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Pattern formation in crystal growth under parabolic shear flow. I
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Wavy pattern of ice with a specific wavelength occurs during ice growth from a thin layer of undercooled
water flowing down the surface of icicles or inclined plane. In a previous pdpddeno, Phys. Rev. B8,
021603(2003], we have found that restoring forces due to gravity and surface tension is a factor for stabili-
zation of morphological instability of the solid-liquid interface. However, the mechanism for the morphological
instability and stability of the solid-liquid interface has not been well understood. In the present paper, it is
shown that a phase difference between fluctuation of the solid-liquid interface and distribution of heat flux at
the deformed solid-liquid interface, which depends on the magnitude of the restoring forces, is a cause of the
instability and stability of the interface. This mechanism is completely different from the usual Mullins-
Sekerka instability due to diffusion and stabilization due to the Gibbs-Thomson effect.
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[. INTRODUCTION We discussed some differences between the dispersion re-
lation for the fluctuation of the solid-liquid interface in our

Rlpple formation in sand .|nduced by water shga_r fidiv model and that in the Ogawa and Furukawa’s madetre-
and ribs and hollows formation on the surface of icicles cov-

. . . . . after, we refer to their model as OF modelOur amplifica-
ered with thin layer of flowing watefsee Fig. 1 or Fig. R\) o . .
in Ref. [2]) are well-known phenomena in nature. The simi-tlon rateo; and phase velocity, are given by{4]

lar wavy pattern as ribs and hollows on icicles in nature can vl_s _3
be experimentally produced during ice growth by continu- o'r:X|: 2o(uPe +’u{362 2a(,uPe)}
ously supplying a proper wat€) mi/h on an inclined plane ho 36+a
with width | and at angled, set in cold room below 0°C A -+ 7
sketched in Fig. 2, and it is found that the mean wavelength +nu 10alkPe — M{SG ma(ﬂpa}] (3)
of the wavy pattern of ice is given by 0.83in 6)°¢9°cm 36 +a
[3]. In Fig. 2, the shaded regions with uniform spacing are .
protruded part of the wavy pattern of ice. Indeed, the spacing V| - iaz(,upe + u{6a + 9(uPe}
of the wavy pattern at=7/2 is nearly equal to the mean Up= ‘; 36 + a2
spacing between ribs on the surface of icicles in nature.
In the previous work$4,5], a morphological instability of 6a - =a(uPe + u{6a + Z(uPa}
the solid-liquid interface during a crystal growth with mean +nu 36 + a2 N

veIocitnyrom an undercooled thin liquid flowing down an : . a
inclined plane under the action of gravity as shown in Fig. 3Wherex=kho, Pe=ugho/ «; is the Peclet numben=K/K, k,

was investigated. We restricted ourselves to two dimension&!» Ki» andK being the wave number, the thermal diffusivity
in a vertical planeXx,y), and for simplicity we assumed that of the liquid, the thermal conductivity of the liquid and solid,

the region of the crystal is semi-infinite. Thexis is paralle] ~ €SPECtively.
to the inclined plane and thg axis is normal to it. The
parabolic shear floyi6,7]
_ y y 2 thin layer of \~
U(y) = ug 2h—— h_ (1) flowing water
0 0

is parallel to thex axis and is bounded on one side by a
liquid-air surface which is exposed by cold air below 0 °C.
Hereuy is the velocity at the free surface ahglis the mean
thickness of the liquid, which can be expressed@3|:

~ 3VQ 1/3
o= (Ig sin 0) ' @

lcm

whereg is the gravitational acceleration andis the kine-
matic viscosity.

FIG. 1. Schematic diagram of vertical cross section of icicle
covered with thin layer of flowing water and trapped many tiny air
*Electronic address: ueno@riam.kyushu-u.ac.jp bubbles. Mean spacing between ribs is about 1 cm.
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Icm

FIG. 2. Schematic diagram of ice growth from thin layer of
undercooled water flowing down under the action of gravity on
inclined plane with widtH cm and at angl®, which is set in a cold
room below 0 °C. Water supply rate@ml/h. Shaded regions with
uniform spacing are nearly periodic wavy pattern of ice.

