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Wavy pattern of ice with a specific wavelength occurs during ice growth from a thin layer of undercooled
water flowing down the surface of icicles or inclined plane. In a previous paper[K. Ueno, Phys. Rev. E68,
021603(2003)], we have found that restoring forces due to gravity and surface tension is a factor for stabili-
zation of morphological instability of the solid-liquid interface. However, the mechanism for the morphological
instability and stability of the solid-liquid interface has not been well understood. In the present paper, it is
shown that a phase difference between fluctuation of the solid-liquid interface and distribution of heat flux at
the deformed solid-liquid interface, which depends on the magnitude of the restoring forces, is a cause of the
instability and stability of the interface. This mechanism is completely different from the usual Mullins-
Sekerka instability due to diffusion and stabilization due to the Gibbs-Thomson effect.
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I. INTRODUCTION

Ripple formation in sand induced by water shear flow[1]
and ribs and hollows formation on the surface of icicles cov-
ered with thin layer of flowing water(see Fig. 1 or Fig. 9(A)
in Ref. [2]) are well-known phenomena in nature. The simi-
lar wavy pattern as ribs and hollows on icicles in nature can
be experimentally produced during ice growth by continu-
ously supplying a proper waterQ ml/h on an inclined plane
with width l and at angleu, set in cold room below 0°C
sketched in Fig. 2, and it is found that the mean wavelength
of the wavy pattern of ice is given by 0.83/ssin ud0.6–0.9cm
[3]. In Fig. 2, the shaded regions with uniform spacing are
protruded part of the wavy pattern of ice. Indeed, the spacing
of the wavy pattern atu=p /2 is nearly equal to the mean
spacing between ribs on the surface of icicles in nature.

In the previous works[4,5], a morphological instability of
the solid-liquid interface during a crystal growth with mean

velocity V̄ from an undercooled thin liquid flowing down an
inclined plane under the action of gravity as shown in Fig. 3
was investigated. We restricted ourselves to two dimensions
in a vertical planesx,yd, and for simplicity we assumed that
the region of the crystal is semi-infinite. Thex axis is parallel
to the inclined plane and they axis is normal to it. The
parabolic shear flow[6,7]

Ūsyd = u0H2
y

h0
− S y

h0
D2J s1d

is parallel to thex axis and is bounded on one side by a
liquid-air surface which is exposed by cold air below 0 °C.
Hereu0 is the velocity at the free surface andh0 is the mean
thickness of the liquid, which can be expressed as[6,7]:

h0 = S 3nQ

lg sin u
D1/3

, s2d

whereg is the gravitational acceleration andn is the kine-
matic viscosity.

We discussed some differences between the dispersion re-
lation for the fluctuation of the solid-liquid interface in our
model and that in the Ogawa and Furukawa’s model( here-
after, we refer to their model as OF model). Our amplifica-
tion ratesr and phase velocityvp are given by[4]

sr =
V̄

h0
F− 3

2asmPed + mh36 − 3
2asmPedj

36 +a2

+ nm
− 7

10asmPed − a2 + mh36 − 7
10asmPedj

36 +a2 G , s3d

vp = −
V̄

m
F− 1

4a2smPed + mh6a + 9smPedj
36 +a2

+ nm
6a − 7

60a2smPed + mh6a + 21
5 smPedj

36 +a2 G , s4d

wherem=kh0, Pe=u0h0/kl is the Peclet number,n=Ks/Kl, k,
kl, Kl, andKs being the wave number, the thermal diffusivity
of the liquid, the thermal conductivity of the liquid and solid,
respectively.
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FIG. 1. Schematic diagram of vertical cross section of icicle
covered with thin layer of flowing water and trapped many tiny air
bubbles. Mean spacing between ribs is about 1 cm.
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a = 2 cotuh0k + a2h0k
3 s5d

is restoring forces due to gravity and surface tension acting
on the liquid-air surface,a=Î2g / srlg sin ud being the cap-
illary constant associated with the surface tensiong of the
liquid-air surface. While, by using our notations, the OF
model gives[5]

sr = V̄k
1 − 239

10080smPed2

h1 − 239
10080smPed2j2 + h 5

12mPej2 , s6d

vp = V̄
5
12mPe

h1 − 239
10080smPed2j2 + h 5

12mPej2 . s7d

A critical difference of these dispersion relations is that
our result includes the restoring forcesa, while the result of
OF model does not include it. The difference ofsr results in
different dependence of wavelengthlmax, at whichsr takes a
maximum value, foru. Our result is better agreement with
lmeanobtained by experiment[3] than the result of OF model
(see Fig. 4 in Ref.[4]). The difference ofvp results in differ-
ent direction of migration of the solid-liquid interface. Our

