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Abstract

Convex relaxation methods play an important role in mathematical optimization to
tackle hard nonconvex problems, and have been applied successfully in many areas of
science and engineering. At the heart of such methods lies the question of obtaining
a tractable description of the convex hull of a set. In this thesis we focus on the
question of finding tractable representations of convex sets via the method of lifting,
whereby the “hard” convex set is expressed as the projection of a simpler one living
in higher-dimensional space. We derive new results and insights on the power and
limitations of such liftings.

In the first part of the thesis we study limitations of the lifting method and develop
lower bounds on the sizes of linear programming (LP) and semidefinite programming
(SDP) lifts of polytopes. For LP lifts the bound we develop applies generally for the
nonnegative rank of matrices and we compare our method with existing combinatorial
and non-combinatorial techniques. For SDP lifts we focus on so-called equivariant
lifts that respect symmetry, and obtain lower bounds on the size of such lifts for
certain combinatorial polytopes by exploiting the connection with the sum-of-squares
method.

In the second part of the thesis, we study the power of the lifting procedure and
show how to obtain small semidefinite lifts for certain classes of polytopes via the
idea of sparse sums of squares. We develop a graph-theoretic method to construct
such lifts and use it to resolve a conjecture of Laurent from 2003 on the cut polytope,
and to give an explicit sequence of polytopes with a gap between LP and SDP lifts.

Finally we depart from the specific question of constructing lifts and consider
the general problem of certifying nonnegativity of functions. We study a class of
certificates rooted in convex duality and show that they encompass many existing
methods for proving nonnegativity based on convex optimization. In particular we
propose a new proof system to certify nonnegativity of entropy-like functions, which
we illustrate on the problem of computing the logarithmic Sobolev constant of finite
Markov chains.

Thesis Supervisor: Pablo A. Parrilo
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

In this short introductory chapter we give a brief overview of the lifting method
and discuss its importance in optimization when combined with the idea of convex
reformulations. We illustrate the power of the lifting method on a simple example and
introduce in an informal way linear programming and semidefinite programming lifts.
We briefly discuss the history of the lifting method in optimization, and conclude by
presenting the organization of the thesis.

1.1 Convex reformulations
Consider the following problem where we want to minimize a linear function ℓ(𝑥)
subject to the constraint 𝑥 ∈ 𝑋:

minimize ℓ(𝑥) subject to 𝑥 ∈ 𝑋. (1.1)

Here 𝑋 is an arbitrary subset of R𝑛 and need not be convex. It is a well-known
fact that, since the objective function is linear, the optimal value of (1.1) remains
unchanged if we change the constraint “𝑥 ∈ 𝑋” by “𝑥 ∈ conv(𝑋)”, where conv(𝑋)
denotes the convex hull of 𝑋 (see Figure 1-1 for an illustration):

minimize ℓ(𝑥) subject to 𝑥 ∈ conv(𝑋). (1.2)

Recall that the convex hull of 𝑋 is the set of all possible convex combinations of
elements of 𝑋:

conv(𝑋) =

{︃
𝑚∑︁

𝑖=1

𝜆𝑖𝑥𝑖 : 𝑚 ∈ N, 𝜆1, . . . , 𝜆𝑚 ≥ 0,
𝑚∑︁

𝑖=1

𝜆𝑖 = 1, 𝑥1, . . . , 𝑥𝑚 ∈ 𝑋

}︃
.

Using this definition the equality of the optimal values of (1.1) and (1.2) is straight-
forward to verify. Note that problem (1.2) is now formally convex since the cost
function is linear and the feasible set is convex.

The transformation from (1.1) to (1.2) seems to rely heavily on the fact that ℓ is
a linear function. It turns out however that a similar transformation can be applied
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X conv(X)

Figure 1-1: A nonconvex set 𝑋 and its convex hull

more generally, even if the objective is not linear, by introducing additional variables
and constraints. To illustrate this, assume that our objective in (1.1) was quadratic
instead of being linear, i.e., we are interested in minimizing 𝑞(𝑥) =

∑︀
𝑖≤𝑗 𝑞𝑖𝑗𝑥𝑖𝑥𝑗

subject to 𝑥 ∈ 𝑋:

minimize 𝑞(𝑥) =
∑︁

𝑖≤𝑗

𝑞𝑖𝑗𝑥𝑖𝑥𝑗 subject to 𝑥 ∈ 𝑋. (1.3)

If we introduce additional variables 𝑦𝑖𝑗 playing the role of 𝑥𝑖𝑥𝑗 we can reformulate
the problem above as follows:

minimize
∑︁

𝑖≤𝑗

𝑞𝑖𝑗𝑦𝑖𝑗 subject to 𝑦 ∈ 𝑌 (1.4)

where 𝑌 is defined as

𝑌 = {(𝑦𝑖𝑗)𝑖≤𝑗 : ∃𝑥 ∈ 𝑋 s.t. 𝑦𝑖𝑗 = 𝑥𝑖𝑥𝑗 ∀1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛} .

The objective function of (1.4) is now linear and thus by the same reasoning as above
the constraint “𝑦 ∈ 𝑌 ” can be changed to “𝑦 ∈ conv(𝑌 )”.

In both cases we have transformed the original problem to a new problem that is
convex, at least formally. In order to solve the problem however we need to find a
tractable representation of the set conv(𝑋) (or conv(𝑌 )).

Note that the idea of convex reformulations has been recognized in mathematical
optimization since the early days of integer programming. We refer the reader to
[57] and the references therein for more details on the use of such reformulations in
combinatorial optimization.

1.2 Lifts of convex sets
In this thesis we will be mostly dealing with the case where the set 𝑋 is finite which
arises in discrete and combinatorial optimization. The corresponding convex set 𝑃 =
conv(𝑋) in this case is called a polytope and can be described using a finite number

7



of linear inequalities.
The problem of optimizing a linear function over a polytope 𝑃 is known as lin-

ear programming. Interior-point methods are a popular class of algorithms for linear
programming, and the complexity of such algorithms typically depend on the size of
the inequality description of the polytope1. The size of the trivial such description is
equal to the number of facets of 𝑃 , a geometric quantity associated to 𝑃 . Unfortu-
nately, in many cases of interest, the number of facets of 𝑃 is prohibitively large to
enumerate directly in a linear programming formulation.

The idea of lifting consists in expressing the polytope 𝑃 as the projection of a
higher-dimensional polytope 𝑄 that has much fewer facets than 𝑃 . We say in this
case that 𝑄 is a (linear programming) lift of 𝑃 . For the purpose of optimization one
can then work over 𝑄 rather than working over 𝑃 . Indeed if we are interested in
minimizing ℓ over 𝑃 and if 𝑃 = 𝜋(𝑄) where 𝜋 is a linear (projection) map then we
have:

min
𝑥∈𝑃

ℓ(𝑥) = min
𝑦∈𝑄

ℓ ∘ 𝜋(𝑦). (1.5)

To give a simple example of a lift let 𝑃 denote the ℓ1 ball in R𝑛:

𝑃 = {𝑥 ∈ R𝑛 : ‖𝑥‖1 ≤ 1}.

