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Dynamics of swimming bacteria: Transition to directional order at high concentration
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At high cell concentrations, bacterial suspensions are known to develop a state of collective swimming (the
“zooming bionematic phase,” or ZBN) characterized by transient, recurring regions of coordinated motion greatly
exceeding the size of individual cells. Recent theoretical studies of semidilute suspensions have suggested that
long-range hydrodynamic interactions between swimming cells are responsible for long-wavelength instabilities
that lead to these patterns, while models appropriate for higher concentrations have suggested that steric
interactions between elongated cells play an important role in the self-organization. Using particle imaging
velocimetry in well-defined microgeometries, we examine the statistical properties of the transition to the ZBN
in suspensions of Bacillus subtilis, with particular emphasis on the distribution of cell swimming speeds and
its correlation with orientational order. This analysis reveals a nonmonotonic relationship between mean cell
swimming speed and cell concentration, with a minimum occurring near the transition to the ZBN. Regions of
high orientational order in the ZBN phase have locally high swimming speeds, while orientationally disordered
regions have lower speeds. A model for steric interactions in concentrated suspensions and previous observations
on the kinetics of flagellar rebundling associated with changes in swimming direction are used to explain this
observation. The necessity of incorporating steric effects on cell swimming in theoretical models is emphasized.
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I. INTRODUCTION

It is now well established that a concentrated population
of bacterial cells may develop into a “superorganism” with
properties and capabilities that extend beyond those of single
individuals [1,2]. On the one hand, the organized internal
dynamics of such “multicellular” organisms arises from the
coordination of the physics of propulsion and the shape
of its members rather than direct cellular communication,
yet it has direct effects on biological processes associated
with chemical signaling. Collectively stimulated emission and
sensing of chemical messengers by members of a bacterial
culture can lead to the formation of biofilms [3]. On the
other hand, a distinct phenomenon, swarming, comprises
changes in the morphology of individual members of the
population associated with increased motility and collective
directionality [4–6].

Concentrated swimming organisms induce strong local
flows in the embedding fluid medium, affecting the motion
of neighboring cells and ultimately producing large-scale
instabilities that develop into complex chaotic dynamics
characterized by fast and locally aligned cells [7–11]. For
sufficiently high concentrations of rod-shaped bacteria, co-
herence is observed in the form of collective motion, often
faster than the motion of individual swimming cells, and in a
narrow angular distribution of velocities within spontaneously
appearing domains. A movie of this state (see supplementary
material [12]) shows local parallel alignment of cells that
is reminiscent of nematic liquid crystals, and these domains

*cisneros@physics.arizona.edu
†kessler@physics.arizona.edu
‡S.Ganguly@damtp.cam.ac.uk
§R.E.Goldstein@damtp.cam.ac.uk

aggregate, rush and twist, break up, and re-form in a manner
reminiscent of turbulence, giving the impression of zooming
about, thus leading to the abbreviation ZBN, for “zooming
bionematic.” The intermittency of the ZBN greatly enhances
the transport of dissolved molecules or suspended particles,
beyond normal diffusion. In this way, intercellular signaling,
acquisition of metabolites, elimination of molecular wastes,
and dispersal of extracellular products are greatly enhanced
by the dynamics of the highly concentrated coherent state.

Theoretical approaches to collective motion of self-
propelled particles began with highly simplified models of
flocking using ideas from statistical physics [13–15]. These
led to the notion of a nonequilibrium phase transition to a state
with long-range order in the swimming direction. Subsequent
work [16] that is more faithful to the hydrodynamic inter-
actions between swimming cells found a long-wavelength
instability of that putative ordered state, and it has been
suggested that this instability underlies the particular form of
coherent structures found in the ZBN [10,11]. Direct numerical
simulations of two-sphere swimmers [17], with one sphere
representing the cell body and the other the flagella, and
rodlike swimmers with forces continuously distributed over
their surfaces [18] and a comprehensive kinetic theory of
these systems [19–21] not only have confirmed this finding but
also have begun to address the nature of the state beyond the
instability. Other closely related models and approaches yield
similar results [22]. Simulations [17,23] found that passive
tracers and swimmers exhibit superdiffusive behavior at short
times and diffusive dynamics at long times, with the crossover
depending on the concentration of swimmers. A two-phase
model [24] exhibits the chaotic character of the collective
bacterial swimming. These approaches provide the most likely
current explanation for the transient, recurring vortices and jets
observed in experiments to date on Bacillus subtilis [10,11],
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FIG. 1. Image of a suspension of swimming B. subtilis in the ZBN
phase. Bacterial cells occupy both bright and dark spots in the image.
The difference between bright and dark is due to the orientation of the
cylindrical cell bodies relative to the optic axis and displacement from
the focal plane. See also Movie 3 of the supplementary material [12].

enhanced and anomalous diffusion of molecular species and
tracer particles [7–9,25], and a framework for addressing
anomalous fluctuation statistics observed in more dilute
solutions of swimming protists [26,27].

The common ingredient in the kinetic theories cited above
is a contribution to the stress tensor due to the self-propulsion
of the organisms, represented by force dipoles (stresslets) [28].
It is clear from even casual observation of the ZBN, or, indeed,
of less concentrated bulk suspensions (Fig. 1) or those in thin
films [29] or on the surface of agar [30], that steric interactions
between swimming cells must play an important role in
establishing the local order, much as it does in liquid crystals
and in models of “self-propelled rods” [15]. Theory [29] on
collective dynamics of bacteria in suspended films [31] that
incorporates not only hydrodynamic reorientation of cells in
response to local fluid flows but also collisional realignment
predicts an instability in the stress field at long wavelengths in
the isotropic field.