FIG. 3. Schematic diagram of vertical plafe y) of inclined
plane at angle.

pressed by the effect of fluid flow, which makes the tempera-
ture distribution in the thin water layer uniforiib]. How-
ever, this qualitative interpretation does not enable to explain
the migration of the interface, and the role of fluid flow on
e temperature field in the liquid is not quantitatively clear.
our previous paper, although it was suggested that the
restoring forces are indeed an important factor for stabiliza-
tion of morphological instability of the solid-liquid interface
(see Fig. 2 in Ref[4]), the mechanism was not well under-

a =2 cot fhgk + a?hgk® (5)

is restoring forces due to gravity and surface tension actin$1
on the liquid-air surfacea=+2y/(pg sin 6) being the cap- n
illary constant associated with the surface tensjoaf the
liquid-air surface. While, by using our notations, the OF
model gives[5]

stood. In Sec. lll, therefore, we clarify the morphological
1--29(, Pe2 instability and stability mechanism of the solid-liquid inter-
—\JL 10080(:“ o . . . .
o, =Vk 5% N 5, (6) face, and we present a physical mechanism for migration of
{1-Ses(nPe?}? +{ZuPd the interface in the upstream direction. Conclusion is given
in Sec. IV.
v,= V- suPe (7)
p= 239 212 5 2" Il. DIFFERENCE IN BOUNDARY CONDITIONS
{1- 55 uPe?t +{5uPe

A critical difference of these dispersion relations is that The general solution for the amplitude of perturbed tem-
our result includes the restoring forceswhile the result of ~ Perature in the liquid is
OF model does not include it. The differencemfresults in
different dependence of wavelength,, at whicho, takesa  91(2) = B1#1(2) + By¢hy(2)

maximum value, forf. Our result is better agreement with z _
AmeanObtained by experimetiig] than the result of OF model +ipPe| {hx(2hi(Z) = $1(2) ho(2)}(2')dZ Gy,
(see Fig. 4 in Ref[4]). The difference ob, results in differ- 0

ent direction of migration of the solid-liquid interface. Our (8)

results predict that it moves upward with about\0.édeed, ) )
our prediction is consistent with the observation that many'nere ¢1(2) and 4,(z) are given by Eqs(81) and (82) in
tiny air bubbles trapped in just upstream region of any proRef. [4], G, is the unperturbed temperature gradient in the
truded part migrate in the upward direction during growth adiquid, andz=1-y/hj.
shown in Fig. 1. On the other hand, the result of OF model The first difference of our model and OF model is the
predicts that it moves downward with about0.5ince our ~form of the amplitudef of perturbed stream function in Eq.
calculations based on a linear stability analysis and the OF’§3)- The solution off was determined under the same hydro-
calculations are different, the cause leading to these differeftynamic boundary conditions in the two models, but the dif-
results was not clarified in the previous paper. In addition tderence of the order estimate of the restoring forcked to
the presence ofr or not, it was only suggested that these dlfferent_solutlons..Our result in the long wavelength ap-
differences may be due to the difference of boundary condiProximationy <1 gives
tions of the temperature at the solid-liquid interface and that
of the liquid-air surface. In Sgc. II, we confirm it by deriving f(2) = 1. (- 6 +iaz+ 62— iad) - M~ Re.a .
OF model from our formulation. 6-ia 2106 -ia)

According to the result of OF model, the instability of the
solid-liquid interface occurs by the Laplace instability due to *{144+(- 174+ Sz - 144° + (210 - 11a)2’
the thermal diffusion into the air, and its instability is sup- +(-42+Ta)2+ (6 -ia)Z}, (9