The trivial description of 𝑃 obtained by enumerating the facets has size 2𝑛 since the
facets of the ℓ1 ball are given by all possible inequalities of the form ±𝑥1 ± 𝑥2 ± · · · ±
𝑥𝑛 ≤ 1. It is not difficult however to see that the ℓ1 ball admits a description using
only 2𝑛 linear inequalities, namely:

𝑃 =

{︃
𝑥 ∈ R𝑛 : ∃𝑦 ∈ R𝑛 s.t. − 𝑦𝑖 ≤ 𝑥𝑖 ≤ 𝑦𝑖,

𝑛∑︁

𝑖=1

𝑦𝑖 = 1

}︃
. (1.6)

In this case the higher-dimensional polytope 𝑄 lives in R2𝑛 and consists of vectors
(𝑥, 𝑦) that satisfy the constraints −𝑦𝑖 ≤ 𝑥𝑖 ≤ 𝑦𝑖 and

∑︀𝑛
𝑖=1 𝑦𝑖 = 1. The projection

map is 𝜋 : (𝑥, 𝑦) ↦→ 𝑥. The key point to note here is that the number of inequalities
in the description (1.6) is now 2𝑛, instead of the 2𝑛 we had before. Observe that the
description (1.6) is the one that we often use in practice when solving ℓ1 optimization
problems. In Chapter 2 we give other examples of polytopes where lifting allows us
to get a description that is much smaller than the trivial one.

So far we have been interested in expressing the polytope 𝑃 as the projection of
another polytope 𝑄. A significant portion of this thesis will deal with a more general
class of lifts called semidefinite programming lifts. Here the goal is to express the
polytope 𝑃 as the projection of the feasible set of a semidefinite program (SDP), i.e.,
a convex set 𝑄 that can be described using linear matrix inequalities:

𝑄 = {𝑦 ∈ R𝑚 : 𝐹0 + 𝑦1𝐹1 + · · ·+ 𝑦𝑚𝐹𝑚 ⪰ 0} . (1.7)
1For a more detailed discussion of complexity-theoretic aspects we refer the reader to Chapter 2,

Section 2.4.
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𝐹0, . . . , 𝐹𝑚 are 𝑑 × 𝑑 real symmetric matrices and the constraint in (1.7) indicates
that the matrix 𝐹0 + 𝑦1𝐹1 + · · · + 𝑦𝑚𝐹𝑚 is positive semidefinite. Such a convex set
is sometimes called a spectrahedron. When the matrices 𝐹0, . . . , 𝐹𝑚 are diagonal the
set 𝑄 is a polytope; in general however 𝑄 is not necessarily a polytope. It is clear
from this observation that SDP lifts form a broader class than LP lifts. The question
of when one can find SDP lifts that are significantly smaller than LP lifts is still not
very well understood. One of the results proved in Chapter 5 of this thesis shows
that there is an explicit class of polytopes for which SDP lifts are vanishingly smaller
than any LP lift (for increasing dimensions).

1.3 History
The idea of lifts (also called extended formulations) which consists in lifting the prob-
lem to a higher-dimensional space by introducing additional variables is well known
in optimization. However the first paper that studies lifts in a systematic way to
prove nonexistence of small lifts for certain polytopes is due to Yannakakis in 1991
[101]. In his paper Yannakakis showed that the traveling salesman polytope and the
matching polytope do not have polynomial-size symmetric linear programming lifts.

The recent years have witnessed a resurgence of interest in this topic. From the
lower bounds point of view several results have been proved concerning the nonex-
istence of small lifts for polytopes arising in combinatorial optimization. Fiorini et
al. [41] resolved a conjecture left open by Yannakakis and proved that the travel-
ing salesman polytope does not admit any polynomial-size linear programming lifts
(without any symmetry requirement). Later, Lee, Raghavendra, Steurer [76] showed
that the traveling salesman polytope has no polynomial-size semidefinite program-
ming lift. Another major result was also obtained recently by Rothvoß [89] where
he showed that the matching polytope has no polynomial-size linear programming
lift (again, with no symmetry requirement). This result of Rothvoß is particularly
striking since the matching polytope is known to have a polynomial-time separation
oracle. Several results have also been obtained concerning approximate lifts, see for
example [15, 21, 18].

From the upper bounds point of view new methods have been proposed to con-
struct improved lifts for certain classes of polytopes of convex sets, see for example
[62, 47, 64, 38, 94]. The problem of constructing semidefinite programming lifts for
algebraic sets has been of specific importance in the area of convex algebraic geometry
[10, 52, 69]. A conjecture by Helton and Nie [59] states that any convex semialgebraic
set admits a semidefinite programming lift.

1.4 Organization
The thesis is organized as follows:

∙ Chapter 2 starts by giving the formal definitions of LP and SDP lifts. We then
present a systematic way to understand lifts of polytopes in terms of certifi-
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cates of nonnegativity of facet inequalities. Such a characterization is due to
Yannakakis [101] in the case of LP lifts and to Gouveia, Parrilo, Thomas [50]
for the case of SDP lifts (and more generally conic lifts). This point of view on
lifts is crucial for the rest of the thesis.

∙ Chapter 3 considers the problem of lower bounding the nonnegative rank of
a matrix. As we see in Chapter 2 the nonnegative rank plays an important
role in characterizing the size of the smallest LP lift of a polytope. Several
techniques have been proposed in the literature to lower bound the nonnegative
rank. In this chapter we first review the different techniques and we present a
new method that unifies some of the existing techniques. This chapter is based
on the paper [34].

∙ Chapter 4 is devoted to the study of so-called equivariant SDP lifts, which
are lifts that respect the symmetries of the original polytope. We derive a
structure theorem that gives a characterization of such lifts in terms of sum-of-
squares certificates of facet inequalities from an invariant subspace. We apply
our structure theorem to derive lower bounds for the cut polytope, the parity
polytope, and regular polygons in the plane. This chapter is based on the papers
[37, 36].

∙ Chapter 5 is concerned with constructing semidefinite programming lifts by
exploiting the idea of sparse sums of squares. By working in a general setting
of Fourier analysis on finite abelian groups and by exploiting certain results
on sparse positive semidefinite matrices we show that there exists a family of
polytopes in increasing dimensions with a growing gap between LP and SDP
lifts. The tools we develop also allow us to prove a conjecture of Laurent from
2003 [72] on the Lasserre hierarchy for the maximum cut problem. This chapter
is mostly based on the paper [38].