In spite of these important contributions, there is a con-
sistent lack of actual experimental results that can serve
to inform further development of our understanding of the
transition to collective behavior. In the present paper we
provide new experimental results and a new set of theoretical
considerations relevant to the appearance of the ZBN. Just
as lyotropic liquid crystals exhibit order as a consequence of
increasing concentration, the ZBN is a phase of suspended
bacterial matter that emerges at high concentrations. At low
concentrations, the swimming bacteria move essentially inde-
pendently, but with increasing concentration we observe that
an anomalous intermediate phase develops in which cellular

collisions, characterized by stopping and then reconstitution
of the propulsion mechanism, produce a slowing of the
mean swimming speeds relative to those observed for free
individual cells. We shall term this the “jammed phase” (see
Fig. 1) by analogy with concentrated automobile or pedestrian
traffic. This contribution of flagellar interaction and bundling
dynamics, which is absent in current models of bacterial
collective dynamics, is suggested to be of significance when
cells are in close proximity to each other.

The experimental observations and analyses reported here
concern wild-type Bacillus subtilis, a rod-shaped gram-
positive bacterium. This paper thus considers collective be-
havior cells with no known mutations in the flagellar apparatus
or motility. Our results delineate the sequence of steps leading
from individual behaviors of normally motile Bacillus subtilis
at low concentration to coherent, collective, sterically and
hydrodynamically coupled dynamics at high concentration: a
transition from individual to the jammed state to the collective
ZBN state, which depends strongly on sterically determined
ordering but whose ultimate dynamics depends on collectively
synchronized motility and hydrodynamics.

The cells used here have a variable body length L,
typically around 4 μm, and a diameter D ∼ 1 μm. They
are peritrichously flagellated, with a typical swimming speed
U ∼ 25 μm/s (see Fig. 3). The Reynolds number for such
a swimming bacterium in water (kinematic viscosity ν =
0.01 cm2/s) is Re = UL/ν ∼ 10−4. The low value of Re
indicates that viscous forces dominate over inertia and that
the hydrodynamics is safely in the Stokes regime [32–34],
thereby implying that the fluid flow generated by a swimming
bacterium is completely driven by drag on the cell and its
rotating flagella. (Here we neglect gravitational effects as
our experiments involve thin samples in plan view.) Previous
experimental work has focused on using bacterial chemotaxis,
the swimming of bacteria along chemical gradients, and
self-concentration mechanisms [35] to concentrate cells near
contact lines [10,11] or in quasi-two-dimensional geometries
[25,31]. The typical observed collective speeds in the ZBN
phase can be 100 μm/s, with an associated Reynolds number
still � 1 (0.01 cm × 0.01 cm/s/0.01 cm2/s).

We present experiments on the dynamics away from
solid boundaries and contact lines, uncovering some striking
statistical signatures of the collective phase and the route
to its emergence. In order to image the bacterial dynamics
we perform video microscopy with a high-speed camera at
100 frames/s. This high frame rate allows us to record rapid
changes in the microscopic system. Images are analyzed using
particle image velocimetry (PIV), a widespread technique
employed in experimental fluid mechanics. Instantaneous
velocity fields of the bacterial suspension are estimated directly
from consecutive images, using a pattern matching procedure.
This method yields statistical analyses and measures. Most
notably, the distribution functions of cell velocities in the
collective mode are found to differ radically from that of an
equilibrium system, while for free swimming cells the speed
distribution is approximately Maxwellian.

II. MATERIALS AND METHODS

All experiments were conducted with Bacillus subtilis
strain 1085B. Stocks of cells were prepared by adding spores
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on sand to 10 ml of sterile Terrific Broth [TB: 48.2 g Ezmix
Terrific Broth (Sigma) + 8 ml glycerol in sufficient water to
make 1 l] at room temperature and allowing the cells to grow
and divide for 18 h. Then, 0.5 ml of this culture was mixed
in equal parts with glycerol, frozen, and stored at −20 ◦C.
The experimental samples were prepared by adding 1 ml of
the −20 ◦C stock to 10 ml of TB and allowing the culture to
stand for 18 h in a petri dish, after which 1 ml of the bacterial
suspension was added to 50 ml of TB and incubated in a shaker
bath (VWR model 1217; 37 ◦C, 100 rpm) for 4 h.

In order to concentrate the cells, 1 ml of the 4-h culture was
placed in a vial (Eppendorf 1.6 ml) and centrifuged for 2 min at
4000 g, creating a loose pellet of bacteria. The supernatant was
then removed, and the bacteria-rich residue was resuspended
in the remaining medium. By controlling the amount of fluid
used to resuspend the cells we achieved coarse control of
the final concentration. During each experiment, 5 μl of the
concentrated sample was put in a solution of 10-μl iodine in
400 μl of 1 M NaCl to kill the bacteria. Samples of dead cells
were diluted by a factor of 10 in 1 M NaCl, and the bacteria
were counted in a Neubauer Hemocytometer (Spencer Bright-
Line 1490, American Optical Co.) for precise measurements
of the cell concentration.

The microchambers used for experiments were square
wells, 5 mm on a side and 0.1 mm deep, constructed from
polydimethylsiloxane (PDMS, Sylgard 184, Dow-Corning),
using a hard plastic negative machined to high precision. The
PDMS was degassed before being spread over the surface
of the negative. Then, a clean glass slide, previously treated
with Alconox in a sonicator for 10 min, was placed on top
and weighed down to ensure uniform covering. Finally, the
PDMS was cured in a vacuum oven for 18 h at 70 ◦C. For each
experiment, the chamber was filled with 5 μl of cell suspension
and enclosed in a plastic petri dish with water reservoirs that
provide a saturated environment to avoid sample evaporation
(Fig. 2). The chambers were chosen to be shallow enough
to inhibit the formation of bioconvection patterns [28,36–39].
While small concentration gradients may still be expected for
this geometry [39], they may be ignored at the level of detail
presented in this paper.

Samples were imaged from below with an inverted mi-
croscope (Nikon Diaphot 300), using either a Nikon 40× PL
APO (0.55NA) or a Nikon 20× PL APO (0.5NA) objective.

