 51 to Eq.~54!, we can know the
relation between the amplitude and the phase of perturba
of the solid-liquid interface and that of the liquid-air surfac

d t52 f uy
*

51db . ~74!

In Ref. @8#, the following function was obtained:

f ~y* !522y* 1y
*
2 . ~75!
02160
y

i-

al

on
:

If we substitute Eq.~75! into Eq. ~74!, d t5db , which indi-
cates that the liquid-air surface fluctuates with the same
plitude as the solid-liquid interface and phase shift of ea
interface does not occur. If we regarda asO(1) with respect
to m, however, Eq.~75! cannot satisfy the boundary cond
tion Eq. ~67!. On the other hand, if we substitute Eq.~73!
into Eq. ~74!, it is found that the amplitude and the phase
the liquid-air surface depends on the wavelength of fluct
tion of the solid-liquid interface because of the restori
forcesa.

By rewriting the second equation of Eq.~38! in the di-
mensional form

v852u0h0

]c8

]x
52 iku0f ~y!zkexp@st1 ikx#, ~76!

and by comparing it with Eq.~10!, we obtain

vk52 iku0f ~y!zk , ~77!

where f (y) is given by Eq.~73! in the long wavelength ap
proximation, retaining up to the first order inm.

IV. GENERAL SOLUTION FOR THE PERTURBED
TEMPERATURE DISTRIBUTION IN THE LIQUID

In the preceding section, we have determinedŪ(y) and
vk in Eq. ~11!. Next, we must determine the amplitude of th
perturbed temperature in the liquid under this primary sh
flow and the amplitude of perturbed normal flow. Sin
Péclet numberV̄h0 /k l associated with the crystal growt
velocity is very small when the typical values ofV̄
;1026 m/s, h0;1024 m in the experiments@9,10#, andk l
51.331027 m2/s of water are used, we can neglect the s
ond term of Eq.~3!; then, the solution is

T̄l~y!5Tm2Ḡly, ~78!

whereḠl5(Tm2Tla)/h0 is unperturbed temperature grad
ent in the liquid,Tla is the temperature of the liquid-air su
face. If we make the substitutions ofy5h0(12z), m
5kh0, andu0h0 /k l[ Pe, which is the Peclet number ass
ciated with the flow velocity at the free surface, into Eq.~11!,
we obtain

d2gl

dz2
2H m21S rV̄h0

2k l
D 2

1
sh0

2

k l
1 imPeJ gl1 imPez2gl

5 imPef ~z!expH 2
rV̄h0

2k l
~12z!J Ḡlzk , ~79!

where we have used Eqs.~36!, ~77!, and~78!. When we put
the right hand side of Eq.~79! equal to zero, Eq.~79! be-
comes the equation for a parabolic cylinder function:

d2f

dz2
2H m21S rV̄h0

2k l
D 2

1
sh0

2

k l
1 imPeJ f1 imPez2f50.

~80!
3-6
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Using the confluent hypergeometric function1F1, the
general solutions of Eq.~80! are given by@14#

f1~z!5expS 2
1

2
~2 imPe!1/2z2D

31F1S 1

4 F11
m21 imPe

~2 imPe!1/2G ,
1

2
,~2 imPe!1/2z2D ,

~81!

f2~z!5z expS 2
1

2
~2 imPe!1/2z2D 1F1S 1

2
1

1

4

3F11
m21 imPe

~2 imPe!1/2G ,
3

2
,~2 imPe!1/2z2D . ~82!

Then, we can show that the WronskianW of the two solu-
tions f1(z) andf2(z) becomes

W~z!5f1~z!
df2~z!

dz
2f2~z!

df1~z!

dz
51. ~83!

Therefore, the solution of Eq.~79! is given as follows:

gl~z!5B1f1~z!1B2f2~z!1 imPeE
0

z

$f2~z!f1~z8!

2f1~z!f2~z8!% f ~z8!dz8Ḡlzk , ~84!

whereB1 andB2 are constants with respect toz, and in Eq.
~84! we have omitted the exponential term on the right ha
side of Eq.~79! becauseV̄h0 /k l!1. In Eqs.~81! and ~82!,
we have omitted the terms (rV̄h0/2k l)

2 and sh0
2/k l in Eq.