∙ Finally in chapter 6 we depart from the specific problem of constructing lifts
of polytopes and we consider more generally the problem of certifying nonneg-
ativity of a function on a given set. We first show how ideas from [50] allow us
to formulate certificates of nonnegativity that generalize the existing ones (LP,
SDP/SOS, geometric programming, signomials, etc.). We then use this frame-
work to develop new certificates of nonnegativity for a class of entropy-like
functions that cannot be handled using existing techniques. As an application
of our method we show how it can be used to obtain a numerical estimate of
the logarithmic Sobolev constant for any given finite Markov chain.

The results in Chapter 2 concerning the characterization of lifts are used in Chapters
4 and 5. Chapter 3 can be read independently and only uses the definition of non-
negative rank (which we recall anyway at the beginning of the chapter). Chapter 6
is independent of the other chapters though many of the ideas presented there are
inspired from results in Chapters 2, 4 and 5.

10



1.5 Terminology and notations
The following table summarizes some of the common notations used throughout the
thesis. More specific notations will be defined in the individual chapters.

R+ (resp. R++) nonnegative (resp. positive) real numbers
S𝑑 space of 𝑑× 𝑑 real symmetric matrices
S𝑑
+ (resp. S𝑑

++) cone of 𝑑× 𝑑 real symmetric positive semidefinite (resp. pos-
itive definite) matrices

𝑋* (for 𝑋 ∈ C𝑛×𝑚) Hermitian conjugate of 𝑋 defined by (𝑋*)𝑖𝑗 = 𝑋𝑗𝑖

H𝑑 space of 𝑑× 𝑑 complex Hermitian matrices
H𝑑

+ (resp. H𝑑
++) cone of 𝑑 × 𝑑 Hermitian positive semidefinite (resp. positive

definite) matrices
S𝑉 ,S𝑉

+,H
𝑉 ,H𝑉

+ same as above except that rows and columns are indexed by
some set 𝑉

S𝑑
+ cone of 𝑑× 𝑑 real symmetric positive semidefinite matrices
𝐸* (for finite dim.
vector space 𝐸)

space of linear forms on 𝐸 = dual space of 𝐸

𝐾* (for cone 𝐾 ⊆ 𝐸) {ℓ ∈ 𝐸* : ℓ(𝑥) ≥ 0 ∀𝑥 ∈ 𝐾} = dual cone of 𝐾 (if 𝐸 has inner
product ⟨·, ·⟩ can identify 𝐾* as a cone in 𝐸)

R[𝑥1, . . . , 𝑥𝑛] space of polynomials in 𝑛 variables 𝑥1, . . . , 𝑥𝑛
R[𝑥1, . . . , 𝑥𝑛]≤𝑘 space of polynomials of degree at most 𝑘 in 𝑛 variables

𝑥1, . . . , 𝑥𝑛

11



Chapter 2

Lifts of convex sets and certificates of
nonnegativity
The main goal of this chapter is to give a concrete way to think about lifts of a
polytope in terms of certificates of nonnegativity of its valid linear inequalities. Any
polytope 𝑃 (or more generally, any closed convex set) is characterized by its set of
valid linear inequalities: these are the affine functions that take nonnegative values
on 𝑃 . A key result of Yannakakis [101], extended later in [50], shows that producing
a lift of 𝑃 is equivalent to finding certificates of nonnegativity of all the valid linear
inequalities of 𝑃 . What distinguishes LP lifts from SDP lifts is the kind of certificates
of nonnegativity considered. This point of view on lifts will be crucial for the rest of
the thesis and this chapter is thus devoted to explaining and illustrating it. We will
also outline connections with certain matrix factorization problems.
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2.1 LP lifts
A polyhedron in R𝑁 is a set described using a finite number linear inequalities:

𝑄 = {𝑥 ∈ R𝑁 : 𝑏+ 𝐴𝑥 ≥ 0} (2.1)

where 𝐴 ∈ R𝑑×𝑁 and 𝑏 ∈ R𝑑. Equivalently a polyhedron can be described in standard
form as the intersection of the nonnegative orthant R𝑑

+ with an affine subspace 𝐿.

Definition 1. Let 𝑃 be a polytope in R𝑛. We say that 𝑃 has a LP lift of size 𝑑 if
𝑃 can be written as 𝑃 = 𝜋(R𝑑

+ ∩ 𝐿) where 𝜋 : R𝑑 → R𝑛 is a linear map and 𝐿 is an
affine subspace of R𝑑. The size of the smallest LP lift of 𝑃 is called the LP extension
complexity of 𝑃 and denoted xcLP(𝑃 ).

Remark 1. Equivalently, an LP lift of size 𝑑 for a polytope 𝑃 is a representation
𝑃 = 𝜋(𝑄) where 𝑄 is a polytope with 𝑑 facets.

Figure 2-1 illustrates an LP lift of size 5 for the regular hexagon in the plane.

Figure 2-1: LP Lift of a hexagon of size 5. Note that hexagon has 6 facets whereas
the higher-dimensional polytope has 5 facets in R3.

2.1.1 Examples of LP lifts

We now give some examples of polytopes 𝑃 that admit nontrivial lifts.

∙ We saw in Chapter 1 the example of the ℓ1 ball in R𝑛 which has 2𝑛 facets and
which admits a simple lift of size 2𝑛.

∙ Another example of nontrivial lift is for the permutahedron. The permutahedron
𝑃 ⊂ R𝑛 is defined as the convex hull of all possible permutations of the vector
(1, 2, . . . , 𝑛), i.e.:

𝑃 = conv {(𝜎(1), . . . , 𝜎(𝑛)) : 𝜎 ∈ S𝑛}

where S𝑛 is the set of permutations on {1, . . . , 𝑛}. This polytope arises natu-
rally in ordering problems such as in gene sequencing, see e.g. [79]. It is known
that the permutahedron has an exponential number of facets, precisely 2𝑛 − 2.
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However it is not very difficult to construct a lift of the permutahedron of size
𝑛2. Indeed let 𝑄 denote the convex hull of permutation matrices in R𝑛×𝑛. The
Birkhoff-von Neumann theorem asserts that 𝑄 is precisely the set of doubly
stochastic matrices, i.e.:

𝑄 =
{︁
𝑀 ∈ R𝑛×𝑛 :𝑀𝑖𝑗 ≥ 0 ∀𝑖, 𝑗 = 1, . . . , 𝑛,

𝑛∑︁

𝑖=1

𝑀𝑖𝑗 = 1, ∀𝑗 = 1, . . . , 𝑛,

𝑛∑︁

𝑗=1

𝑀𝑖𝑗 = 1, ∀𝑖 = 1, . . . , 𝑛
}︁
.

It is easy to see that 𝑃 is a projection of 𝑄: indeed if we let 𝜋 : R𝑛×𝑛 → R𝑛

defined by 𝜋(𝑀) = 𝑀𝑢 where 𝑢 = (1, 2, . . . , 𝑛)𝑇 then we get that 𝜋(𝑄) = 𝑃 .
This lift has size 𝑛2 because 𝑄 requires exactly 𝑛2 inequalities for its description.
It turns out however that this lift is not optimal. Goemans showed in [47] that
the permutahedron admits a lift of size 𝑂(𝑛 log 𝑛) which is optimal (i.e., there
is no smaller possible lift). His construction however is more complicated and
makes use of sorting networks.