FIG. 2. (Color) Schematic of the experimental setup (not to
scale). The bacterial suspension is deposited in a square well with
sides D = 5 mm and depth h = 100 μm built over a glass slide with
PDMS walls. This microchamber is placed in a closed petri dish with
large water drops to control the evaporation of the sample and imaged
with a 20× or 40× objective on an inverted microscope.

The depth of field δz of each is [40]

δz = nrλ�

NA2 + nre

M(NA)
, (1)

where nr ∼ 1 is the index of refraction of the air between
the sample and the objective, e = 16 μm is the smallest
distance that can be resolved by the detector (a pixel), λ� is
the wavelength of light used to image, M is the magnification
of the lens, and NA is the its numerical aperture. When bright
field illumination is used, the depth of field will be determined
by the longest wavelength, λ� ∼ 750 nm. These give respective
depths of field of δz40x ∼ 3.21 μm and δz20x ∼ 4.8 μm.
Recalling the size of the bacterial cell body, we see that the
depth of field resolves at most a couple of layers of cells.

Videos were obtained with a high-speed camera (Phantom
V5.1, Vision Research, Wayne, New Jersey) at 100 frames/s
with a resolution of 1024×1024 pixels, which corresponds to
fields of view of 813 × 813μm2 for the 20× objective and
403 × 403 μm2 for the 40× objective. Sets of 500 frames
were obtained for each experiment. Videos were processed
to remove the background and increase the contrast. For the
concentrations used, there is significant overlapping of cells in
the images (Fig. 1), so it is not possible to resolve individual
bacteria. A commercial PIV system (FLOWMANAGER, Dantec
Dynamics) was used to estimate cell velocities. Most current
digital PIV applications utilize a cross-correlation analysis
[41–43], in which each digital image is divided into small
interrogation windows containing several tracers. Each of
those interrogation windows is matched to a position in
the successive image, which corresponds to the most likely
displacement of the group of particles contained within it.
All analyses presented here used an interrogation window of
8×8 pixels (corresponding to regions 3.15 μm × 3.15 μm for
the 40× magnification case and 6.35 μm × 6.35 μm for 20×
magnification) with a 25% overlap. A uniform 3×3 averaging
kernel was used to reduce the noise of the resulting field. The
high accuracy needed for the experiments required correction
for systematic errors in the PIV analysis, as detailed in the
Appendix.

Particle-tracking velocimetry (PTV) of individual bacterial
trajectories in dilute conditions was used to describe the free
swimming phase. These samples were prepared from the
4-h-old culture as described above. One milliliter was placed
in a centrifuge chamber and spun down at 4000 g for 2 min
and then resuspended and diluted to 1/100 of the original
concentration. Samples were then put in a microchamber and
imaged. Thereafter, multiple cell trajectories are measured
from the digital videos using a PTV program in MATLAB-
based original source code by Darnton and Jaffe [44], with
modifications by one of the authors (L.H.C.) [45].

III. RESULTS AND DISCUSSION

The ZBN mode is a collective phase easy to identify when
observed. Motion of adjacent cells is coherent in patches and
appears as domains of fast motion that stretch, fold, disperse,
and reconstitute, with incoherent regions between them. How
may one characterize this phase in a quantitative manner useful
for the validation of a model? An obvious place to start is
by analyzing the probability distribution function (PDF) of
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FIG. 3. (Color) Probability distribution functions of speeds.
(a) Black, free swimmers in dilute conditions [n = (9.7 ± 1.1) ×
107 cells/cm3]; blue, subcritical, or semidilute, suspension [n =
(3.39 ± 0.32) × 109cells/cm3]; red, ZBN suspension [n = (4.92 ±
0.46) × 109 cells/cm3]. (b) For the same data shown in red in (a),
distribution functions filtered according to order parameter �: green,
highly organized regions within the ZBN phase (0.98 < � < 1);
orange, isotropic regions within ZBN (−0.15 < � < 0.15). Regions
I–IV are coarse divisions of the velocity range.

speeds. In order to quantify the motion of uncrowded bacteria,
individual trajectories were obtained from PTV on a dilute
suspension (see Movie 1 of the supplementary material [12]).
A PDF based on the trajectories of the entire sample is shown
in black in Fig. 3(a). Error bars indicate the standard errors
associated with the average over trajectories. It is evident that
the typical swimming speed of free cells falls in the range
15–30 μm/s. This result agrees with previous data that also
indicates higher speeds for a small component of the cell
population [8,46].

A PDF obtained in the ZBN phase using PIV is shown in red
in Fig. 3(a) (see Movie 3 of the supplementary material [12]).
The data were computed by taking the average of distributions
of speeds in each time frame. This curve shows that in the
collective phase the typical swimming speeds range from 20
to 150 μm/s, with a peak at ∼60 μm/s, so the collective
speeds are significantly larger than the typical individual free
swimming speeds. This observation also agrees with previous
results [10,11,39]. It has been previously suggested [10,11]
that this is a hydrodynamical effect associated with drag
reduction and mutual advection equivalent to phenomena
observed in sedimentation processes [47].

Obtained in the same way, a speed distribution in a semidi-
lute suspension exhibiting no apparent organized behavior
(or subcritical) is shown in blue. The striking feature of this
distribution is that the typical speeds are considerably lower
than those for free swimming cells. We propose in Sec. IV
that this decline occurs when cell to cell separations are
sufficiently small to produce a high probability of collisions
but not small enough to trigger collective organization by steric
and/or hydrodynamic interactions.