results predict that it moves upward with about 0.6V̄. Indeed,
our prediction is consistent with the observation that many
tiny air bubbles trapped in just upstream region of any pro-
truded part migrate in the upward direction during growth as
shown in Fig. 1. On the other hand, the result of OF model

predicts that it moves downward with about 0.5V̄. Since our
calculations based on a linear stability analysis and the OF’s
calculations are different, the cause leading to these different
results was not clarified in the previous paper. In addition to
the presence ofa or not, it was only suggested that these
differences may be due to the difference of boundary condi-
tions of the temperature at the solid-liquid interface and that
of the liquid-air surface. In Sec. II, we confirm it by deriving
OF model from our formulation.

According to the result of OF model, the instability of the
solid-liquid interface occurs by the Laplace instability due to
the thermal diffusion into the air, and its instability is sup-

pressed by the effect of fluid flow, which makes the tempera-
ture distribution in the thin water layer uniform[5]. How-
ever, this qualitative interpretation does not enable to explain
the migration of the interface, and the role of fluid flow on
the temperature field in the liquid is not quantitatively clear.
In our previous paper, although it was suggested that the
restoring forces are indeed an important factor for stabiliza-
tion of morphological instability of the solid-liquid interface
(see Fig. 2 in Ref.[4]), the mechanism was not well under-
stood. In Sec. III, therefore, we clarify the morphological
instability and stability mechanism of the solid-liquid inter-
face, and we present a physical mechanism for migration of
the interface in the upstream direction. Conclusion is given
in Sec. IV.

II. DIFFERENCE IN BOUNDARY CONDITIONS

The general solution for the amplitude of perturbed tem-
perature in the liquid is

glszd = B1f1szd + B2f2szd

+ imPeE
0

z

hf2szdf1sz8d − f1szdf2sz8djfsz8ddz8Ḡlzk,

s8d

where f1szd and f2szd are given by Eqs.(81) and (82) in

Ref. [4], Ḡl is the unperturbed temperature gradient in the
liquid, andz=1−y/h0.

The first difference of our model and OF model is the
form of the amplitudef of perturbed stream function in Eq.
(8). The solution off was determined under the same hydro-
dynamic boundary conditions in the two models, but the dif-
ference of the order estimate of the restoring forcea led to
different solutions. Our result in the long wavelength ap-
proximationm!1 gives

fszd =
1

6 − ia
s− 6 + iaz+ 6z2 − iaz3d −

m Re a

210s6 − iad2

3h144 +s− 174 + 5iadz− 144z2 + s210 − 11iadz3

+ s− 42 + 7iadz5 + s6 − iadz7j, s9d

FIG. 2. Schematic diagram of ice growth from thin layer of
undercooled water flowing down under the action of gravity on
inclined plane with widthl cm and at angleu, which is set in a cold
room below 0 °C. Water supply rate isQ ml/h. Shaded regions with
uniform spacing are nearly periodic wavy pattern of ice.

FIG. 3. Schematic diagram of vertical planesx,yd of inclined
plane at angleu.
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where Re=u0h0/n is the Reynolds number. While the result
of OF model gives

fszd = z2 − 1. s10d

From the kinematic condition at the liquid-air surface, the
relation between the amplitudezk of the perturbed solid-
liquid interface and the amplitudejk of the perturbed liquid-
air surface was given byjk=−f uz=0zk [4]. Equation(9) in-
cludesa which makes the amplitude and phase of the liquid-
air surface change, and it deforms depending on the
wavelength of the fluctuation of solid-liquid interface, while,
Eq. (10) does not include it. Then, the liquid-air surface fluc-
tuates with the same amplitude as the solid-liquid interface
and phase shift of each interface does not occur.

The second difference between our model and OF model
has originated from the difference ofB1 and B2 in Eq. (8),
which depends on the choice of the boundary conditions of
the temperature at the solid-liquid interface or the liquid-air
surface. The two differences lead to a critical difference of
the dispersion relations for the fluctuation of the solid-liquid
interface and of the corresponding mechanism of instability
and stability of it. The difference of the mechanism will be
discussed in detail in the following section. Here we describe
the essential difference of the thermodynamic boundary
conditions in the two models, and we correct the solution,
Eq. (86), of unperturbed temperature of the air obtained in
Ref. [4].