∙ Let 𝑃 ⊂ R2 be the regular 𝑁 -gon in the plane, i.e., the convex hull of the 𝑁
complex roots of unity. Even though 𝑃 has 𝑁 facets (and 𝑁 vertices), a result
of Ben-Tal and Nemirovski [6] shows that the regular 𝑁 -gon admits a lifted
description with only 𝑂(log𝑁) inequalities. This construction was used in [6]
to obtain polyhedral approximations of the second-order cone. Figure 2-1 shows
a lift of the regular hexagon of size 5.

N = 5 N = 6 N = 7 N = 8

Figure 2-2: Ben-Tal and Nemirovski showed in [6] that the regular 𝑁 -gon admits a
LP lift of size 𝑂(log𝑁).

∙ For other examples of lifts from the combinatorial optimization literature we
refer the reader to the surveys [27, 61].

2.1.2 Yannakakis’ theorem

Any polytope 𝑃 ⊂ R𝑛 (in fact any closed convex set) is described by its set of valid
linear inequalities: these are the affine functions on R𝑛 that are nonnegative on 𝑃 .
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Polytopes are described by a finite number of such linear inequalities known as the
facet inequalities. Any facet inequality takes the form

ℓ(𝑥) ≤ ℓmax

where ℓ is a linear function and ℓmax := max𝑥∈𝑃 ℓ(𝑥). For example in Figure 2-3
we show a facet inequality of the regular hexagon: in this case ℓ(𝑥) = 𝑥 + 1√

3
𝑦 and

ℓmax = 1.
Let 𝑋 denote the vertices of the polytope 𝑃 and let ℓ ≤ ℓmax be a facet inequality

for 𝑃 . Note that ℓmax − ℓ|𝑋 (i.e., the restriction of ℓmax − ℓ to 𝑋) is a nonnegative
function on 𝑋. The next theorem, due to Yannakakis shows that producing a lift of
𝑃 is equivalent to finding certificates of nonnegativity for ℓmax − ℓ|𝑋 .

Theorem 1 (Yannakakis [101]). Let 𝑃 = conv(𝑋) ⊂ R𝑛 be a full-dimensional1
polytope. Then 𝑃 has an LP lift of size 𝑑 if and only if, there exist 𝑑 nonnegative
functions on 𝑋, 𝑎1, . . . , 𝑎𝑑 : 𝑋 → R+ such that the following holds: for any facet
inequality ℓ(𝑥) ≤ ℓmax of 𝑃 there exist nonnegative coefficients 𝑏1, . . . , 𝑏𝑑 ≥ 0 such
that

ℓmax − ℓ|𝑋 =
𝑑∑︁

𝑖=1

𝑏𝑖𝑎𝑖. (2.2)

Note that Equation (2.2) is an equality of functions on 𝑋. It should be interpreted
as a certificate of nonnegativity of ℓmax−ℓ on 𝑋: indeed the right hand side is a linear
combination with nonnegative weights (the 𝑏𝑖’s) of nonnegative functions 𝑎1, . . . , 𝑎𝑑,
and so is “obviously” nonnegative on 𝑋. The size of the certificate, here the number of
functions 𝑎1, . . . , 𝑎𝑑, gives us the size of the LP lift. The main question in constructing
a lift is of course to come up with the nonnegative functions 𝑎1, . . . , 𝑎𝑑.
Remark 2. In the statements above, a “function on 𝑋” is simply an element of R𝑋 , i.e.,
it can be simply seen as a vector of length |𝑋|. We use the terminology “function on
𝑋” because in later chapters the domain 𝑋 and its symmetries will play an important
role when understanding so-called equivariant lifts.
Example 1. To illustrate Theorem 1 we now give the functions 𝑎1, . . . , 𝑎𝑑 that cor-
respond to the LP lift of size 5 of the hexagon from Figure 2-1. For the regular
hexagon we have |𝑋| = 6 and so we will represent functions on 𝑋 as column vec-
tors of size 6 where the vertices are ordered counter-clockwise starting from the
point with coordinates (1, 0). The matrix shown in Figure 2-3 (left) gives the 6
facets of the regular hexagon, one facet per column. For example to see how the
first column is formed note that the equation of the first facet inequality of the
hexagon is 1 − 𝑥 − 𝑦/

√
3 ≥ 0. The 𝑘’th vertex of the hexagon has coordinates

(cos(2(𝑘 − 1)𝜋/6), sin(2(𝑘 − 1)𝜋/6)). The 𝑘’th component of the first column is thus
given by 1 − cos(2(𝑘 − 1)𝜋/6) − sin(2(𝑘 − 1)𝜋/6)/

√
3. Note that each column has

exactly two zeros: this is because each facet of the regular hexagon passes through
exactly two vertices.

1We assume throughout this thesis that the polytope 𝑃 of interest is full-dimensional. Some of
the results may hold in greater generality but we keep this assumption for convenience.
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⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 2 2 1 0
0 0 1 2 2 1
1 0 0 1 2 2
2 1 0 0 1 2
2 2 1 0 0 1
1 2 2 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(2.3)

1− x− 1√
3
y ≥ 0

Figure 2-3: Facets of the regular hexagon

Consider now the following nonnegative functions on 𝑋, one per column (we do
not explain now how we come up with such functions, in fact this is the difficulty in
constructing lifts): ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5
0 1 0 0 1
0 2 0 1 0
0 1 1 0 0
1 0 1 0 0
2 0 0 1 0
1 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.4)

We need to show that these functions 𝑎1, . . . , 𝑎5 satisfy the condition of Theorem 1,
namely that each column of the matrix (2.3) is a nonnegative combination of the
columns of (2.4). One can verify that this is true and that the coefficients (the 𝑏𝑖’s
in the notations of Theorem 1) are given in the right-most matrix below:

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 2 2 1 0
0 0 1 2 2 1
1 0 0 1 2 2
2 1 0 0 1 2
2 2 1 0 0 1
1 2 2 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⏟  ⏞  
the facets

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 1
0 2 0 1 0
0 1 1 0 0
1 0 1 0 0
2 0 0 1 0
1 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⏟  ⏞  
the functions 𝑎1, . . . , 𝑎5

⎡
⎢⎢⎢⎢⎣

1 1 0 0 0 0
0 0 0 1 1 0
1 0 0 0 1 2
0 0 1 0 0 1
0 1 2 1 0 0

⎤
⎥⎥⎥⎥⎦

⏟  ⏞  
the coefficients 𝑏𝑖’s

(2.5)

♦

2.1.3 Nonnegative matrix factorization

It is not difficult to see from the previous example that Yannakakis’ theorem can
be expressed in terms of nonnegative factorization of matrices. We recall now the
definition of a nonnegative factorization of a matrix.