~80! because we can evaluate the ratio of the second ter
the first one, (rV̄h0/2k l)

2/m25(rV̄/2k lk)2!1, and the ratio
of the third term to the first one,sh0

2/k lm
25s/k lk

2!1. We
are concerned with the wave number region that satisfies
former condition, while the latter condition amounts to n
glecting the time dependence of the perturbed tempera
field. This was assumed from the outset in theO-F model.
This will be justified in Sec. VI. ConstantsB1 andB2 must
be determined from the boundary conditions at the liquid
surface.

The equation for the temperature distribution in the air

]~ T̄a1Ta8!

]t
2V̄

]~ T̄a1Ta8!

]y
5kaS ]2

]x2
1

]2

]y2D ~ T̄a1Ta8!,

~85!

whereT̄a andTa8 are unperturbed temperature and perturb
temperature of the air, respectively, andka is the thermal
diffusivity of the air. The solution for the unperturbed tem
perature field is

T̄a~y!5T`1~Tla2T`!expS 2
y2h0

l a
D , ~86!
02160
d

to

he
-
re

ir

s

d

where T` is the temperature of the air aty5` and l a

5ka /V̄ is the thermal diffusion length of the air. Suppo
that the perturbed temperature distribution of the air is
pressed in the following form:

Ta85ga~y!expF2
V̄

2ka
~y2h0!Gexp@st1 ikx#, ~87!

where

ga~y!5Tkaexp@2q~y2h0!#, ~88!

andTka is the amplitude of the perturbed temperature of
air. Substituting Eq.~87! into Eq. ~85! gives

q5Ak21S V̄

2ka
D 2

1
s

ka
. ~89!

In the quasistationary approximations/kak2!1 and kla
@1, we can approximateq>k.

The continuity of the temperature at the liquid-air surfac
y5j(t,x)5h01jkexp@st1ikx#, is

~ T̄l1Tl8!uy5j5~ T̄a1Ta8!uy5j5Tla . ~90!

Linearizing Eq.~90! at y5h0, Eq. ~90! gives, to the ze-
roth order injk ,

T̄l uy5h0
5T̄auy5h0

5Tla , ~91!

and to the first order injk ,

2Ḡljk1gl uy5h0
expS 2

rV̄h0

2k l
D 52Ḡajk1Tka50,

~92!

whereḠa5(Tla2T`)/ l a . Hereafter, we omit the terms in
cluding V̄h0 /k l becauseV̄h0 /k l!1. Heat conservation a
the liquid-air surface is

2Kl

]~ T̄l1Tl8!

]y
U

y5j

52Ka

]~ T̄a1Ta8!

]y
U

y5j

, ~93!

where Ka is the thermal conductivity of the air. Similarly
linearizing Eq.~93! at y5h0, Eq. ~93! gives, to the zeroth
order injk ,

KlḠl5KaḠa , ~94!

and to the first order injk ,

KlB25mKaTka . ~95!

From the first equation of Eq.~92!, we obtain

B15Ḡljk52 f uz50Ḡlzk , ~96!

where we have used relation~74! in the dimensional form.
Here, f (z) has the following form by substitution ofy* 51
2z into Eq. ~73!:
3-7
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f ~z!5
1

62 ia
~261 iaz16z22 iaz3!

2
mRea

210~62 ia!2
$1441~217415ia!z2144z2

1~210211ia!z31~24217ia!z51~62 ia!z7%.

~97!

From the second equation of Eq.~92!,

Tka5Ḡajk . ~98!

Eliminating Tka from Eqs.~95! and~98! and using Eq.~94!,
we obtain

B25mB1 . ~99!

By substitutions of Eqs.~96! and ~99! into Eq. ~84!, we fi-
nally obtain

gl~z!5F2 f uz50~f1~z!1mf2~z!!1 imPeE
0

z

$f2~z!f1~z8!

2f1~z!f2~z8!% f ~z8!dz8GḠlzk[Hl~z!Ḡlzk . ~100!