051604-2



PATTERN FORMATION IN CRYSTAL GROWTH...II PHYSICAL REVIEW E 69, 051604(2004)

where Re=zighy/ v is the Reynolds number. While the result Tily=¢ = Taly=¢- (14

of OF model gives _ o o
Equation(13) indicates that the temperature of the liquid-air

fz)=22-1. (10) surface remains a constai, after deformation of the
liquid-air surface. While, Eq.14) shows that the temperature

From the kinematic condition at the liquid-air surface, theat the deformed liquid-air surface is not necessary to remain
relation between the amplitudg of the perturbed solid- a constant value.
liquid interface and the amplitudg of the perturbed liquid- From the heat conservations, E§4), at the unperturbed
air surface was given by,=—f|,-o¢x [4]. Equation(9) in- liquid-air surface and Eq(101), at the unperturbed solid-
cludesa which makes the amplitude and phase of the liquid-liquid interface in Ref[4], we obtainT,,=T..+L/C, where
air surface change, and it deforms depending on thd., L, andC,, being the ambient air temperature, the latent
wavelength of the fluctuation of solid-liquid interface, while, heat per unit volume, and the specific heat of the air at con-
Eq. (10) does not include it. Then, the liquid-air surface fluc- stant pressure, respectively. In this case, nothing determines

tuates with the same amplitude as the solid-liquid interfacgpe growth velocityV, which may take any value. This prob-

and phase shift of each interface does not occur. lem also occurs in the absence of fi¢@]. There is a more
The second difference between our model and OF mod&lerious problem. The value &f C,, is about 2.54 10° K.

has originated from the difference 8 andB; in Eq.(8),  Then, for the real values dF., observed2,3], the value of

which depends on the choice of the boundary conditions of_ pecomes larger than the melting temperature. This prob-

the temperature at the solid-liquid interface or the liquid-airiem is originated from the unperturbed solutit86) of the
surface. The two differences lead to a critical difference of, =

the dispersion relations for the fluctuation of the solid—quuid:ﬁmpermurg"’1 of the arimn Ref[4]. Here we briefly improve

: . . . ..~ the unperturbed solution.

interface and of the corresponding mechanism of instability L= —

and stability of it. The difference of the mechanism will be Under the boundary conditiong,=Tj, at y=h, and T,

discussed in detail in the following section. Here we describe=T.. aty=hy+1,, we assume that by neglecting the tevhin

the essential difference of the thermodynamic boundarjeq. (85) in Ref. [4] the approximate solution of the unper-

conditions in the two models, and we correct the solutionfurbed part near the liquid-air surface is given by

Eq. (86), of unperturbed temperature of the air obtained in _ _

Ref. [4]. Ta(Y) =Ta- Ga(y - hO)l (15

The first essential difference is the continuity of the tem- — )

perature at the perturbed solid-liquid interfaggt,x)  WhereG,=(Tia=T..)/l, is the unperturbed temperature gra-

=¢, exdot+ikx], where o=0,+io; and t is time. In our dientinthe air ay=hy, I, being a length of thermal diffusion

model, layer ahead of the liquid-air surface. We note that thiss

notl,=«,/V in the previous papg#]. From the heat conser-

Tily=; = Tely=; = T+ AT, (11 vation K,G,=K,G, at the unperturbed liquid-air surface,

. . . where K, is the thermal conductivity of the aiif, is ob-
where T, is the equilibrium melting temperature. Here we tained as

assume that a deviation from the equilibrium melting tem-

peratureAT is of order{, and this corresponds 16(k){ in K, ho

the previous papdd]. If we regardAT as the melting tem- T+ ?TTOC

perature depression due to the Gibbs-Thomson ef@ctve Ta= | a (16)
can neglect it as far as we are concerned with the wavelength 1+ Kaho

of the wavy pattern observed on the surface of icicles or the Kila

inclined plane. Then, the temperature at the solid-liquid in—hc the values ofT.,, hy, andl, are given, the value oF,, in

terface in a pure substance must be the equilibrium meltin%q_ (13) is deter?ﬁingd. Suetl)stituting E’qu) into the Iaheat

temperature. Therefore, in the OF model, L == o
conservatiorLV=K,G, at the unperturbed solid-liquid inter-