In order to analyze the orientational dynamics in the ZBN
mode, we utilize an order parameter introduced elsewhere [11]

that measures the level of coherent directional motion in the
velocity field. This scalar field �R is defined by the local
average 〈cos θ〉R of the scalar product of adjacent unit velocity
vectors over a small region defined by R,

�R(i,j,t) = 1

NR

∑
(l,m)∈BR (i,j )

vij (t) · vlm(t)

|vij (t)||vlm(t)| , (2)

where vij (t) is the measured velocity field and BR(i,j ) is a
quasicircular region of radius R, centered at (i,j ), containing
NR elements. �R can be used to picture the local levels of
organization in the system. When �R ∼ 1, the vectors inside
BR are nearly parallel, corresponding to phalanxes of coherent
motion. Values close to zero indicate strong misalignment
and hence random, disorganized, orientations in R. Negative
values imply locally opposing streamlines. Notice that the only
information used is the relative direction of motion of the
cells in the small region; the modulus of their speeds is not
considered. The resolution and level of detail in this analysis
are determined by the choice of R. Features in the orientation
field smaller than the scale defined by R cannot be resolved.
An example of an instantaneous contour map of �R is shown
in Fig. 4(a), with the value R = 18.91 μm, corresponding to
6 grid units in the PIV analysis. Since the PIV data are
smoothed with a 3 × 3 spatial filter, this value of R is ap-
propriate to measure the local continuity without undesirable
loss of detail.

Using the information given by �R , we can filter velocity
vectors from regions with particular levels of organization.
For instance, the distribution of magnitudes of the vectors
contained in regions in which 0.98 < �R < 1, corresponding
to a relative angular dispersion of �10◦, is shown in green in
Fig. 3. These data correspond to very organized regions shown
in the darkest shade of red in Fig. 4(a). In the same way,
a PDF of vectors within regions with −0.15 < �R < 0.15,
i.e., noncoherent motion with average angular dispersion in
the range [80◦,100◦], is shown in orange in Fig. 3(b). The
two distinct levels of organization clearly produce radically
different distributions of velocity vectors, indicating that the
high levels of coherence correspond to fast-moving regions,
while the regions presenting random orientations correspond
to slow motions. A simple conclusion from this observation
is that cells located at the boundary between coherent regions
are in a jammed mode. This implies that in the ZBN phase
cells inside of disordered regions are less concentrated and
rapidly colliding and reorienting, like in the subcritical phase,
possibly trapped between large moving phalanxes, in a process
equivalent to a traffic jam. Eventually, these cells get recruited
into nearby coherent jets, and their motion is reactivated
with the addition of the possibility of very close intercellular
distances.

These results are supported by the high spatial correlation
between organization level and motion. A contour map with
four levels of speeds (termed zones I–IV) as given in Fig. 3(b)
is shown in Fig. 4(b). White represents slow regions (I), light
gray indicates the regions with the free swimming regime (II),
dark gray indicates typical collective speeds (III), and black
shows very fast regions (IV). Comparison of Figs. 4(a) and 4(b)
clearly reveals not only that the global distributions show larger
typical speeds for the ZBN phase relative to dilute suspension
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FIG. 4. (Color) (a) View of the contour levels for the orientation field �R in a snapshot of a ZBN sample (R = 18.91 μm). (b) For the
same frame as in (a), contour levels for values of speeds located in four intervals defined in Fig. 3: white, region I, with speeds <15 μm/s;
light gray, region II, with speeds in the interval 15 μm/s < v < 45 μm/s; dark gray, region III, with speeds in the interval 45 μm/s < v <

90 μm/s; and black, region IV, with speeds >90 μm/s. Taking Fig. 3 into consideration, these intervals correspond to regions characterized by
jamming (white), free motion (light gray), typical collective motion (dark gray), and superfast motion (black). (c) Contour levels of the density
of events F for each point of the plane V -�, showing the relation between coherent motion and large speeds. Coherent regions are fast, and
slow regions tend to be disorganized, as evident from comparing (a) and (b).

but also that, at the local level, regions of high directional
coherence are directly related to regions of faster motion and
vice versa. Furthermore, very fast cells, moving in excess of
90 μm/s, are located in the center of large coherent regions.
Figure 4(c) is a plot in the space of speed and (positive) �R

for all frames analyzed, where color coding indicates local
frequency of events for a given combination of speed and
�R . The clear accumulation of points confirms that fast cells
are always highly organized and very slow cells are likely not
very organized. This is clear proof that speed and codirectional
motion in the vicinity of each cell are highly correlated.

IV. DISCUSSION OF VELOCITIES IN THE DISORDERED
PHASE

To understand how short cellular mean free paths may
lead to anomalously low swimming speeds, we consider the
details of bacterial propulsion. B. subtilis swim by rotating
their numerous helical flagella, which are attached to their
cell body by flexible joints [48]. Locomotion is accomplished

when these filaments wrap around each other to form a
flagellar bundle oriented opposite to the direction of motion.
This bundle of rotating stiff helical filaments constitutes a
low Reynolds number propeller [49–51]. When swimming
bacteria collide with each other or with an inert object [52],
the bundle of flagella may disperse and then re-form. The
bacteria then continue swimming at some arbitrary angle with
respect to their original trajectory. If, for instance, the bundle
re-forms at 180◦ to its former direction, the organism swims in
approximately the direction opposite to the original, leaving
the orientation of the cell body unchanged. These polarity-
reversing flipping events can convert steric coalignment into
unipolar alignment. In the context of the subcritical collisions
discussed here, cell reorientations reduce the mean speed of
the population. It has not been possible to observe this process
at concentrated suspensions as it has at low concentrations
[52]. From these experimental results [52] we infer that the
time needed to resume normal swimming speed is about
1 s. Thus, if strong collisions occur every fraction of a
second, causing frequent dispersal and reconstitution of the
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FIG. 5. (Color) Flagella bundling kinetics and its implications.
(a) Time dependence of swimming speed after a stop followed by a
reversal of swimming direction due to flipping of the flagellar bundle,
not by turning of the cell body. Data are (solid black circles) from
particle-tracking velocimetry on many individual cells, shown over a
greater time range than originally presented [52]. The data are fit to
Eq. (3) (red line), where v0 is the terminal velocity of each tracked cell.
The characteristic time is τ = 0.35 s. The cell acceleration from rest
is related to the formation of the flagellar bundle. (b) Expected speeds
[Eq. (10)] as a function of cell concentration n in subcritical conditions
for two excluded volume geometries, L = 10 μm and D = 2.5 μm
(solid red line) and L = 18 μm and D = 2.5 μm (dashed red line), as
defined in Fig. 6. Data points (solid blue squares, magenta circles, and
green downward triangles) from several experiments are presented as
well. The black upward triangle in the upper left corner indicates the
dilute case.

flagellar bundle, the mean swimming speed would be less
than found along unhindered trajectories. The reorientation
and rebundling of the flagella yield a model of accelerated
motion between collisions. By way of comparison, note that
the existence of a finite time for cellular reversals has been
suggested to play a role in pattern formation exhibited by
myxobacteria [53].