V. APPLICATION

In this section, we apply the solutions obtained in Sec.
and IV to the general formulas in Sec. II. If we assumeT̄s
5Tm in the solid, Eq.~19! becomes

LV̄5KlḠl . ~101!

We solve Eq. ~12! in the quasistationary approximatio
s/ksk

2!1 and kls@1, wherel s5ks /V̄ the thermal diffu-
sion length of the solid@11#, and in the condition that the
disturbance must vanish far from the solid-liquid interfac
the propagator in the solid is

Qs5

dgs

dy U
y50

gsuy50
5k. ~102!

If we are interested in the long wavelength region such t
Qlk l /V̄, Qsl s@1, using Eq.~101!, Eq. ~21! becomes

s5V̄QlS 11
G~k!

Ḡl
D 1nV̄Qs

G~k!

Ḡl

5
V̄

h0

dHl

dz U
z51

Hl uz51
S 11

G~k!

Ḡl
D 1nV̄k

G~k!

Ḡl

, ~103!

where
02160
I

,

t

Hl uz5152 f uz50~f1uz511mf2uz51!1 imPeI uz51
~104!

and

dHl

dz U
z51

52 f uz50S df1

dz U
z51

1m
df2

dz U
z51

D 1 imPeJuz51 ,

~105!

and where

I ~z!5E
0

z

$f2~z!f1~z8!2f1~z!f2~z8!% f ~z8!dz8,

~106!

which describes the disturbance of the steady state temp
ture distribution by fluid flow normal to the interface, and

J~z!5E
0

zH df2~z!

dz
f1~z8!2

df1~z!

dz
f2~z8!J f ~z8!dz8.

~107!

In the absence of flow, we put Pe50 in Eqs. ~81! and
~82!. If we expand Eqs.~81! and ~82! with respect to the
powers ofm, up to infinity, using the recursion relation b
settinga15m2/2 anda250 ~see the Appendix!, we obtain,
at z51,

f1uz51511
m2

2!
1

m4

4!
1¯, ~108!

f2uz51511
m2

3!
1

m4

5!
1¯. ~109!

In the same way, the derivative of Eqs.~81! and ~82! at z
51 are

df1

dz U
z51

5mS m1
m3

3!
1

m5

5!
1¯ D , ~110!

df2

dz U
z51

511
m2

2!
1

m4

4!
1¯. ~111!

Then, the propagator in the liquid becomes

Ql5
1

h0

dHl

dz U
z51

Hl uz51
5

1

h0

df1

dz U
z51

1m
df2

dz U
z51

f1uz511mf2uz51
5k.

~112!

If we take G(k) in Eq. ~103! as the Gibbs-Thomson effec
@11#,

G~k!52
TmG

L
k2, ~113!

whereG is the solid-liquid interface tension, Eq.~103! re-
duces to the dispersion relation in the Mullins-Seker
theory @11#:
3-8
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s r5V̄kF12d0

k l

V̄
~11n!k2G , s i50, ~114!

wheren5Ks /Kl andd05TmGCp /L2 is the capillary length,
Cp being the specific heat at constant pressure, and from
~101!,

V̄5
Cpk l~Tm2Tla!

Lh0
. ~115!

It should be noted that thek term in front of the brackets in
Eq. ~114! comes from Eqs.~102! and ~112!. The m term in
Eq. ~112! appears as a result of the assumption that the
in the air is transported by thermal diffusion.

On the other hand, in the presence of flow, in the lo
wavelength region of about 1 cm, which is the typical wav
length of the wavy pattern observed on the surface of icic
we can neglect the Gibbs-Thomson effect, as discusse
Ref. @8#. From Eq.~16!,

gl uz515S 11
G~k!

Ḡl
D Ḡlzk ~116!

and notinggl uz515Hl uz51Ḡlzk from Eq. ~100!, the follow-
ing relation must be satisfied:

G~k!5~Hl uz5121!Ḡl . ~117!

Then, Eq.~103! can be written as

s5
V̄

h0
H dHl

dz U
z51

1nm~Hl uz5121!J . ~118!