The first essential difference is the continuity of the tem-
perature at the perturbed solid-liquid interfacezst ,xd
=zk expfst+ ikxg, where s=sr + isi and t is time. In our
model,

Tluy=z = Tsuy=z = Tm + DT, s11d

whereTm is the equilibrium melting temperature. Here we
assume that a deviation from the equilibrium melting tem-
peratureDT is of orderzk and this corresponds toGskdz in
the previous paper[4]. If we regardDT as the melting tem-
perature depression due to the Gibbs-Thomson effect[8], we
can neglect it as far as we are concerned with the wavelength
of the wavy pattern observed on the surface of icicles or the
inclined plane. Then, the temperature at the solid-liquid in-
terface in a pure substance must be the equilibrium melting
temperature. Therefore, in the OF model,

Tluy=z = Tsuy=z = Tm. s12d

However, we suggested that there can be a deviation from
the equilibrium melting temperature, which cannot be deter-
mined a priori and is determined after we determine the
solution for the perturbed temperature in the liquid[4].

The second essential difference is the continuity of the
temperature at the liquid-air surfacejst ,xd=h0+jk expfst
+ ikxg. In our model,

Tluy=j = Tauy=j = Tla, s13d

whereTla is a temperature at the liquid-air surface. While, in
the OF model,

Tluy=j = Tauy=j. s14d

Equation(13) indicates that the temperature of the liquid-air
surface remains a constantTla after deformation of the
liquid-air surface. While, Eq.(14) shows that the temperature
at the deformed liquid-air surface is not necessary to remain
a constant value.

From the heat conservations, Eq.(94), at the unperturbed
liquid-air surface and Eq.(101), at the unperturbed solid-
liquid interface in Ref.[4], we obtainTla=T`+L /Cpa, where
T`, L, andCpa being the ambient air temperature, the latent
heat per unit volume, and the specific heat of the air at con-
stant pressure, respectively. In this case, nothing determines

the growth velocityV̄, which may take any value. This prob-
lem also occurs in the absence of flow[8]. There is a more
serious problem. The value ofL /Cpa is about 2.543103 K.
Then, for the real values ofT` observed[2,3], the value of
Tla becomes larger than the melting temperature. This prob-
lem is originated from the unperturbed solution(86) of the

temperatureT̄a of the air in Ref.[4]. Here we briefly improve
the unperturbed solution.

Under the boundary conditionsT̄a=Tla at y=h0 and T̄a

=T` at y=h0+ la, we assume that by neglecting the termV̄ in
Eq. (85) in Ref. [4] the approximate solution of the unper-
turbed part near the liquid-air surface is given by

T̄asyd = Tla − Ḡasy − h0d, s15d

whereḠa=sTla−T`d / la is the unperturbed temperature gra-
dient in the air aty=h0, la being a length of thermal diffusion
layer ahead of the liquid-air surface. We note that thisla is

not la=ka/ V̄ in the previous paper[4]. From the heat conser-

vation KlḠl =KaḠa at the unperturbed liquid-air surface,
where Ka is the thermal conductivity of the air,Tla is ob-
tained as

Tla =

Tm +
Ka

Kl

h0

la
T`

1 +
Ka

Kl

h0

la

. s16d

If the values ofT`, h0, and la are given, the value ofTla in
Eq. (13) is determined. Substituting Eq.(16) into the heat

conservationLV̄=KlḠl at the unperturbed solid-liquid inter-
face yields

V̄ =
Kl

Lh0

Tm − T`

1 +
Kl

Ka

la
h0

. s17d

SinceKl /Ka@1, Eq. (17) can be approximated as

V̄ <
Ka

L

Tm − T`

la
. s18d

We note thatV̄ does not depend onh0 which varies withQ.

Therefore,V̄ is not affected by change ofQ. This agrees with
observations that with increasing water supply rate growth
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velocity of diameter of icicles is almost constant[2]. In the
previous paper, we determined the value ofTla from only Eq.