Data on reversals of bacterial locomotion at obstacles [52],
shown in Fig. 5(a), indicate that the transition from stopped to
free swimming is (empirically) described by a time-dependent
speed,

v(t) = v0
(
1 − e−t/τ

)
, (3)

with v0 ∼ 25 μm/s being the free-swimming speed and τ ∼
0.35 s being the acceleration time. Since the orientation of cell
trajectories in semidilute conditions is still uniformly random,
the scattering cross section is close to that of lateral collisions.
It is therefore likely that cells stop and restart during many

FIG. 6. Geometry of excluded volume in a suspension of rods
of length L and diameter D with a concentration n assumed to be
homogeneous. Consider an evaluation cylinder 	 of length � and
diameter D located at one end and parallel to a test rod with orientation
k̂; the number of rods with orientation k̂ intersecting 	 can be ac-
counted as N = nVE(k̂′,D,�,k̂′,D,L), given by Onsager’s excluded
volume [55]. The inset shows that, for a polarized configuration,
an excluded cylinder with radius D contains one single cell when its
length is 1/(nπD2) = L + λo, where λo is the distance between rods.

of the interactions in subcritical suspensions. The empirical
function (3) implies

x

v0τ
= − v

v0
− ln

(
1 − v

v0

)
, (4)

which gives the length x necessary for a cell to accelerate
to a velocity v. We now require an estimate of the free
swimming time between collisions, or the mean free path, as a
function of the cell concentration. We employ well-established
geometrical arguments [54].

We model cells as rigid cylindrical rods of length L

and diameter D, with a uniform concentration n and an
orientational distribution �(k̂), where k̂ is a unit vector along
the long axis of the rod. Consider now an evaluation cylinder
	, with diameter D and length � along the axis of a test particle
with length L and orientation k̂, as shown in Fig. 6. Rods with
orientation k̂′ intersecting 	 are those whose center of mass
are located in the excluded volume given by Onsager’s classic
solution for cylinders with spherical caps [55,56]:

VE(k̂,�,k̂′,L) = 4π

3
D3 + πD2(� + L) + 2DL�|k̂ × k̂′|. (5)

For aspect ratios L/D � 4–5 the first term can be neglected,
and the average number of rods intersecting 	 can be written
as

N = 〈nVE(k̂,�,k̂′,L)〉k̂′

	 πnD2(� + L) + π

2
nDL�G(k̂), (6)
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with

G(k̂) = 4

π
〈|k̂ × k̂′|〉k̂ = 4

π

∫
dk̂′�(k̂′)|k̂ × k̂′|. (7)

An isotropic distribution has �I = 1/4π and GI = 1, while
in a polarized system �P = δ(k̂′ − k̂) and GP = 0.

The typical distance that a cell is free to translate along its
axis before hitting another cell can be obtained by considering
� = λ(n) such that N ∼ 1. This gives the definition of the mean
free path:

λ(n) = λo

1 + 1
2 sG(k̂)

, (8)

where s = (L/D) is the aspect ratio and λo = (nπD2)−1 − L.
When the system is polarized, the mean free path is exactly
the expected spacing between aligned rods, λP = λo (see inset
in Fig. 6). On the other hand, for an isotropic distribution,
λI = λo[2/(s + 2)] < λo. To summarize, the typical mean free
path increases with the level of alignment, measured by G(k̂),
and is inversely proportional to n (or to the volume fraction
φ = nVi , with Vi = π

4 D2L being the volume of a single rod).
Now, for a particular value of the concentration n, the

condition x = λ(n) restricts the maximum velocity achievable
by a cell, as given by (4). But, of course, in a given experiment,
cells do not stop and resume motion in a synchronized way.
Assuming the system is ergodic, an estimate of the most likely
velocity observed is

〈v〉 = 1

T

∫ T

0
v(t)dt, (9)

where T is the mean free time such that x(T ) = λ(n) [i.e.,
T = T (n)]. This gives

〈v〉 = v0 − τ

T
v(T ) = λ(n)

T (n)

= 2

(s + 2)T (n)

(
1

nπD2
− L

)
. (10)

Figure 5(b) shows experimental results for 〈v〉 versus n for
different subcritical samples along with corresponding theo-
retical curves using two assumptions for the size parameters
(with D = 2.5 μm): the solid red line is for L = 10 μm, and
the dashed red line is for L = 18 μm). All data points shown
as solid squares were produced using the same initial bacterial
culture, while the others (solid circles and downward triangles)
arise from two different cultures. The parameter L is the length
of the flagellar envelope around single cells. It is known that
under different growth conditions bacteria can develop flagella
of different lengths. This type of biological control was not
implemented in our experiments. It is plausible that these
data points correspond to cells of different effective lengths.
The data shown in blue match our theoretical description
remarkably well.