We note that the second term on the right hand side of
~118! represents the thermal diffusion of latent heat produ
by a disturbed solid-liquid interface into the solid. In the lo
wavelength region, we can make approximation of negle
ing them2 term in Eqs.~81! and ~82!. This term originated
from diffusion term]2Tl8/]x2 in Eq. ~5!. In this case, the
transport of heat in the liquid is dominated by shear flo
Noting that mPe5u0h0

2k/k l;O(1) for the wavelength of
about 1 cm observed on the surface of icicles when the t
cal values ofu0;1022 m/s, h0;1024 m in the experiments
@9,10#, and k l51.331027 m2/s of water are used@8#, we
expand Eqs.~81! and~82! with respect to the powers ofmPe
up to the second order, using the recursion relation by set
a15(mPe)1/2/2A2 and a25mPe/22(mPe)1/2/2A2 ~see the
Appendix! as follows:

f1~z!511S 2
1

24
z41

7

360
z62

1

672
z8D ~mPe!2

1 i S 1

2
z22

1

12
z4DmPe, ~119!
02160
q.
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g
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.

i-

g

f2~z!5z1S 2
1

120
z51

13

2520
z72

1

1440
z9D ~mPe!2

1 i S 1

6
z32

1

20
z5DmPe. ~120!

We evaluate each function and its derivative atz51:

f1uz51511 i
5

12
mPe2

239

10080
~mPe!2, ~121!

f2uz51511 i
7

60
mPe2

13

3360
~mPe!2, ~122!

df1

dz U
z51

5 i
2

3
mPe2

13

210
~mPe!2, ~123!

df2

dz U
z51

511 i
1

4
mPe2

17

1440
~mPe!2, ~124!

and we evaluate Eq.~97! at z50:

f uz505
26

62 ia
2

24mRea

35~62 ia!2
. ~125!

Substituting Eq.~97! and Eqs. ~119!–~124! into Eqs.
~106! and ~107! and integrating them gives respectively,
z51,

imPeI uz515
1

361a2 F9

5
a~mPe!1S 239

280
1

13

3360
a2D ~mPe!2

1 i H 2S 151
7

60
a2D ~mPe!1

5

42
a~mPe!2J G ,

~126!

imPeJuz515
1

361a2 F5

2
a~mPe!1S 78

35
1

17

1440
a2D ~mPe!2

1 i H 2S 241
1

4
a2D ~mPe!1

101

336
a~mPe!2J G ,

~127!

where we have carried out integration by neglecting the fi
order term inm in Eq. ~97! because this term is expected
give very small correction to Eqs.~126! and ~127!. By sub-
stituting Eqs.~121!–~127! into Eq. ~118!, the final forms of
s r andvp52s i /k for the fluctuation of the solid-liquid in-
terface in the long wavelength region are
3-9
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s r5
V̄

h0

F 2
3

2
a~mPe!1mH 362

3

2
a~mPe!J

361a2

1nm

2
7

10
a~mPe!1mH 362

7

10
a~mPe!J 2a2

361a2
G ,

~128!

vp52
V̄

m
F 2

1

4
a2~mPe!1m$6a19~mPe!%

361a2

1nm

6a2
7

60
a2~mPe!1mH 6a1

21

5
~mPe!J

361a2
G ,

~129!

where we have neglected the first order term inm in Eq.
~125! by the same reason as mentioned above. Although
have expandedf1 and f2 up to the second order with re
spect tomPe, as in Eqs.~119! and~120!, the values of coef-
ficients of (mPe)2 are very small compared to those ofmPe.
Indeed, we have confirmed that the form ofs r andvp , in-
cluding up to (mPe)2, is almost the same as Eqs.~128! and
~129! in the long wavelength region, such thatk,103/m.
Therefore, it is sufficient to approximates r andvp up to the
first order inmPe.