Definition 2 (Nonnegative matrix factorization / nonnegative rank). Let 𝑆 ∈ R𝑝×𝑞
+

be a matrix with nonnegative entries. We say that 𝑆 has a nonnegative factorization
of size 𝑟 if we can write 𝑆 = 𝐴𝐵 where 𝐴 ∈ R𝑝×𝑟

+ and 𝐵 ∈ R𝑟×𝑞
+ have nonnegative
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entries. The smallest 𝑟 for which such a factorization exists is called the nonnegative
rank of 𝑆 and denoted rank+(𝑆).

The matrix shown in Equation (2.3), which compiles all the facets of a polytope
(evaluated at the vertices) is known as the slack matrix of 𝑃 . Formally we have:

Definition 3 (Slack matrix). Let 𝑃 be a polytope in R𝑛. The slack matrix of 𝑃 is a
matrix where rows are indexed by vertices of 𝑃 and columns are indexed by facets of
𝑃 , and is defined as follows: The value at the (𝑥, ℓ) entry of 𝑃 (where 𝑥 is a vertex
and ℓ ≤ ℓmax is a facet inequality of 𝑃 ) is given by:

𝑆𝑥,ℓ = ℓmax − ℓ(𝑥).

Remark 3. The slack matrix of 𝑃 is not, strictly speaking, uniquely defined since it
depends on the ordering of the facets/vertices and the scaling of the facet inequalities.
The results stated here however will be independent of the choice of slack matrix and
that is why we will often talk about “the” slack matrix of 𝑃 .

It is clear that the entries of a slack matrix are nonnegative. It is not difficult to
see that Theorem 1 can be equivalently written in terms of nonnegative factorizations
of the slack matrix.

Theorem 2 (Yannakakis [101]; restatement of Theorem 1). Let 𝑃 = conv(𝑋) be a
full-dimensional polytope and let 𝑆 be its slack matrix. Then 𝑃 has a LP lift of size
𝑑 if, and only if, 𝑆 has a nonnegative factorization of size 𝑑. As a consequence, the
smallest size of a LP lift of 𝑃 is equal to rank+(𝑆).

Proof. If 𝑆 has a nonnegative factorization 𝑆 = 𝐴𝐵 of size 𝑑 then we can interpret
each column of 𝐴 as a nonnegative function 𝑎𝑖 : 𝑋 → R+, and the condition of
Theorem 1 is satisfied (the coefficients 𝑏𝑖’s are given by the matrix 𝐵). The other
direction is similar.

2.1.4 Proof of Yannakakis’ theorem

We now present a proof of Yannakakis’ theorem.

Proof of Theorem 1. We first prove necessity. Assume 𝑃 = 𝜋(R𝑑
+ ∩𝐿) is LP lift of 𝑃

of size 𝑑, where 𝐿 is an affine subspace of R𝑑 and 𝜋 a linear map. Let ℓmax ≤ ℓ be any
facet inequality of 𝑃 . Since 𝜋(R𝑑

+ ∩ 𝐿) ⊆ 𝑃 it is clear that the following implication
holds for any 𝑦: {︃

𝑦 ≥ 0

𝑦 ∈ 𝐿
⇒ ℓ ∘ 𝜋(𝑦) ≤ ℓmax.

One can show using Farkas’ lemma/strong duality for LP, that there exist coefficients
𝑏1, . . . , 𝑏𝑑 ≥ 0 and an affine form 𝛾 that vanishes on 𝐿 such that

ℓmax − ℓ ∘ 𝜋(𝑦) =
𝑑∑︁

𝑖=1

𝑏𝑖𝑦𝑖 + 𝛾(𝑦). (2.6)
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Note that Equation (2.6) automatically implies that ℓmax − ℓ ∘ 𝜋 is nonnegative on
R𝑑

+ ∩𝐿. To see why (2.6) is true let 𝐿0 be the linear subspace of R𝑑 parallel to 𝐿 and
let 𝑦0 ∈ R𝑑 such that 𝐿 = 𝑦0 + 𝐿0. Consider the following primal/dual pair of LPs
whose value is ℓmax:

max
𝑦∈R𝑑

(ℓ ∘ 𝜋)(𝑦)
s.t. 𝑦 ∈ R𝑑

+

𝑦 − 𝑦0 ∈ 𝐿0

min
𝑏,ℎ∈R𝑑

−⟨ℎ, 𝑦0⟩
s.t. −ℓ ∘ 𝜋 = 𝑏+ ℎ

𝑏 ∈ R𝑑
+, ℎ ∈ 𝐿⊥

0

(2.7)

By strong duality, there exists 𝑏 ∈ R𝑑
+ and ℎ ∈ 𝐿⊥

0 such that −ℓ ∘ 𝜋 = 𝑏 + ℎ and
−⟨ℎ, 𝑦0⟩ = ℓmax. Thus this means that

ℓmax − ℓ ∘ 𝜋 = 𝑏+ ℎ− ⟨ℎ, 𝑦0⟩

which is exactly (2.6) with 𝛾(𝑦) = ⟨ℎ, 𝑦 − 𝑦0⟩. Now for any 𝑥 ∈ 𝑋 we know that
there exists 𝐴(𝑥) = (𝑎1(𝑥), . . . , 𝑎𝑑(𝑥)) ∈ R𝑑

+∩𝐿 such that 𝜋(𝐴(𝑥)) = 𝑥. By evaluating
Equation (2.6) at 𝑦 = 𝐴(𝑥) we get (using the fact that 𝐴(𝑥) ∈ 𝐿 and so 𝛾(𝐴(𝑥)) = 0):

ℓmax − ℓ(𝑥) =
𝑑∑︁

𝑖=1

𝑏𝑖𝑎𝑖(𝑥) ∀𝑥 ∈ 𝑋.