(115) in Ref. [4] using the actual observed value ofV̄. How-
ever, the expression(115) is not appropriate for determining

V̄ because it changes withh0.
Under the boundary conditions(11) and (13), we obtain

[4]

B1 = − f uz=0Ḡlzk, B2 = mB1, s19d

where f uz=0 is given by Eq.(125) in Ref. [4]. Then, the dis-
persion relation for the fluctuation of the solid-liquid inter-
face becomes

s =
V̄

h0
HUdHl

dz
U

z=1
+ nmsHluz=1 − 1dJ , s20d

where

Hlszd = − f uz=0hf1szd + mf2szdj

+ imPeE
0

z

hf2szdf1sz8d − f1szdf2sz8djfsz8ddz8.

s21d

The real and imaginary part of Eq.(20) give Eqs.(3) and(4)
by approximating Eqs.(97), (119) and (120), respectively
[4]. Although we had an inappropriate base state of the tem-
perature of the air in the previous paper, we obtained reason-
able results compatible with experiments and observations.

This is because the change ofV̄ in Eq. (18) by T` affects the
magnitude ofsr but does not make change in the character-
istic wavelength of the wavy pattern determined from the
maximum point ofsr.

On the other hand, under the boundary conditions(12)
and (14), we obtain a different

B1 =

1 − imPeI uz=1 + mS1 −
Ka

Kl
D f uz=0f2uz=1

f1uz=1 + m
Ka

Kl
f2uz=1

Ḡlzk, s22d

B2 =

− mS1 −
Ka

Kl
D f uz=0f1uz=1 + m

Ka

Kl
s1 − imPeI uz=1d

f1uz=1 + m
Ka

Kl
f2uz=1

Ḡlzk,

s23d

where

Iszd ; E
0

z

hf2szdf1sz8d − f1szdf2sz8djfsz8ddz8. s24d

Then, the dispersion relation becomes

s =
V̄

h0
UdHl

dz
U

z=1
, s25d

where

Hlszd =
1

f1uz=1
fh1 − imPeI uz=1jf1szd + mf uz=0hf2uz=1f1szd

− f1uz=1f2szdjg + imPeIszd. s26d

In Eq. (26), we have omitted the termmKa/Kl !1. In par-
ticular, when puttinga=0 in f in Eq. (26), we recover Eqs.
(6) and (7) from the real and imaginary part of Eq.(25),
respectively.

In the absence of flow, if we regardDT in Eq. (11) as the
Gibbs-Thomson effect, and by replacing the amplitude rela-
tion jk=−f uz=0zk [4] with

jk = exps− mdS1 − d0
kl

V̄
k2Dzk, s27d

we obtain

Hlszd = expf− ms1 − zdgS1 − d0
kl

V̄
k2D . s28d

Then, Eq.(20) obtained from the boundary conditions(11)
and (13) reduces to the dispersion relation in the Mullins-
Sekerka theory[8],

sr = V̄kF1 − d0
kl

V̄
s1 + ndk2G , s29d

and vp=0, whered0=TmGCp/L2 is the capillary length,G
being the solid-liquid interface tension[8]. We note that we
cannot recover the dispersion relation in the Mullins-Sekerka
theory from the boundary conditions(12) and (14) even if
we add the Gibbs-Thomson effect to Eq.(12).

The solid lines, dashed lines, and dotted linessa=0d in
Figs. 4 and 5 representsr andvp=−si /k obtained from Eqs.
(20) and (25) with the use of Eqs.(97), (119), and (120),
respectively. Here Re and Im denote the real and imaginary
part of arguments, respectively, and note that Re is not the
Reynolds number in the following discussion. It is found
from the dashed line in Fig. 4 thatsr is always positive,
therefore, it is impossible to get the characteristic wavelength
observed on the surface of icicles or the inclined plane. The
dotted line in Fig. 4 has a maximum point ofsr at a specific

FIG. 4. The amplification ratesr vs the wave numberk for

V̄=10−6 m/s, Q=160 ml/h, andu=p /2. Solid line: Re[Eq. (20)].
Dashed line: Re[Eq. (25)]. Dotted line: Re[Eq. (25)] sa=0d.
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wave number. However, since this result of OF model does
not consider the effect of restoring forces due to gravity and
surface tension on the liquid-air surface, deviation from the
experiment is large as shown in the closed triangles in Fig. 4
in Ref. [4]. As shown in the solid line in Fig. 5, the direction
of phase velocity in our model is negative in our interest
wave number region. On the other hand, as shown in the
dashed and dotted lines in Fig. 5, the direction of phase
velocity in the models, different from ours, is positive in our
interest wave number region. There is no evidence to support
this prediction.