The rate of volume flow down the inclined plane in th
experiment in Ref.@10# is

Q5u0l E
0

h0S 2
y

h0
2

y2

h0
2D dy5

2

3
u0h0l , ~130!

wherel is the width of the gutter and

u05
gh0

2

2n
sinu ~131!

is the surface velocity@13#. If we eliminateu0 from Eqs.
~130! and ~131!, mean thicknessh0 of the liquid can be
expressed with respect toQ andu:

h05S 3nQ

gl sinu D 1/3

. ~132!

Then,mPe anda can be expressed in terms ofh0, respec-
tively,

mPe5
g sinu

2k ln
h0

4k, ~133!

a52 cotuh0k1a2h0k3, ~134!

where we have defined the capillary constant associated
surface tensiong of the liquid-air surface@13#:
02160
e

ith

a5A 2g

gr l sinu
. ~135!

We note that this capillary constant depends onu and that
this typical value is about 3.9 mm forg57.631022 N/m
andr l51.03103 Kg/m3 of water whenu5p/2.

From Figs. 2–4 we use the values ofTla520.06 °C, Q
5160 ml/hr, andl 50.03 m in the experiments@9,10#, and
the physical properties of water,L53.33108 J/m3, Cp
54.23106 J/(K m3), k l51.331027 m2/s, n51.8
31026 m2/s, g57.631022 N/m, and n5Ks /Kl53.92,
whereKs is the thermal conductivity of ice. The reason f
choosing the value ofQ5160 ml/hr is that the clearest wav
pattern was observed at this value in the experiment@10#.
Since the crystal growth velocityV̄ observed in the actua
experiment is about 1026 m/s @9#, from Eq.~115! we obtain
the value ofTla520.06 °C for water whenh051024 m.
Although Tla is to be determined by the condition of th
surrounding air, we use this value forTla to determine the
value of V̄ from Eq. ~115! when varyingu.

The solid line in Fig. 2 shows the amplification rate E
~128! versus wave numberk for u5p/2. This shows thats r
takes a maximum values rmax at a wave number. The cha
acteristic time for most unstable mode is 1/s rmax and is

FIG. 2. The amplification rates r vs wave numberk for Tla

520.06 °C, Q5160 ml/h, andu5p/2. Solid line: with restoring
forces. Dashed line: without restoring forces.

FIG. 3. Phase velocityvp52s i /k vs wave numberk for Tla

520.06 °C,Q5160 ml/h, andu5p/2.
3-10
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PATTERN FORMATION IN CRYSTAL GROWTH UNDER . . . PHYSICAL REVIEW E 68, 021603 ~2003!
about 30 min in this case. Indeed, it is reported in the exp
ment that a periodic structure as the original form of wa
pattern is observed in about 30 min@10#. On the other hand
the dashed line in Fig. 2 showss r when we neglect the
restoring forces due to gravity and surface tension, i.e., w
we puta50 in Eq.~128!. Then,s r is always positive in the
range of our interests.

Figure 3 shows the phase velocity equation~129! versus
wave numberk for u5p/2. This shows that the fluctuatio
of the solid-liquid interface for the maximum point ofs r in
Fig. 2 moves upward along the icicle with the magnitude
about 0.6V̄. Indeed, there is evidence to support our pred
tions that many tiny air bubbles dissolved in the thin flowi
liquid are trapped in just upstream region of any protrud
part on a growing icicle, and its region migrates in the u
ward direction during growth~see Fig. 9B in Ref.@9#!. This
suggests that the velocity of ice growth is faster in the
stream region of each protruded part. On the other hand
the O-F model, it was predicted that the fluctuation mov
downward along the icicle with phase velocity,

vp5V̄

5

12
mPe

H 12
239

10080
~mPe!2J 2

1H 5

12
mPeJ 2 . ~136!

If this prediction is correct, air bubbles would be trapped
the downstream region of each protruded part and migrat
the downward direction during growth.

Figure 4 shows dependence of wavelengthlmax obtained
theoretically or mean wavelengthlmean obtained in the ex-
periment on angleu of the inclined plane. The closed squar
represent mean wavelength obtained by the experiment@10#:

FIG. 4. The dependence oflmax or lmean on the angle of in-
clined plane forQ5160 ml/h. Closed circles: present result. Clos
triangles: Ogawa-Furukawa’s result@8#. Closed squares: experimen
tal result@10#.
02160
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lmean;
0.83

~sinu!0.6;0.9
~cm!. ~137!