Thus this proves the claim.
We now show sufficiency. Assume 𝑃 = {𝑥 ∈ R𝑛 : 𝐹𝑥 ≤ 𝑔} is a facet description

of our polytope 𝑃 where 𝐹 ∈ R𝑁×𝑛 and 𝑔 ∈ R𝑁 . Assume 𝑆 = 𝐴𝐵 is a nonnegative
factorization of the slack matrix of size 𝑑, where 𝐴 ∈ R|𝑋|×𝑑

+ and 𝐵 ∈ R𝑑×𝑁
+ . Then it

is easy to verify that 𝑃 can be written as:

𝑃 = {𝑥 ∈ R𝑛 : ∃𝑎 ∈ R𝑑 s.t. 𝑎 ≥ 0, 𝑔 − 𝐹𝑥 = 𝐵𝑇𝑎}. (2.8)

To see why the inclusion “⊆” holds, note that if 𝑥 ∈ 𝑋 is a vertex of 𝑃 then by letting
𝑎 be the row of 𝐴 indexed by 𝑥 the constraints on the right-hand side are satisfied.
The inclusion “⊇” is trivial since 𝐵𝑇𝑎 ≥ 0 for 𝑎 ≥ 0. The proof is almost complete
since the right-hand side of (2.8) is defined using only 𝑑 linear inequalities. To be sure
we just need to show that (2.8) can be put in the form 𝑃 = 𝜋(R𝑑

+∩𝐿) for some linear
map 𝜋 and affine subspace 𝐿 ⊂ R𝑑. Since 𝑃 is bounded and dim(𝑃 ) > 0, we know
that rank(𝐹 ) = 𝑛 and 𝑔 /∈ Im(𝐹 ). Since rank(𝐹 ) = 𝑛 the equation 𝐹𝑥 = 𝑔 − 𝐵𝑇𝑎
(in 𝑥) has a unique solution 𝑥𝑎 if 𝑔 − 𝐵𝑇𝑎 ∈ Im(𝐹 ) and no solution otherwise.
It is easy to see that the map that sends 𝑎 to 𝑥𝑎, defined on the affine subspace
𝐿 = {𝑎 ∈ R𝑑 : 𝑔 − 𝐵𝑇𝑎 ∈ Im(𝐹 )}, is affine. Since 0 does not belong to 𝐿 (this is
because 𝑔 /∈ Im(𝐹 )) this affine map can be extended to a linear map 𝜋 on the whole
space. We thus finally get that 𝑃 = 𝜋(R𝑑

+ ∩ 𝐿). This shows that 𝑃 admits a LP lift
of size 𝑑.
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2.1.5 Pseudo-expectation point of view

In the proof of Theorem 1 we showed how to construct a lift of a polytope given
certificates of nonnegativity of the facet inequalities (cf. (2.8)). In this section we
give an alternative point of view of this lift. This point of view may look more abstract
than (2.8) however it is more general and gives a better understanding of where the
lift comes from. The same ideas will reappear when we consider positive semidefinite
lifts.

The starting point of the lift is the following trivial representation of 𝑃 = conv(𝑋),
which follows simply from the definition of convex hull:

conv(𝑋) =

{︂∫︁

𝑋

𝑥𝑑𝜇(𝑥) : 𝜇 probability measure on 𝑋
}︂
. (2.9)

This expression says that conv(𝑋) is the set of first moments of probability measures
supported on 𝑋. Consider the expectation operator 𝐸 of a probability measure 𝜇,
which is given by:

𝐸(𝑓) =

∫︁

𝑋

𝑓(𝑥)𝑑𝜇(𝑥)

where 𝑓 is any real-valued function on 𝑋. Note that Equation (2.9) can be equiva-
lently written in terms of expectation operators as:

conv(𝑋) =
{︀
(𝐸(𝑒1), . . . , 𝐸(𝑒𝑛)) : 𝐸 is the expectation operator of some

probability measure 𝜇 supported on 𝑋
}︀ (2.10)

where 𝑒1, . . . , 𝑒𝑛 are the coordinate functions, i.e., 𝑒𝑖(𝑥) = 𝑥𝑖. The key difficulty in
describing conv(𝑋) is, therefore, in understanding expectation operators of proba-
bility measures on 𝑋. It is not difficult to come up with necessary conditions for a
map 𝐸 to be an expectation operator. Clearly it must satisfy 𝐸(1) = 1 (where 1 is
the constant function equal to 1), and it must also satisfy 𝐸(𝑎) ≥ 0 whenever 𝑎 is a
nonnegative function on 𝑋.

We now go back to the setting of Theorem 1 and recall that we have functions
𝑎1, . . . , 𝑎𝑑 : 𝑋 → R+ that are nonnegative on 𝑋. Any expectation operator must
thus satisfy 𝐸(𝑎𝑖) ≥ 0 for all 𝑖 = 1, . . . , 𝑑. Given the functions 𝑎1, . . . , 𝑎𝑑 we can thus
construct the following relaxation of conv(𝑋):

conv(𝑋) ⊆
{︀
( ̃︀𝐸(𝑒1), . . . , ̃︀𝐸(𝑒𝑛)) : ̃︀𝐸 ∈ (R𝑋)* s.t. ̃︀𝐸(1) = 1,

̃︀𝐸(𝑎𝑖) ≥ 0, ∀𝑖 = 1, . . . , 𝑑
}︀
.

(2.11)

We used the notation ̃︀𝐸 instead of 𝐸 since the maps ̃︀𝐸 are not necessarily expectations
of probability measures on 𝑋 (though that is how we want to think of them). Note
that ̃︀𝐸 is an element of the dual space (R𝑋)* since it is a linear map that takes a
function on 𝑋 (an element of R𝑋) and outputs a real number.

Recall now that our functions 𝑎𝑖 from Theorem 1 satisfy a very specific property.
This property precisely allows us to show that (2.11) is, in fact, an equality. To
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see why this is the case, let 𝑥 be a point in the right-hand side of (2.11), i.e., 𝑥 =

( ̃︀𝐸(𝑒1), . . . , ̃︀𝐸(𝑒𝑛)) for some ̃︀𝐸 that satisfies ̃︀𝐸(1) = 1 and ̃︀𝐸(𝑎𝑖) ≥ 0 for all 𝑖 =
1, . . . , 𝑑. We will prove that 𝑥 ∈ conv(𝑋) by showing that ℓ(𝑥) ≤ ℓmax for any facet
inequality ℓ ≤ ℓmax of conv(𝑋). Let thus ℓ ≤ ℓmax be a facet inequality of conv(𝑋).
By our assumption on the 𝑎𝑖’s from Theorem 1, we know that there exist coefficients
𝑏1, . . . , 𝑏𝑑 ≥ 0 such that ℓmax − ℓ|𝑋 =

∑︀𝑑
𝑖=1 𝑏𝑖𝑎𝑖. Since 𝑥 = ( ̃︀𝐸(𝑒1), . . . , ̃︀𝐸(𝑒𝑛)) and

ℓ(𝑥) =
∑︀𝑛

𝑖=1 ℓ𝑖𝑥𝑖 (in the canonical basis) we have:

ℓmax − ℓ(𝑥) = ℓmax −
𝑛∑︁

𝑖=1

ℓ𝑖 ̃︀𝐸(𝑒𝑖)
(𝑎)
= ̃︀𝐸

(︃
ℓmax −

𝑛∑︁

𝑖=1

ℓ𝑖𝑒𝑖

)︃

(𝑏)
= ̃︀𝐸

(︃
𝑑∑︁

𝑖=1

𝑏𝑖𝑎𝑖

)︃
=

𝑑∑︁

𝑖=1

𝑏𝑖 ̃︀𝐸(𝑎𝑖) ≥ 0

where in (𝑎) we used the linearity of ̃︀𝐸 and the fact that ̃︀𝐸(1) = 1, and in (𝑏)
we used the assumption that ℓmax − ℓ|𝑋 =

∑︀𝑑
𝑖=1 𝑏𝑖𝑎𝑖. We have thus proved that

ℓmax − ℓ(𝑥) ≥ 0. Since this is true for any facet inequality of conv(𝑋) we have thus
shown that 𝑥 ∈ conv(𝑋).