Tl|y=§:Ts|y:g:Tm- (12) face yields
However, we suggested that there can be a deviation from V= K Tm= T (17)
the equilibrium melting temperature, which cannot be deter- |-ho1 +ﬁ|_a
mined a priori and is determined after we determine the Kaho
solution for the perturbed temperature in the liq{4d. ) .
The second essential difference is the continuity of theSinceK;/K,>1, Eq.(17) can be approximated as
temperature at the liquid-air surfacdgt,x)=hy+&, exdot K T-T
+ikx]. In our model, V= f% (18)
a
Tl|y:§ = Ta|y:§ = Tla7 (13)

We note that does not depend omy, which varies withQ.

whereT,, is a temperature at the liquid-air surface. While, in Therefore,Vis not affected by change . This agrees with
the OF model, observations that with increasing water supply rate growth
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velocity of diameter of icicles is almost constdgi. In the
previous paper, we determined the valudgffrom only Eq.

(115 in Ref. [4] using the actual observed value\df How-
ever, the expressiofi15) is not appropriate for determining

V because it changes wittp.
Under the boundary conditiond1) and(13), we obtain
(4]
B =~ fl=eGilic B,= By, (19

wheref|,-q is given by Eq.(125 in Ref.[4]. Then, the dis-
persion relation for the fluctuation of the solid-liquid inter-
face becomes

_Vv
= e
where

Hi(2) = = fl=o{ $1(2) + ()}

ok
dz

o

(20)

z=1

+ nM(HI|z=1 - 1)}1

+iuPe . {622 1(Z') = $1(2) 2(2)}f(2)dZ .

(21)

The real and imaginary part of ER0O) give Eqs.(3) and(4)
by approximating Eqs(97), (119 and (120), respectively
[4]. Although we had an inappropriate base state of the te

This is because the change\in Eqg. (18) by T., affects the

magnitude ofo, but does not make change in the character-
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_ FIG. 4. The amplification rater, vs the wave numbek for
V=10"%m/s, Q=160 ml/h, andd==/2. Solid line: R¢Eq. (20)].
Dashed line: REEq. (25)]. Dotted line: REEQ. (25)] (a=0).

1
¢1|z:1
= ¢l =162(2)}] +ipPd(2). (26)

In EqQ. (26), we have omitted the termaK,/K,<1. In par-
ticular, when puttinge=0 in f in Eq. (26), we recover EQs.
(6) and (7) from the real and imaginary part of EQR5),
respectively.

In the absence of flow, if we regadT in Eq. (11) as the

Hi(2) = {1 -iuPd| 21} d1(2) + puf| mol ol =1601(2)

L ! i MGibbs-Thomson effect, and by replacing the amplitude rela-

perature of the air in the previous paper, we obtained reasony ——f ith
. , . on &c=—f| =0l [4] wit

able results compatible with experiments and observations.

&=exp- M)(l ‘do%k2> & (27)

istic wavelength of the wavy pattern determined from the

maximum point ofa,.
On the other hand, under the boundary conditi¢h®)
and(14), we obtain a different

: Ka
1-iuPd|m+pul1- E flodolz1

B, = K G (22
il=1+ M?a¢2|z:1
[
K K .
- M(l - ﬁ>f|z=0¢l|z=l + /-Lﬁ(l —iuPd |z=1)_
B,= K Gk
Dil=1t Mﬁ¢2|z=1
[
(23
where

1(2) = fo {6229 $1(Z') = $1(2)p2(Z)}f(2)dZ . (29)