Using Eq.~128!, we determine wavelengthlmax at the maxi-
mum point ofs r and its dependence on the angle is found
be

lmax;
0.98

~sinu!0.6;0.65
~cm!, ~138!

which is shown in the closed circles. We note that this d
pendence oflmax on sinu comes from not onlymPe of Eq.
~133! but also cotu, h0, anda in Eq. ~134!. Our results are in
good agreement with experiment. On the other hand,
amplification rate obtained in theO-F model is

s r5V̄k

12
239

10080
~mPe!2

H 12
239

10080
~mPe!2J 2

1H 5

12
mPeJ 2 . ~139!

The closed triangles arelmax at the maximum point of Eq.
~139!. Then, the result is

lmax;
0.47

~sinu!1/3
~cm!. ~140!

In this case, we note that the dependence oflmax on sinu
comes from onlymPe of Eq.~133!.

VI. DISCUSSION

Some differences between our results and their results@8#
appear to arise from the following reasons. The main diff
ence originates from the order estimate of Eq.~68! or Eq.
~134!. If we use the values ofh0 at Q5160 ml/h andk
52p/lmax, wherelmax is taken from Eq.~138!, the values
of a and m for 0.1,sinu<1 take range 0.4,a,0.8 and
0.03,m,0.06, respectively. Therefore, we have treateda
as the zeroth order in terms ofm. On the other hand, it was
regarded as first order inm in the O-F model. When we
determine the perturbed stream function, these differen
cause different forms between Eqs.~73! and~75!. As a result
of that, different dependence oflmax on sinu between Eqs.
~138! and ~140! has occured. The sinu term in Eq.~128! is
included not only inmPe but alsoa. On the other hand, in
the O-F model, the sinu term in Eq.~139! appears in only
mPe. If we use Eq.~73!, in which the effect of restoring
forces due to gravity and surface tension on the liquid-
surface is included,s r takes a maximum value at a wav
number. On the other hand, if we use Eq.~75!, in which the
effect of restoring forces is not included,s r is always posi-
tive in the long wavelength region. In spite of the absence
thea term in theO-F model, a similar curve as solid line in
Fig. 2 was obtained~see Fig. 4 in Ref.@8#!. The existence of
maximum of theirs r is the result of expansion of the tem
perature fluctuation in the liquid up to (mPe)2, for example,
which is reflected in the numerator in Eq.~139!. However,
3-11
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we have confirmed that it is sufficient to approximates r up
to the first order inmPe. The existence of maximum of ou
s r comes from the effect ofa andmPe.

These different results mentioned above and the diffe
prediction of the direction of the phase velocity between E
~129! and ~136! may also be due to the difference of th
boundary condition for the temperature at the solid-liqu
interface and that of the liquid-air surface between ours
theirs. Instead of Eqs.~13! and~90!, the following boundary
conditions were used in theO-F model, respectively:

~ T̄l1Tl8!uy5z5~ T̄s1Ts8!uy5z5Tm , ~141!

~ T̄l1Tl8!uy5j5~ T̄a1Ta8!uy5j . ~142!

In order to determine the two constantsB1 and B2 in Eq.
~84! independently, and in the absence of flow, to recover
usual Mullins-Sekerka theory from the general dispersion
lation Eq. ~103!, we have used boundary condition~90! in-
stead of Eq.~142!. For long wavelength fluctuation of abou
1 cm of the solid-liquid interface, since we can neglect
change of the melting temperature due to the Gib
Thomson effect, adopting Eq.~141! appears to be appropr
ate. In the presence of flow, however, Eq.~117! suggests tha
there exists a shift of the melting temperature depending
the wave number. Therefore, we have used boundary co
tion ~13! instead of Eq.~141!.