Steric repulsion between cells should be considered for
concentrations n � nE = 1/ṼE , where

ṼE = 〈VE(k̂,L,k̂′,L)〉k̂′ ∼ π

2
DL2 + 2πD2L (11)

is the average excluded volume of a rod in an isotropic
distribution [55,56]. The corresponding volume fraction is
φE = 1/(2s + 8). We deem this to be a lower bound on

the semidilute concentration regime, where the rods can no
longer be considered totally independent. For the case of
Bacillus subtilis, if only the cell body is taken into account
(L ∼ 4 μm and D ∼ 1 μm), then nE ∼ 2 × 1010 cm−3

(φE ∼ 0.062). But a more realistic analysis must include the
effect of the flagella around each organism. In this sense,
even though the flagellar envelope is not a rigid structure, its
volume exclusion can be accounted for simply by considering
a larger size rod. For instance, with L ∼ 10 μm and D ∼
2.5 μm, for which the aspect ratio s is conserved, nE ∼
1.3 × 109 cm−3. Under isotropic conditions, the mean free
path at this concentration is given λI,E = L. At n ∼ nE , cells
typically occupy the excluded volume of one other cell. In
particular, the average number of contacts that a cell has is
Nc = nVE = n/nE [57,58]. This is a convenient normalized
concentration, which clearly indicates the proximity of the
cells in terms of interactions. For concentrations close to nE

the number of contacts per cell is few. Even though this is an
evident constraint on the orientations of cells, at this level, there
is still a wide range of orientation configurations available for
each of them. Cells are somewhat restricted to translate along
their axis but otherwise free to take almost any orientation. For
concentrations as high as 5nE , a system of inactive rods reaches
a typical random packing condition [59]; for ∼10 nE , they
display a transition into liquid crystalline phase [55,56,58].

We conclude that λ < L for isotropic symmetry and
concentrations n � nE , and hence, the typical cell speeds
can be much smaller than the free swimming values. That
is, for semidilute conditions, cells cannot reach their terminal
velocity before a collision occurs, yielding a permanent
state of reorientation. This condition also implies that the
uniform random distribution of cell orientations is stationary.
As more cells are packed together, steric repulsions start to
induce local alignment, in the manner of a liquid crystal, as
predicted by Onsager’s theory. The reorientation of the cells
will then be highly restricted, inducing local coalignments and
a consequent increase of the mean free path λ.

The above analysis assumes implicitly that the test cell is the
only one moving, and it neglects hydrodynamic interactions.
Clearly, the flows induced in the surrounding fluid by an
active particle produce changes in the trajectories of other
particles in the vicinity [60–64]. These interactions are at least
partially responsible for the collective phenomena emerging
in these systems. In the case of flagellated bacteria, like
B. subtilis, such interactions tend to align them, inducing a
bias in �(k). Therefore, the assumption that the distribution
of cells stays isotropic is not correct in principle, as cell-cell
interactions induce local alignment. But for a semidilute
system, this process is not necessarily stable, as the cells
can reorient randomly after each frontal collision, losing
spatial correlation. Due to frequent collisions, the system
can quickly regain the isotropic distribution. Also, under
these circumstances cells cannot reach very fast speeds, so
the hydrodynamic interactions are weakened. In this way
the assumption of a stationary isotropic state for a semidilute
system is justifiable. Equation (8) gives an estimated lower
bound on the mean free path for subcritical concentrations.
For larger concentrations this assumption breaks down due
to significant steric repulsions associated with the volume
exclusion, which now restricts not only translations but also
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rotations of the cells, breaking the isotropic symmetry into the
organized behavior. In this case it is necessary to introduce
a Fokker-Planck equation to describe the correlation between
cell orientations, motion, and concentration fields [19–21]. In
particular, if all the cells are moving in the same direction with
the same speed, only very few collisions are expected, as they
just follow each other in line. For a less ideal case, the collision
distance will depend on the distribution of speeds as well as
the distribution of orientations. The point to be made is that the
mean free path is short for an isotropic system and long for an
organized one. The parameter λo is determined by the typical
distance between cells, given by the number concentration n.
The fact that the isotropic mean free path is λo/s indicates
that the restriction on the length scale is purely a geometrical
fact: for slender rods, λI will be very short. Steric alignment
determines a reduction in the value of the geometrical factor
G, inducing an increase of the mean free path, while at the
same time yielding a situation in which cells are moving close
to each other, inducing large flows due to directed collective
propulsion.

A final point to be made in this regard concerns recent
theoretical studies [65,66] of the development of orientational
order in systems of “self-propelled rods,” which interact by
a soft-core volume exclusion and without any long-range
hydrodynamic interactions. Numerical studies by Peruani,
Deutsch, and Bär [65] show the emergence of clusters with
a broad distribution of sizes at a critical volume fraction
that depends sensitively on the aspect ratio of the particles.
This onset point can be considerably less than the equivalent
nonmoving system’s ordering transition as described by the
Onsager criterion. But, bearing in mind that such simulations
do not take into account partial stopping and acceleration of
cells during and after their interactions due to breakdown of
the propelling flagella bundle, which is clearly relevant in real
bacterial systems, we can expect that such a work gives a
lower bound to the critical cell concentration. The dynamics
of the cluster size distribution function involves consideration
of the scattering cross section of the rods analogous to that
which we have employed above. The order found in these
works is intrinsically polar, like that seen here. Similar results
were obtained by Yang, Marceau, and Gompper [66], who
studied the more general problem in which the particles could
undulate like flagella and thereby synchronize their motion.
In addition to the appearance of ordered, polar clusters, it was
also found possible to develop a jammed system, reminiscent
of the intermediate phase discussed here.