Then, the dispersion relation becomes

_V dH

hy, dz (25

z=1

where

we obtain

H(2) = exd— u(1 - z)](l —doﬁ_'kz) : (28)
\Y;

Then, Eq.(20) obtained from the boundary conditioi$l)
and (13) reduces to the dispersion relation in the Mullins-
Sekerka theory8],

o, :Vkll — g1+ n)kZ] , (29)
Vv

and v,=0, wheredoszl“Cp/L2 is the capillary lengthI’
being the solid-liquid interface tensidB]. We note that we
cannot recover the dispersion relation in the Mullins-Sekerka
theory from the boundary conditiong¢2) and (14) even if

we add the Gibbs-Thomson effect to K@2).

The solid lines, dashed lines, and dotted lites0) in
Figs. 4 and 5 represent andv,=-o;/k obtained from Egs.
(20) and (25) with the use of Eqs(97), (119, and (120,
respectively. Here Re and Im denote the real and imaginary
part of arguments, respectively, and note that Re is not the
Reynolds number in the following discussion. It is found
from the dashed line in Fig. 4 that, is always positive,
therefore, it is impossible to get the characteristic wavelength
observed on the surface of icicles or the inclined plane. The
dotted line in Fig. 4 has a maximum point @f at a specific
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V5 (m/s) due to the Gibbs-Thomson effect but not neglect it due to the
restoring forces. Indeed, the effect AT is reflected in the
second term of Eq.20).

Local equilibrium thermodynamics assumes that the equa-
tions of state retain the same form out of equilibrium as in
equilibrium, but with a local meaning9]. Then, the flow
does not change the equations of state and the equilibrium
500 1000 1500/, 2000 melting temperature is determined from equality of the

k (1/m) \\ chemical potentials of the crystal and liquid. This local equi-
1% 1g° ~. librium hypothesis is implicitly used in the OF model and
leads to Eq(12). However, if we impose the boundary con-
dition (12) in our systems, we cannot get desired results

FIG. 5. Phase velocity,=-0;/k vs the wave numbek for compatible with experiments and opservlaﬁons. The restoring
V=105 m/s, Q=160 ml/h, and 6=/2. Solid line: Inj-Eq. forceSa have a purely hydrodynamlc origin, but there is an
(20)]/k. Dashed line: If-Eq. (25)]/k. Dotted line: Inj-Eq. 25k interplay of both thermodynamic and hydrodynamic effect in
(a=0). AT determined from Eq(21), which is reflected in the term

aPe inH;.

wave number. However, since this result of OF model doe; The thermodynamics of fluids under shear flow is an ac-

2%10°¢

1x106°

. : . ive and very challenging topic in modern nonequilibrium
not consider the effect of restoring forces due to gravity an . " o i
. AN L hermodynamics and statistical mecharji@k This is a field
surface tension on the liquid-air surface, deviation from the

: X : . S ith many open questions. A decisive step in the thermody-
experiment is large as shown in the closed triangles in Fig. : . ;
. ) PP . .. " namic understanding &T is to formulate a free energy or a
in Ref. [4]. As shown in the solid line in Fig. 5, the direction ; : ; L .
L ) o . chemical potential depending explicitly on the characteristics
of phase velocity in our model is negative in our interest

. ; of the flow. However, it is reported that the coexistence of
wave number region. On the other hand, as shown in th'Fne crystal and liquid under shear flow cannot be accounted
dashed and dotted lines in Fig. 5, the direction of phas y q

velocity in the models, different from ours, is positive in our‘?Or by invoking a nonequilibrium analog of the chemical

. : . . P[otential [10]. We have seen that if we impose the equilib-
interest wave number region. There is no evidence to suppo . L P
this prediction. rlum melting temperature at the solid-liquid interface, we

. . . : .cannot get consistent results with actual experiments and ob-
From these considerations, in order to explain the experi-

ments and observations, and in the absence of flow, to rs_ervatlons. Therefore, the approach by the local equilibrium

cover the dispersion relation in the Mullins-Sekerka theory, ypothesis may also be insufficient to deal with our systems.