The m term in the numerator in Eq.~128! is the cause of
instability. This term originates from spatial derivative of th
perturbed air temperature distribution at the deformed liqu
air surface, as indicated on the right hand side of Eq.~95!.
From Eq. ~68! or Eq. ~134!, since the value ofa is very
small in the long wavelength region, the effect of restori
forces due to gravity and surface tension on the liquid
surface is small. Therefore, in the low wave number regi
instability effect with positive terms in Eq.~128! dominates
stability effect with negative terms. On the other hand,
increasing the wave number, since the value ofa increases,
the effect of restoring forces is large. Then,a(mPe) anda2

terms with negative sign in the numerator in Eq.~128! domi-
nate the instability terms. As a result of that, we obtain
solid curve in Fig. 2. In order to interpret correctly the phy
cal mechanism of instability and stability of the solid-liqu
interface and why the solid-liquid interface moves in the u
stream direction, it is necessary to understand the rela
phase of modes at each interface using relation~74! and a
shift of melting temperature due to flow and restoring forc
as suggested in Eq.~117!. This will be shortly clarified in
another paper.

In Sec. III and IV, we have made some assumptions. H
we justify them. We have assumed the time independenc
the purterbed flow, therefore we have neglected thes* /m
term in Eqs.~45!, ~52!, ~54!, and ~56!. This assumption is
valid because we see from Figs. 2 and 3 thats* ;1026 for
V̄;1026 m/s. Therefore, conditions* /m!1 is satisfied.
The same can be said for the fluctuation of the temperat
For a deformation of wave numberk, the characteristic delay
time of the fluctuation of the temperature is of ord
Dt thermal;(k lk

2)21. Dt thermal is much smaller than the
02160
nt
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characteristic time of evolution of mode,s r
21 . Therefore,

condition s r /k lk
2!1 is satisfied. These mean that the p

turbed flow field and the perturbed temperature field resp
relatively rapidly to the slow development of the solid-liqu
interface.

VII. CONCLUSION

The restoring forces due to gravity and surface tens
determine the shape of free surface and do not directly ac
the solid-liquid interface. However, the effect of restorin
forces has played an important role on stabilization of
solid-liquid interface. Although the Gibbs-Thomson effe
acts effectivley on the micrometer scale, we have found t
the effect of restoring forces is more effective for long wav
length fluctuation of the order of mm, which is of order
the capillary constant associated with the surface tensio
the liquid-air surface. Therefore, the wavy pattern obser
on the surface of icicles and inclined plane occurs on lon
length scales compared to the wavelength predicted by
usual Mullins-Sekerka theory.

Since our calculations are based on the linear stab
analysis, our formulations and the Ogawa and Furukaw
formulations do not have direct correspondences. The r
tion between our present formulations and previous one
under investigation by Ogawa and Furukawa.
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APPENDIX

We separate Eq.~81! into the real part and imaginary par

f1~z!5expS 2
~mPe!1/2

2A2
z2D FcosS ~mPe!1/2

2A2
z2D

3S 11(
j 50

`

a2 j 11z2 j 12D 2sinS ~mPe!1/2

2A2
z2D

3S (
j 50

`

a2 j 12z2 j 12D 1 i H cosS ~mPe!1/2

2A2
z2D

3S (
j 50

`

a2 j 12z2 j 12D 1sinS ~mPe!1/2

2A2
z2D

3S 11(
j 50

`

a2 j 11z2 j 12D J G . ~A1!

Using the first two coefficients

a15
1

2
m21

1

2A2
~mPe!1/2, ~A2!
3-12



ry

d

PATTERN FORMATION IN CRYSTAL GROWTH UNDER . . . PHYSICAL REVIEW E 68, 021603 ~2003!
a25
1

2
mPe2

1

2A2
~mPe!1/2, ~A3!

the other coefficientsaj for odd numbers are obtained from
the following recursion relation:

a2 j 115
1

~ j 11!~2 j 11! H a1a2 j 212a2a2 j

1
2 j

A2
~mPe!1/2~a2 j 211a2 j !J ~ j 51,2,3, . . . !,

~A4!

and for even numbers,

a2 j 125
1

~ j 11!~2 j 11! H a1a2 j1a2a2 j 21

2
2 j

A2
~mPe!1/2~a2 j 212a2 j !J ~ j 51,2,3, . . . !.