V. CONCLUSIONS

The experiments and analysis reported here have shown
that suspensions of at least one species of rod-shaped self-
propelled bacteria exhibits a succession of phases as the
concentration of these organisms increases from dilute to
close packed. Individual swimming speeds of free cells obey
a bell-shaped distribution peaked at ∼25 μm/s. At higher
intermediate concentrations the speed distribution is collision
dominated, while cell body orientations are still isotropically
distributed. This stage corresponds to a “jammed” phase
with a distribution peaking at much lower speeds than the
distribution for individuals. The jammed state can be explained

by the combination of frequent collisions, reorientations, and
deployment reconstitutions of the flagellar bundle. Speeds
in the high-concentration phase peak at considerably higher
values than those of individual cells. These speeds characterize
the motion of aligned, nearly close packed bacteria swimming
codirectionally, equivalent to dense highway traffic. Enhanced
speeds in this mode are highly correlated to the degree of
coalignment and proximity of the swimmers. It has been
shown [11] that the anomalously rapid propulsion of a phalanx,
during an interval of coherence, can be due to propulsion by
bacteria located at and near its boundary. Recent work [67]
measuring directly the flow fields around freely swimming
bacteria shows that hydrodynamic interactions between cells
are washed out by rotational diffusion beyond a few microns,
so it is only when the intercell spacing is smaller that the
enhanced speeds would appear. We have shown that the ZBN
phase is locally characterized by directional order correlated
with high collective velocities of an ordered domain. These
domains are “phalanxes” since their members are tightly
adjacent and move codirectionally. What could their origin
be? We speculate, but have no direct evidence, that the ZBN
phase is actually a pair of successively developing phases, the
first a steric alignment of rods, as described by Onsager [55],
followed by a flip of bundles [52] of the propelling flagella of
the rods, i.e., bacteria, that are not swimming in the direction
of the local majority, so as to give a unidirectional, i.e.,
polar, collective alignment. The origin of intermittency, the
instability of the phalanxes, resulting in the appearance of
“turbulence,” is currently under investigation. It should be
noted that at high concentrations of the ZBN it is difficult
to determine the local variations in cell concentration, but
these would be expected to be correlated with the speed
and local orientation as well, and current research aims to
study this effect. Due to intermittency, phalanxes travel for a
short distance, followed by breakup and reconstitution in new
directions. The ZBN is therefore an efficient mixing phase.
Quantitative analysis of this mixing is an important future
goal. Since bacteria require a continual supply of metabolites,
e.g., oxygen, and a dispersal of waste exudates, this dynamic
property of the ZBN is of considerable significance in the life
and environmental interaction of these bacteria.

Is there evidence for universality? The occurrence of a ZBN
phase is not restricted to wild-type B. subtilis cells. We have
shown that “run-only” B. subtilis (a gift of George Ordal)
also exhibit a ZBN phase. From this we infer that intermit-
tency in the formation and breakup of coherent phalanxes
of these swimming bacteria is not due to run-and-tumble
transitions [33].

Do species other than B. subtilis undergo the ZBN phase
transition? Erwinia carotivora, gram-negative rod-shaped soil-
dwelling bacterial cells, also exhibit a ZBN phase [68]. The
minimum inference to be drawn is that the occurrence of the
ZBN phase is not restricted to one species of bacteria. Tests are
planned to determine whether only rod-shaped peritrichously
flagellated cells exhibit the phenomenon. It seems likely,
however, that parallel alignment of swimmers requires the
packing characteristics of concentrated rods.

Is the phenomenon limited to laboratory experiments?
Concentrated populations of aerobic bacteria can occur when
the aqueous medium that suspends them is rich in nutrients and
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oxygen. If the bacterial suspension has a slanted interface, as
in sessile drop cultures [10] or on wetted grains of soil or sand
(the natural habitat of B. subtilis), the organisms concentrate
themselves, with the aid of gravity. Such circumstances require
enhanced transport and mixing, e.g., of oxygen from the
surface of the suspension and of CO2 out of it. Mixing and
transport from the boundaries of a ZBN culture and within
it are major consequences of the dynamics and intermittency.
Thus, while the occurrence of the ZBN phase might be “an
accident,” it is an accident whose occurrence is welcomed in
producing enhanced viability.

We believe that the insights into the occurrence and
character of the ZBN phase, presented in this paper, open
avenues of research for the physics of active matter and
furthermore suggest insights into microbial dynamics within
aqueous environments.
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APPENDIX: CALIBRATION OF THE PIV METHOD

The cross correlation of two scalar fields I1 and I2 as a
function of the shift (x,y) is defined as

C(x,y) =
∫∫


I1(x ′,y ′)I2(x ′ + x,y ′ + y)dx ′dy ′∫∫


I1(x ′,y ′)I2(x ′,y ′)dx ′dy ′ , (A1)

where  is the subspace in which the correlation is evaluated.
Considering digital images, I corresponds to bit level values
per pixel (e.g., for 8-bit gray scale images, integers [0,255]).
In this case, C can be written in terms of summations over
discrete coordinates (x ′,y ′) = (x ′

i ,y
′
i).

The PIV method consists of finding the shift (x∗,y∗)
that gives the maximum value of C . This can be done by
evaluating C for all possible values (xi,yi), generating a
discrete correlation landscape, and using the maximization
method of choice. For two sequential images I1 at time t and
I2 at time t + �t , with �t being the time increment between
frames, (x∗,y∗) is the most likely displacement of the features
imaged in the evaluation window . In this way, the average
velocity of the particles contained in  is simply given by

(u,v) = 1

�t
(x∗,y∗). (A2)

This procedure is repeated for all possible evaluation windows
 in each frame to generate a two-dimensional vector field
of velocities. To decrease the computational cost of this
process, most applications use Fourier methods to reduce
the implicit summations in the cross-correlation function into
multiplications of complex coefficients.

Extensive introductions to PIV methods can be found in the
literature [41,43,69,70]. Many different correlation algorithms
and other related procedures have been proposed, carrying
out sophisticated methods of analysis, including the imple-
mentation of predictors based on previous history, adaptive
window sizing and offsetting, window deformation and vector

validation methods [71], continuous window shifting [72], and
histogram equalization methods [73].