The maps ̃︀𝐸 are known as pseudo-expectations (most notably in the theoretical
computer science literature [2]) since they act as expectations of probability distribu-
tions even though they are not necessarily such. We will revisit pseudo-expectations
in the next section when discussing SDP lifts.

2.2 SDP lifts
In this section we treat semidefinite programming (SDP) lifts of polytopes. A spec-
trahedron of size 𝑑 is a convex set 𝑄 that can be described using a linear matrix
inequality of size 𝑑, i.e.,

𝑄 = {𝑦 ∈ R𝑁 : 𝐹0 + 𝑦1𝐹1 + · · ·+ 𝑦𝑁𝐹𝑁 ∈ S𝑑
+}

where 𝐹0, . . . , 𝐹𝑁 are real symmetric matrices of size 𝑑×𝑑 and S𝑑
+ denotes the cone of

𝑑×𝑑 positive semidefinite matrices. Equivalently if we call 𝐿 the affine subspace of S𝑑

defined as 𝐹0 + span(𝐹1, . . . , 𝐹𝑁) we can think of a spectrahedron as the intersection
of the cone S𝑑

+ with this affine subspace. For convenience this is the definition we will
be adopt in this thesis.

Definition 4. Let 𝑃 be a polytope. We say that 𝑃 has a SDP lift of size 𝑑 if it can
be written as 𝑃 = 𝜋(S𝑑

+ ∩ 𝐿) where S𝑑
+ is the cone of 𝑑 × 𝑑 real symmetric positive

semidefinite matrices, and 𝐿 is an affine subspace of S𝑑. The size of the smallest SDP
lift of 𝑃 is called the SDP extension complexity of 𝑃 and denoted xcSDP(𝑃 ).
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Example 2. Figure 2-4 illustrates a SDP lift of the square [−1, 1]2 of size 3, given by:

[−1, 1]2 =

⎧
⎨
⎩(𝑥1, 𝑥2) ∈ R2 : ∃𝑢 ∈ R

⎡
⎣
1 𝑥1 𝑥2
𝑥1 1 𝑢
𝑥2 𝑢 1

⎤
⎦ ⪰ 0

⎫
⎬
⎭ . (2.12)

Figure 2-4: SDP lift of the square [−1, 1]2 of size 3 (cf. Equation (2.12)). The three-
dimensional convex set shown in the figure is the set of (𝑥1, 𝑥2, 𝑢) such that the 3× 3
symmetric matrix on the right-hand side of (2.12) is positive semidefinite. Projecting
this set onto (𝑥1, 𝑥2) yields the square [−1, 1]2.

To see why (2.12) is true note that if (𝑥1, 𝑥2) ∈ {−1, 1}2 then by letting 𝑢 = 𝑥1𝑥2
we have: ⎡

⎣
1 𝑥1 𝑥2
𝑥1 1 𝑢
𝑥2 𝑢 1

⎤
⎦ =

⎡
⎣
1
𝑥1
𝑥2

⎤
⎦
⎡
⎣
1
𝑥1
𝑥2

⎤
⎦

𝑇

⪰ 0.

Since the right-hand side of (2.12) is convex this shows that conv({−1, 1}2) = [−1, 1]2

is contained in it. Conversely if (𝑥1, 𝑥2) belongs to the right-hand side of (2.12) then
by looking at the 2× 2 minors of the 3× 3 positive semidefinite matrix we easily get
that 1− 𝑥21 ≥ 0 and 1− 𝑥22 ≥ 0 i.e., (𝑥1, 𝑥2) ∈ [−1, 1]2. ♦

2.2.1 Factorization theorem SDP lifts

One can prove a result similar to Theorem 1 which characterizes SDP lifts of a poly-
tope 𝑃 in terms of certificates of nonnegativity of the facet inequalities. This theorem
is due to Gouveia, Parrilo, Thomas [50].

Theorem 3 (Gouveia, Parrilo, Thomas, [50]). Let 𝑃 be a full-dimensional polytope
and let 𝑋 be its set of vertices. The polytope 𝑃 has a SDP lift of size 𝑑 if, and only if,
there exists a map 𝐴 : 𝑋 → S𝑑

+ such that the following holds: for any facet inequality
ℓ ≤ ℓmax of 𝑃 there exists 𝐵 ∈ S𝑑

+ such that

ℓmax − ℓ(𝑥) = ⟨𝐴(𝑥), 𝐵⟩ ∀𝑥 ∈ 𝑋. (2.13)

21



Note that Equation (2.13) is an equality of functions on 𝑋. Just like in the LP
case, it should be understood as a certificate of nonnegativity for ℓmax − ℓ|𝑋 . Indeed
the function 𝑥 ↦→ ⟨𝐴(𝑥), 𝐵⟩ is “obviously” nonnegative on 𝑋 since 𝐴(𝑥) ∈ S𝑑

+ and
𝐵 ∈ S𝑑

+.

Remark 4. If the SDP lift has the form 𝑃 = 𝜋(S𝑑
+∩𝐿) then, as we will see in the proof

of the theorem, the map 𝐴 : 𝑋 → S𝑑
+ can be any map that satisfies 𝐴(𝑥) ∈ S𝑑

+ ∩ 𝐿
and 𝜋(𝐴(𝑥)) = 𝑥 for any 𝑥 ∈ 𝑋. We note this property here since it will be useful in
later chapters.

Example 3. To illustrate Theorem 3, let us go back to the example of the square
[−1, 1]2 (Example 2) and let us exhibit the function 𝐴 : 𝑋 → S3

+ in this case. In this
example the vertex set is 𝑋 = {−1, 1}2. Consider the map 𝐴 given by:

𝐴(𝑥) =

⎡
⎣
1 𝑥1 𝑥2
𝑥1 1 𝑥1𝑥2
𝑥2 𝑥1𝑥2 1

⎤
⎦ .

Note that 𝐴(𝑥) ∈ S3
+ for 𝑥 ∈ 𝑋 since we have, for any 𝑥 ∈ 𝑋 (using the fact that

𝑥21 = 𝑥22 = 1):

𝐴(𝑥) =

⎡
⎣
1
𝑥1
𝑥2

⎤
⎦
⎡
⎣
1
𝑥1
𝑥2

⎤
⎦

𝑇

⪰ 0.