From these considerations, in order to explain the experi-
ments and observations, and in the absence of flow, to re-
cover the dispersion relation in the Mullins-Sekerka theory,
the boundary conditions(11) and (13) seem to be most ap-
propriate.

The deviation from the equilibrium melting temperature
in our model is given by[4]

DT = sHluz=1 − 1dḠlz, s30d

whereHl is given by Eq.(21). In the absence of flow, instead
of Eq. (21), if we apply Eq.(28) to Eq. (30), we recover the

Gibbs-Thomson effect,DT=−d0l lk
2Ḡlz, where l l =kl / V̄. We

note that ask→0, the solid-liquid interface is flat and both
Hluz=1 in Eqs. (21) and (28) approach 1, therefore,DT van-
ishes. This indicates that the deviation from the equilibrium
melting temperature in our systems is not induced by only
the effect of shear flow Eq.(1).

We note the difference of the characteristic length scale in
our problem with flow and in the Mullins-Sekerka theory.
The capillary lengthd0 associated with the solid-liquid inter-
face tension is a microscopic length of order angstroms,
while l l is usually macroscopic. Therefore, the Gibbs-
Thomson effect acts effectively on the micrometer scale[8].
On the other hand, the restoring forces in Eq.(5) include the
capillary constanta associated with the surface tension of the
liquid-air surface, which is 3.9 mm for water atu=p /2, and
the thicknessh0 of the liquid, which is about 10−4 m. Then,
the effect of restoring forces is more effective for longer
wavelength fluctuation compared to the length scale where
the Gibbs-Thomson effect is effective. We can neglectDT

due to the Gibbs-Thomson effect but not neglect it due to the
restoring forces. Indeed, the effect ofDT is reflected in the
second term of Eq.(20).

Local equilibrium thermodynamics assumes that the equa-
tions of state retain the same form out of equilibrium as in
equilibrium, but with a local meaning[9]. Then, the flow
does not change the equations of state and the equilibrium
melting temperature is determined from equality of the
chemical potentials of the crystal and liquid. This local equi-
librium hypothesis is implicitly used in the OF model and
leads to Eq.(12). However, if we impose the boundary con-
dition (12) in our systems, we cannot get desired results
compatible with experiments and observations. The restoring
forcesa have a purely hydrodynamic origin, but there is an
interplay of both thermodynamic and hydrodynamic effect in
DT determined from Eq.(21), which is reflected in the term
aPe inHl.

The thermodynamics of fluids under shear flow is an ac-
tive and very challenging topic in modern nonequilibrium
thermodynamics and statistical mechanics[9]. This is a field
with many open questions. A decisive step in the thermody-
namic understanding ofDT is to formulate a free energy or a
chemical potential depending explicitly on the characteristics
of the flow. However, it is reported that the coexistence of
the crystal and liquid under shear flow cannot be accounted
for by invoking a nonequilibrium analog of the chemical
potential[10]. We have seen that if we impose the equilib-
rium melting temperature at the solid-liquid interface, we
cannot get consistent results with actual experiments and ob-
servations. Therefore, the approach by the local equilibrium
hypothesis may also be insufficient to deal with our systems.
Whether the coexistence of the crystal and liquid under shear
flow in the present case can be accounted for by introducing
a nonequilibrium analog of the chemical potential is left for
future studies.

III. MECHANISM OF INSTABILITY AND STABILITY
OF THE SOLID-LIQUID INTERFACE

In the preceding section, we have studied some models
which differ in the form of boundary conditions. In this sec-
tion, we present in detail the mechanism of instability and
stability of the solid-liquid interface for our model. For other
models, we give a brief discussion.