The determination of the displacement (x∗,y∗) can be
achieved with subpixel accuracy by using a linear regression
fit of C(x,y) around the peak value in the discrete landscape.
If the typical displacements are small relative to the pixel
size, then subpixel precision is clearly crucial. But an inherent
systematic error is unavoidable when using the conventional
procedures: an integer bias caused by an asymmetry inherent
from the discrete sampling of the correlation landscape around
it. This issue is called the pixel-locking effect [43,70,72,
74–78], and although it can be minimized, its emergence is
independent of the correlation algorithm used. Unfortunately,
due to the combination of length and time scales of ZBN, this
error is of particular significance for the analyses presented
in this paper. For instance, in our experimental conditions we
expect the cell velocity probability distribution to be invariant
under rotations because the boundaries of the system are far
away and there is no intrinsic mechanism to break such a
symmetry. Yet, if we examine the distribution of velocities as
reported by the PIV software, we observe that it has an obvious
lattice bias (Fig. 7), a hallmark of a systematic pixel-locking
error.

Some previous work has been done with regard to correct-
ing this issue: In [74] the asymmetry around the integer peak
was compensated by a constant factor before using a symmetri-
cal Gaussian function. In [73] a histogram equalization method
is used to adjust speed distributions, but no correction to the
vectors is done. In [72] a continuous window-shifting method
is implemented. Reference [79] claims to solve the systematic
error problem using the correlation mapping method, which
consists of combining interpolation of images and window
shifting to evaluate the correlation function, and in [78] sine
functions are used to fit the residual error and correct it.

FIG. 7. (Color) Two-dimensional distribution of displacements
in a sample of swimming bacteria. Axes indicate displacement
components in pixels from one frame to the next one, as reported
by PIV, while the color indicates the frequency of occurrences (see
color bar). The system is inherently isotropic, and this distribution
function should be symmetric with respect to rotation around the
origin in the XY plane, which is clearly not the case.
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FIG. 8. (Color) Details of pixel-locking analysis. (a) Test case
phase space: black dots indicate real values of (U,V ), and red points
indicate the corresponding (u,v) measured by PIV. As is evident,
velocities are underestimated in a particular pattern, as shown in
Fig. 9. (b) Real phase space (U,V ) (black) and corrected phase space
(U ′,V ′) (blue).

We introduce here a technique to characterize the error
and produce a simple calibration process. The intention is
to use this method with a commercial PIV system without
modifying the PIV process itself. In other words, our effort
is oriented to reduce the systematic pixel-locking effect by
adjusting data as a postprocessing procedure. To calibrate the
PIV system, a known field must be measured with it, and
the obvious way to implement this is to produce a digital
movie of simulated particles moving according to a prescribed
field. In order to have the same seeding conditions as those
of the real system in question, we take a snapshot of it
(see Fig. 1) and perform image rotations using the standard
bicubic extrapolation method. Therefore, the “real” field is
well known. The simulated dynamics is henceforth analyzed
with PIV using the same parameters and settings as for the
experimental data (see Sec. II). Two hundred frames are time
averaged to produce a single, noise-reduced velocity field. A
comparison of the real and the measured field phase spaces
is shown in Fig. 8(a). In this representation, points (U,V ) of
the prescribed field correspond to a regularly spaced grid of
points in the plane [black points in Fig. 8(a)]. The phase space
of the PIV results (u,v) is shown as red dots. As is evident, the
PIV analysis produces a very peculiar deformation of the field
characterized by a systematic bias of the displacements toward
integer pixel values, as is nicely portrayed in Fig. 9, where the
arrows depict the residual vectors (Ru,Rv) = (u − U,v − V ).

In order to obtain a usable instrument calibration we need
to correct for the pixel-locking effect. In principle, a simple
inversion of the map shown in Fig. 9 should be enough to
accomplish this. In this way, if we calculate

(U ′,V ′) = (u,v) − (Ru,Rv) (A3)

and if the map is robust, we should obtain the corrected
field (U ′,V ′) 	 (U,V ) The map is constructed using a linear
interpolation method. We interpolate the residual field (Ru,Rv)
on a square mesh to produce a value lookup table (LUT)
that can be used to estimate the inverted map. Henceforth,
we seek the three closest points (ui,vi)i=1,2,3 to each point
obtained from PIV analysis (u,v). Given that we know how
those three points are mapped back into the real space (U,V ),

FIG. 9. (Color) Residuals. This vector map shows the difference
(Ru,Rv), indicating how each of the points of the test images space are
mapped into the PIV space. This shows how the points in the velocity
space are moved toward integer values and away from fractional
integer values.

the corrected velocity value (U ′,V ′) can be interpolated from
them. Considering the landscapes generated by the LUT points
for each component of the real space, U (ui,vi) and V (ui,vi),
the corrected value (U ′,V ′) of an arbitrary PIV point (u,v) can
be calculated simply by evaluating it in the plane generated
by (ui,vi)i=1,2,3.

In Fig. 8(b) we see the average corrected phase space in
blue. Is clear that the inversion almost completely corrects
the data, except in the corners of the velocity plane where
fluctuations are strong due to scarce large-speed readouts.
Nonetheless, the corrected field has an almost-perfect coverage
of the phase space.

Results are shown in Fig. 10 in the form of resid-
uals (RU,RV ) = (U,V ) − (u − v) and (R′

U ,R′
V ) = (U,V ) −

(U ′,V ′). Error bars indicate dispersions around the time
average. The wavy shape in the plots has a wavelength of about

FIG. 10. (Color) Residuals of uncorrected data (a) RU = U − u

and (b) RV = V − v are shown in black and corrected data (a) R′
U =

U − U ′ and (b) R′
V = V − V ′ are shown in red. In both cases the

pixel-locking phenomenon is obvious if the field is not corrected.
Error bars represent dispersion of the data for each location and
should be a good estimate of the confidence of the measurement.
These dispersions are related to random errors, such as particular
seedings within a single evaluation window for different time frames.
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1 pixel/frame and is related to the square structure shown in
Fig. 9. This is an evident indicator of pixel locking. We see
that the corrected data do not entirely eliminate this feature

but decrease its amplitude considerably. The residual wave
has an amplitude of about 1/20 of a pixel/frame displacement,
providing a confidence level of about ±0.05 pixels.
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