. Whether the coexistence of the crystal and liquid under shear
g;ipk;icgigdary condition€l1) and (13) seem to be most ap- flow in the present case can be accounted for by introducing

The deviation from the equilibrium melting temperaturea noneqU|I|.br|um analog of the chemical potential is left for
. . future studies.
in our model is given by4]

AT=(Hl= - DG, (30) IIl. MECHANISM OF INSTABILITY AND STABILITY
whereH, is given by Eq(21). In the absence of flow, instead OF THE SOLID-LIQUID INTERFACE
of Eq. (21), if we apply Eq.(28) to Eq.(30), we recover the In the preceding section, we have studied some models
Gibbs-Thomson effectAT=-d,l|k?GZ, wherel;=«;/V. We  which differ in the form of boundary conditions. In this sec-

note that ak— 0, the solid-liquid interface is flat and both tion, we present in detail the mechanism of instability and

Hil=1 in Egs.(21) and(28) approach 1, thereforé\T van-  stability of the solid-liquid interface for our model. For other
ishes. This indicates that the deviation from the equilibriummodels, we give a brief discussion.

melting temperature in our systems is not induced by only As shown in Fig. 6, we consider a small perturbation of

the effect of shear flow Eql). the solid-liquid interface with,/hy=0.1 at timet:

We note the difference of the characteristic length scale in ; ;
our problem with flow and in the Mullins-Sekerka theory. iml £ 1 = simk(x = o)1 t 31
The capillary lengttd, associated with the solid-liquid inter- m o sintk(x = v, )]hOGXp(Ur ): (3Y)

face tension is a microscopic length of order angstroms
while |, is usually macroscopic. Therefore, the Gibbs-
Thomson effect acts effectively on the micrometer s¢8le
On the other hand, the restoring forces in E5).include the I [
m

Using &=—f|,=o¢x [4], the corresponding perturbation of the
liquid-air surface is

capillary constané associated with the surface tension of the
liquid-air surface, which is 3.9 mm for water 8t /2, and
the thickness, of the liquid, which is about 1@ m. Then, Next we define the perturbation of heat flux into the liquid
the effect of restoring forces is more effective for longerq, and solidgs at the perturbed solid-liquid interface and the
wavelength fluctuation compared to the length scale whergerturbation of heat flux into the aiy, at the perturbed
the Gibbs-Thomson effect is effective. We can negl&®t liquid-air surface as follows, respectively,

5} = Im{- f| oexpik(x - vpt)]}@exp(a, 1. (32)
ho ho
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Q|Elm{—K|ﬂ } (a) y/h,
(9y y=¢ /—‘\\ 1.2¢ /"\\
= Im{ dh exdik(x - vpt)]] K|G,Qexp(ar t), ™ ” ™ d
dZ =1 ho \\___,'0" sl \~__,/
(33 0.6
{ aT! } o al
gs=Im| - K; . - -
ay y=t o RN 0.2F,-7 7 % (m) )
— ¢ A ¢ by S
= = Im{(Hh = ~ Dexeik(x - vgt) Ik Gr-“explor 1), o A O 02
o s---7 0.
(34)
(b)
{ aT, } SN 128 -I,/“\\ //‘ AN
=|m| -K / X ¥ 0 / Y
* " Y Ly N—’ N N \
. — gk \\_,” \\_0,/715 \\,’/
= Im{- f| = exdik(x - upt)]},uK,G|h—exp(ar t), -
o st
(35 7 \\\ 0.75} \\\ ,’/ \\‘
where we use Eq21) for H,(z). We note the direction of N ‘PE’ %
heat flow. Ifg,>0 or g;<O0, the latent heat is released away =% ™™ T0-805 N NS , 001
from the solid-liquid interface into each phase. Conveniently, K N 0025 \ ,/’
the distribution ofg,—qg represented by the bottom dashed - et " “
line andq, represented by the up dashed line are superim- ()
posed on Fig. 6 with magnification of 0.1 to see phase dif-
ference between the fluctuation of the solid-liquid interface, N N SN
liquid-air surface, and distribution of heat flux at the respec- 3 L~ P L~
tive interfaces. \ / A DS Dt
Figure &a) shows the configurations at a wave number in 4 S R AR Ny
the unstable region, >0 of the solid line in Fig. 4. The heat fo 6.5 i [ /
flux g, at the liquid-air surface is large at any protruded part ' ' o ; \ R !
of surface pointing into the air, at which the temperature N ' 1 1 ! L
gradient increases so that heat transfer by thermal diffusion -0 '?1 VO?S ; \ MOE\ ‘,’Ml
into the air is more effective. Since the valuewfs small in Vo Vo ) Vo
such low wave number region, that is, the effect of restoring 5 / Vo 051 | ! VoS
forces on the liquid-air surface is small, the liquid-air surface v \/
fluctuates with almost the same amplitude as the solid-liquid
interface, and the phase difference betweefélim,] and FIG. 6. Schematic illustration of the fluctuation of the solid-