~A5!

Next, we separate the derivative of Eq.~81! into the real
part and imaginary part:

df1~z!

dz
5expS 2

~mPe!1/2

2A2
z2D FcosS ~mPe!1/2

2A2
z2D

3S (
j 50

`

b2 j 11z2 j 11D 2sinS ~mPe!1/2

2A2
z2D

3S (
j 50

`

b2 j 12z2 j 11D 1 i H cosS ~mPe!1/2

2A2
z2D

3S (
j 50

`

b2 j 12z2 j 11D 1sinS ~mPe!1/2

2A2
z2D

3S (
j 50

`

b2 j 11z2 j 11D J G . ~A6!

Using

b152a12
1

A2
~mPe!1/2, ~A7!

b252a21
1

A2
~mPe!1/2, ~A8!

the other coefficientsbj for odd numbers are obtained from

b2 j 1152~ j 11!a2 j 112
1

A2
~mPe!1/2~a2 j 211a2 j !

~ j 51,2,3, . . . !, ~A9!
02160
and for even numbers,

b2 j 1252~ j 11!a2 j 122
1

A2
~mPe!1/2~a2 j 212a2 j !

~ j 51,2,3, . . . !. ~A10!

Equation~82! is separated into the real part and imagina
part in the same way:

f2~z!5expS 2
~mPe!1/2

2A2
z2D FcosS ~mPe!1/2

2A2
z2D

3S z1(
j 50

`

c2 j 11z2 j 13D 2sinS ~mPe!1/2

2A2
z2D

3S (
j 50

`

c2 j 12z2 j 13D 1 i H cosS ~mPe!1/2

2A2
z2D

3S (
j 50

`

c2 j 12z2 j 13D 1sinS ~mPe!1/2

2A2
z2D

3S z1(
j 50

`

c2 j 11z2 j 13D J G . ~A11!

Using

c15
1

3
a11

1

3A2
~mPe!1/2, ~A12!

c25
1

3
a22

1

3A2
~mPe!1/2, ~A13!

the other coefficientscj for odd numbers are obtained from

c2 j 115
1

~ j 11!~2 j 13! H a1c2 j 212a2c2 j

1
2 j 11

A2
~mPe!1/2~c2 j 211c2 j !J ~ j 51,2,3, . . . !,

~A14!

and for even numbers,

c2 j 125
1

~ j 11!~2 j 13! H a1c2 j1a2c2 j 21

2
2 j 11

A2
~mPe!1/2~c2 j 212c2 j !J ~ j 51,2,3, . . . !.

~A15!

Finally, derivative off2 is separated into the real part an
imaginary part:
3-13
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df2~z!

dz
5expS 2

~mPe!1/2

2A2
z2D FcosS ~mPe!1/2

2A2
z2D

3S 11(
j 50

`

d2 j 11z2 j 12D 2sinS ~mPe!1/2

2A2
z2D

3S (
j 50

`

d2 j 12z2 j 12D 1 i H cosS ~mPe!1/2

2A2
z2D

3S (
j 50

`

d2 j 12z2 j 12D 1sinS ~mPe!1/2

2A2
z2D

3S 11(
j 50

`

d2 j 11z2 j 12D J G , ~A16!

where d15a1 , d25a2, and other coefficientsdj for odd
numbers are obtained from
s,

T.

02160
d2 j 115~2 j 13!c2 j 112
1

A2
~mPe!1/2~c2 j 211c2 j !

~ j 51,2,3, . . . !, ~A17!

and for even numbers,

d2 j 125~2 j 13!c2 j 122
1

A2
~mPe!1/2~c2 j 212c2 j !

~ j 51,2,3, . . . !. ~A18!

It should be noted that all coefficients are obtained fro
only a1 anda2. Equations~121!–~124! are valid only in the
long wavelength region because we neglect them2 term in
Eq. ~A2!. This means that heat transport is dominated
shear flow. On the other hand, in the absence of flow, we
Pe50 in Eq. ~A2!. Then, Eqs.~108!–~111! are obtained. In
this case, heat transport is dominated by thermal diffusio
ci-

,
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