As shown in Fig. 6, we consider a small perturbation of
the solid-liquid interface withzk/h0=0.1 at timet:

ImF z

h0
G = sinfksx − vptdg

zk

h0
expssrtd. s31d

Using jk=−f uz=0zk [4], the corresponding perturbation of the
liquid-air surface is

ImF j

h0
G = Imh− f uz=0expfiksx − vptdgj

zk

h0
expssr td. s32d

Next we define the perturbation of heat flux into the liquid
ql and solidqs at the perturbed solid-liquid interface and the
perturbation of heat flux into the airqa at the perturbed
liquid-air surface as follows, respectively,

FIG. 5. Phase velocityvp=−si /k vs the wave numberk for

V̄=10−6 m/s, Q=160 ml/h, and u=p /2. Solid line: Im[–Eq.
(20)]/k. Dashed line: Im[–Eq. (25)]/k. Dotted line: Im[–Eq. (25)]/k
sa=0d.
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ql ; ImF− KlU ] Tl8

] y
U

y=z
G

= ImFUdHl

dz
U

z=1
expfiksx − vptdgGKlḠl

zk

h0
expssr td,

s33d

qs ; ImF− KsU ] Ts8

] y
U

y=z
G

= − ImhsHluz=1 − 1dexpfiksx − vptdgjnmKlḠl
zk

h0
expssr td,

s34d

qa ; ImF− KaU ] Ta8

] y
U

y=j
G

= Imh− f uz=0 expfiksx − vptdgjmKlḠl
zk

h0
expssr td,

s35d

where we use Eq.(21) for Hlszd. We note the direction of
heat flow. Ifql .0 or qs,0, the latent heat is released away
from the solid-liquid interface into each phase. Conveniently,
the distribution ofql −qs represented by the bottom dashed
line andqa represented by the up dashed line are superim-
posed on Fig. 6 with magnification of 0.1 to see phase dif-
ference between the fluctuation of the solid-liquid interface,
liquid-air surface, and distribution of heat flux at the respec-
tive interfaces.

Figure 6(a) shows the configurations at a wave number in
the unstable regionsr .0 of the solid line in Fig. 4. The heat
flux qa at the liquid-air surface is large at any protruded part
of surface pointing into the air, at which the temperature
gradient increases so that heat transfer by thermal diffusion
into the air is more effective. Since the value ofa is small in
such low wave number region, that is, the effect of restoring
forces on the liquid-air surface is small, the liquid-air surface
fluctuates with almost the same amplitude as the solid-liquid
interface, and the phase difference between Imfj /h0g and
Imfz /h0g is negligible. Therefore, this seems to result in
faster cooling and hence freezing to promote at the protruded
part of the solid-liquid interface. This picture of destabiliza-
tion appears to be the same as the Mullins-Sekerka instability
[8]. However, we note that the maximum point of heat flux
ql −qs is shifted to the upstream direction byf against the
solid-liquid interface. This indicates that the interface grows
faster in just the upstream region of any protruded part, in

which ql −qs is large compared to the mean heat fluxKlḠl.
On the other hand, in the downstream region of any pro-
truded part, the interface tends to melt back becauseql −qs is

small compared toKlḠl. Therefore, the solid-liquid interface
not only grows unstably but also moves in the upstream di-
rection, which is consistent with the direction of phase ve-
locity of the interface predicted by Eq.(4). It also supports
the observation that many tiny air bubbles dissolved in the
thin flowing water are trapped in just upstream region of any

protruded part on a growing icicle and its region migrates in
the upward direction during growth as shown in the dotted
regions in Fig. 1. We cannot explain this observation by
usual Mullins-Sekerka instability[8] or Laplace instability
[5] due to diffusion.

Figure 6(b) shows the configurations at the wave number
at the neutral stability pointsr =0 of the solid line in Fig. 4.
Shift of the maximum point of heat fluxql −qs is larger than
that in Fig. 6(a). Figure 6(c) shows the configurations at a
wave number in the stable regionsr ,0 of the solid line in
Fig. 4. Since the value ofa increases with increasing the
wave number, the surface Imfj /h0g and heat fluxqa are

FIG. 6. Schematic illustration of the fluctuation of the solid-
liquid interface Imfz /h0g (bottom thick solid lines), the liquid-air
surface 1+Imfj /h0g (up thick solid lines), heat fluxql −qs (bottom
dashed lines) at Imfz /h0g, and heat fluxqa (up dashed lines) at
1+Imfj /h0g for (a) k=634/m, (b) k=953/m, and(c) k=1200/m.
f is phase shift of heat fluxql −qs against the solid-liquid interface.
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slightly shifted to the upstream direction, and the phase dif-
ference between Imfz /h0g and ql −qs becomes larger than
that in Fig. 6(b). Any protruded part of the perturbed solid-
liquid interface melts back becauseql −qs is small, and any
depression part of the interface grows becauseql −qs is large.
Therefore, the flatness of the solid-liquid interface is re-
stored, that is, the solid-liquid interface is stabilized by large
phase shift of distribution of heat flux by large restoring
forces. This stabilizing mechanism on such long length
scales shown in Fig. 6 is different from the Gibbs-Thomson
effect.