Im[£/ho] is negligible. Therefore, this seems to result inliquid interface Ini¢/ho] (bottom thick solid lines the liquid-air
faster cooling and hence freezing to promote at the protrudedtirface 1+Irfi/ho] (up thick solid lines, heat fluxg,—gs (bottom
part of the solid-liquid interface. This picture of destabiliza- dashed linesat Im {/ho], and heat fluxq, (up dashe_d lingsat
tion appears to be the same as the Mullins-Sekerka instability* IM.é/Nol for (@) k=634/m, (b) k=953/m, and(c) k=1200/m.
[8]. However, we note that the maximum point of heat flux(/’ is phase shift of heat flug —gs against the solid-liquid interface.
g,—¢s is shifted to the upstream direction hky against the L . . . .
solid-liquid interface. This indicates that the interface growspro'[rUOIeOI part on a growing icicle and its region migrates in

. : ~the upward direction during growth as shown in the dotted
faster in just the upstream region of any protruded part, in

) ] regions in Fig. 1. We cannot explain this observation by
which g—q; is large compared to the mean heat fl)G,.

: ! usual Mullins-Sekerka instability8] or Laplace instability
On the other hand, in the downstream region of any profs; que to diffusion.

truded part, the interface tends to melt back becapsg is Figure &b) shows the configurations at the wave number
small compared t&,G,. Therefore, the solid-liquid interface at the neutral stability point, =0 of the solid line in Fig. 4.
not only grows unstably but also moves in the upstream diShift of the maximum point of heat flug,— g, is larger than
rection, which is consistent with the direction of phase ve-that in Fig. §a). Figure Gc) shows the configurations at a
locity of the interface predicted by E@). It also supports wave number in the stable regien <0 of the solid line in
the observation that many tiny air bubbles dissolved in the=ig. 4. Since the value ofr increases with increasing the
thin flowing water are trapped in just upstream region of anywave number, the surface [§1hy] and heat fluxqg, are
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p
slightly shifted to the upstream direction, and the phase dif-

ference between Ig/hy] and g —gs becomes larger than >0 (‘
that in Fig. @b). Any protruded part of the perturbed solid-
liquid interface melts back becausg-qs is small, and any ol =0 <¢ _ 7_7),
depression part of the interface grows becaysej is large. 2
Therefore, the flatness of the solid-liquid interface is re-
stored, that is, the solid-liquid interface is stabilized by large
phase shift of distribution of heat flux by large restoring \
forces. This stabilizing mechanism on such long lengthEquation(40) indicates that unstable, neutral, and stable re-
scales shown in Fig. 6 is different from the Gibbs-Thomsongions of the solid line in Fig. 4 are completely consistent
effect. with Figs. §a)—6(c), and that the direction of phase velocity

If we apply the picture of the Mullins-Sekerka instability is the same as the solid line in Fig. 5 if we restrict ourselves
to the bottom thick solid lines in Fig. 6, the deformed iso- to the wavelength region observed on the surface of icicles or
therms get closer to each other ahead of the bump of thtéhe inclined plane.
solid-liquid interface. The temperature gradient, and there- Likewise, if we apply Eq(26) for H,(z) to Egs.(33) and
fore the heat flux, increases, which increases the rate of prg34), ¢>0, therefore, we obtaim,>0. This is consistent
duction of latent heat. Therefore, the bump must get ampliwith the direction shown in the dashed and dotted lines in
fied [8]. However, we note that this picuture is true only in Fig. 5. According to the OF model, the stability of the solid-
the absence of flow. In the Mullins-Sekerka instability, it is liquid interface is due to uniformalization of the temperature
diffusion which destabilizes the planar front. In the presencelistribution along the layer by fluid floWs]. However, the
of flow, the perturbed temperature field in the liquid is af- fluid flow never makes uniform the temperature distribution.
fected by the flow field, which varies depending on the magif we give a correct interpretation for the stabilization of the
nitude of the restoring forces acting on the liquid-air surfacesolid-liquid interface in the OF model, then it is essentially
We can not determine priori where the temperature gradi- the same as that explained in our model. In the stable region,
ent or heat flux is large until we solve the equation of thefluctuation of the solid-liquid interface and distribution of
temperature field for a given boundary condition. heat flux tend to be out of phase. At the protruded part, heat

This mechanism of instability and stability of the solid- flux is small, while at the depression part, heat flux is large,
liquid interface and its movement to the upstream directiortherefore the flatness of the interface is restored. As a result,
discussed above can be explained more quantitatively as folhe dotted line in Fig. 4 is obtained. For the dashed line in
lows. The perturbed part of heat conservation equati@  Fig. 4, out of phase between fluctuation of the solid-liquid

N

< ¢<0>, Fig. 6(a)

Fig. &(b) (40)

<0 (—77< ¢<—§>, Fig. 6(c).

in Ref. [4] is interface and distribution of heat flux never occurs. There-
fore, this case is always unstable.
J T, oT,
Lo Zs| -k ZL) (36)
at Y |y=¢ Y |y= IV. CONCLUSION
o ) . We have provided a physical interpretation for the mor-
Taking imaginary part of Eq36), it becomes phological instability and stability of the solid-liquid inter-
face occurring during a crystal growth from an undercooled
L Im[o exp(ot + ikx)]& = G - Ge, (37) thin parabolic shear flow of water on the surface of icicles or

the inclined plane. The wavy pattern with a characteristic
wavelength is observed on longer length scales compared to

whereq, andqg are given by Eqs(33) and(34). The imagi-
nary part of the left hand side of E¢B7) can be written as

Im[o explot + ikx)] = |o]exp(ayt)sink(x —vyt) = @],

(38
where|o]=\o ?+0 2, and
O-r:|g-|cos¢, a'i:—|0'|Sin b. (39

Figures 6a)-6(c) show that¢<0. Noting thatv,=-o;/k,
from the second equation of E@39), when <0, o; is
positive, thereforep,<<0. From the first equation of Eq.

the one determined by the competition of the Mullins-
Sekerka instability due to diffusion and stabilization due to
the Gibbs-Thomson effect. We have found that phase differ-
ence between fluctuation of the solid-liquid interface and dis-
tribution of heat flux at the deformed solid-liquid interface,
whose difference depends on the magnitude of restoring
forces due to gravity and surface tension, is the cause for
destabilization or stabilization of the interface, and that the
direction of phase shift of the distribution of heat flux against
the solid-liquid interface is related to the direction of migra-
tion of the solid-liquid interface.
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