If we apply the picture of the Mullins-Sekerka instability
to the bottom thick solid lines in Fig. 6, the deformed iso-
therms get closer to each other ahead of the bump of the
solid-liquid interface. The temperature gradient, and there-
fore the heat flux, increases, which increases the rate of pro-
duction of latent heat. Therefore, the bump must get ampli-
fied [8]. However, we note that this picuture is true only in
the absence of flow. In the Mullins-Sekerka instability, it is
diffusion which destabilizes the planar front. In the presence
of flow, the perturbed temperature field in the liquid is af-
fected by the flow field, which varies depending on the mag-
nitude of the restoring forces acting on the liquid-air surface.
We can not determinea priori where the temperature gradi-
ent or heat flux is large until we solve the equation of the
temperature field for a given boundary condition.

This mechanism of instability and stability of the solid-
liquid interface and its movement to the upstream direction
discussed above can be explained more quantitatively as fol-
lows. The perturbed part of heat conservation equation(18)
in Ref. [4] is

L
] z

] t
= KsU ] Ts8

] y
U

y=z

− KlU ] Tl8

] y
U

y=z

. s36d

Taking imaginary part of Eq.(36), it becomes

L Imfs expsst + ikxdgzk = ql − qs, s37d

whereql andqs are given by Eqs.(33) and(34). The imagi-
nary part of the left hand side of Eq.(37) can be written as

Imfs expsst + ikxdg = usuexpssrtdsinfksx − vptd − fg,

s38d

whereusu=Îs r
2+s i

2, and

sr = usucosf, si = − ususin f. s39d

Figures 6(a)–6(c) show thatf,0. Noting thatvp=−si /k,
from the second equation of Eq.(39), when f,0, si is
positive, therefore,vp,0. From the first equation of Eq.
(39), we find the sign ofsr and the corresponding figures as
follows:

sr5
.0 S−

p

2
, f , 0D , Fig. 6sad

=0 Sf = −
p

2
D , Fig. 6sbd

,0 S− p , f , −
p

2
D , Fig. 6scd.

s40d

Equation(40) indicates that unstable, neutral, and stable re-
gions of the solid line in Fig. 4 are completely consistent
with Figs. 6(a)–6(c), and that the direction of phase velocity
is the same as the solid line in Fig. 5 if we restrict ourselves
to the wavelength region observed on the surface of icicles or
the inclined plane.

Likewise, if we apply Eq.(26) for Hlszd to Eqs.(33) and
(34), f.0, therefore, we obtainvp.0. This is consistent
with the direction shown in the dashed and dotted lines in
Fig. 5. According to the OF model, the stability of the solid-
liquid interface is due to uniformalization of the temperature
distribution along the layer by fluid flow[5]. However, the
fluid flow never makes uniform the temperature distribution.
If we give a correct interpretation for the stabilization of the
solid-liquid interface in the OF model, then it is essentially
the same as that explained in our model. In the stable region,
fluctuation of the solid-liquid interface and distribution of
heat flux tend to be out of phase. At the protruded part, heat
flux is small, while at the depression part, heat flux is large,
therefore the flatness of the interface is restored. As a result,
the dotted line in Fig. 4 is obtained. For the dashed line in
Fig. 4, out of phase between fluctuation of the solid-liquid
interface and distribution of heat flux never occurs. There-
fore, this case is always unstable.

IV. CONCLUSION

We have provided a physical interpretation for the mor-
phological instability and stability of the solid-liquid inter-
face occurring during a crystal growth from an undercooled
thin parabolic shear flow of water on the surface of icicles or
the inclined plane. The wavy pattern with a characteristic
wavelength is observed on longer length scales compared to
the one determined by the competition of the Mullins-
Sekerka instability due to diffusion and stabilization due to
the Gibbs-Thomson effect. We have found that phase differ-
ence between fluctuation of the solid-liquid interface and dis-
tribution of heat flux at the deformed solid-liquid interface,
whose difference depends on the magnitude of restoring
forces due to gravity and surface tension, is the cause for
destabilization or stabilization of the interface, and that the
direction of phase shift of the distribution of heat flux against
the solid-liquid interface is related to the direction of migra-
tion of the solid-liquid interface.
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