To show that the condition of Theorem 3 is satisfied consider the facet inequality
1− 𝑥1 ≥ 0. Define

𝐵 =
1

2

⎡
⎣

1
−1
0

⎤
⎦
⎡
⎣

1
−1
0

⎤
⎦

𝑇

and note that 𝐵 ⪰ 0. Then we have for any 𝑥 ∈ {−1, 1}2

⟨𝐴(𝑥), 𝐵⟩ =
⟨⎡
⎣
1 𝑥1 𝑥2
𝑥1 1 𝑥1𝑥2
𝑥2 𝑥1𝑥2 1

⎤
⎦ , 1

2

⎡
⎣

1 −1 0
−1 1 0
0 0 0

⎤
⎦
⟩

=
1

2
(1− 2𝑥1 + 1) = 1− 𝑥1.

Similarly one can show that the three other facet inequalities 1 + 𝑥1 ≥ 0, 1− 𝑥2 ≥ 0
and 1 + 𝑥2 ≥ 0 can be written as ⟨𝐴(𝑥), 𝐵⟩ for a suitable choice of 𝐵. This shows
that the map 𝐴 satisfies the condition of Theorem 3. ♦

2.2.2 Positive semidefinite factorizations

In the same way that Theorem 1 can be expressed in terms of nonnegative factor-
ization of the slack matrix of 𝑃 , Theorem 3 can similarly be formulated in terms of
so-called positive semidefinite factorizations of a matrix.

Definition 5 (Gouveia, Parrilo, Thomas [50]). Let 𝑆 ∈ R𝑝×𝑞
+ be a matrix with

nonnegative entries. We say that 𝑆 has a positive semidefinite factorization (psd
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factorization) of size 𝑑 if there exist positive semidefinite matrices 𝐴1, . . . , 𝐴𝑝 ∈ S𝑑
+

and 𝐵1, . . . , 𝐵𝑞 ∈ S𝑑
+ such that 𝑆𝑖𝑗 = ⟨𝐴𝑖, 𝐵𝑗⟩ for all 𝑖 = 1, . . . , 𝑝 and 𝑗 = 1, . . . , 𝑞.

The size of the smallest psd factorization of 𝑆 is called the psd rank of 𝑆 and denoted
rankpsd(𝑆).

Theorem 3 can now be formulated in terms of positive semidefinite factorizations
of the slack matrix of 𝑃 (recall the definition of slack matrix, Definition 3).

Theorem 4 (Gouveia, Parrilo, Thomas [50]; restatement of Theorem 3). Let 𝑃 be
a full-dimensional polytope and let 𝑆 be its slack matrix. Then 𝑃 has a SDP lift
of size 𝑑 if, and only if, 𝑆 has a positive semidefinite factorization of size 𝑑. As a
consequence, the smallest size of a SDP lift of 𝑃 is equal to rankpsd(𝑆).

For more information on the positive semidefinite rank, we refer the reader to the
paper [32] which surveys some of its properties and applications in optimization as
well as in other areas.

2.2.3 Sums of squares

In this section we show that SDP lifts can also be interpreted in terms of sum of
squares certificates of the facet inequalities ℓmax − ℓ|𝑋 . Such a certificate consists in
expressing ℓmax − ℓ|𝑋 as a sum of squares of functions on 𝑋. More formally we have:

Theorem 5. Let 𝑃 be a full-dimensional polytope with vertex set 𝑋. Assume there
is a subspace 𝑉 of R𝑋 such that the following holds:

(*) for any facet inequality ℓ ≤ ℓmax of 𝑃 there are elements ℎ1, . . . , ℎ𝐽 ∈ 𝑉 such
that

ℓmax − ℓ|𝑋 =
𝐽∑︁

𝑗=1

ℎ2𝑗 . (2.14)

Then 𝑃 has a SDP lift of size dim𝑉 .
Conversely if 𝑃 has a SDP lift of size 𝑑, then there is a subspace 𝑉 of R𝑋 of

dimension at most 𝑑2 such that condition (*) holds.

Proof. We start by proving the first part. Assume we have a subspace 𝑉 of dimension
𝑑 such that condition (*) holds. Let 𝑓1, . . . , 𝑓𝑑 be a basis of this subspace and define
the map 𝐴 : 𝑋 → S𝑑

+ as follows:

𝐴(𝑥) =

⎡
⎢⎣
𝑓1(𝑥)

...
𝑓𝑑(𝑥)

⎤
⎥⎦

⎡
⎢⎣
𝑓1(𝑥)

...
𝑓𝑑(𝑥)

⎤
⎥⎦

𝑇

= [𝑓𝑖(𝑥)𝑓𝑗(𝑥)]1≤𝑖,𝑗≤𝑑.

Clearly 𝐴(𝑥) ⪰ 0 (note also that 𝐴(𝑥) is rank-one for any 𝑥 ∈ 𝑋). Now let ℓ ≤ ℓmax

be a facet inequality for 𝑃 . By (*) we know that there exists elements ℎ1, . . . , ℎ𝐽 ∈ 𝑉
such that (2.14) holds. We will show that there exists 𝐵 ∈ S𝑑

+ such that ℓmax− ℓ|𝑋 =
⟨𝐴(·), 𝐵⟩. Since each ℎ𝑗 is in 𝑉 we can write ℎ𝑗(𝑥) = 𝑏𝑇𝑗 𝑓(𝑥) where 𝑏𝑗 ∈ R𝑑 and
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𝑓(𝑥) is the column vector [𝑓1(𝑥); . . . ; 𝑓𝑑(𝑥)]. Now note that (ℎ𝑗(𝑥))
2 = (𝑏𝑇𝑗 𝑓(𝑥))

2 =

⟨𝑓(𝑥)𝑓(𝑥)𝑇 , 𝑏𝑗𝑏𝑇𝑗 ⟩ = ⟨𝐴(𝑥), 𝑏𝑗𝑏𝑇𝑗 ⟩. Thus if we let 𝐵 =
∑︀𝐽

𝑗=1 𝑏𝑗𝑏
𝑇
𝑗 we get

ℓmax − ℓ(𝑥) = ⟨𝐴(𝑥), 𝐵⟩ ∀𝑥 ∈ 𝑋

which is what we wanted. Thus using Theorem 3, this shows that 𝑃 has an SDP lift
of size 𝑑.

We now prove the other direction. Assume that 𝑃 has a SDP lift of size 𝑑.
According to Theorem 3 this means that there exists 𝐴 : 𝑋 → S𝑑

+ such that the
following holds: for any facet inequality ℓ ≤ ℓmax there is 𝐵 ∈ S𝑑

+ such that ℓmax −
ℓ(𝑥) = ⟨𝐴(𝑥), 𝐵⟩, for all 𝑥 ∈ 𝑋. Since 𝐴(𝑥) ∈ S𝑑

+ we can factorize it as 𝐴(𝑥) =
𝑅(𝑥)𝑅(𝑥)𝑇 . Let 𝑉 be the subspace of R𝑋 spanned by the entries of 𝑅, i.e., 𝑉 =
span(𝑥 ↦→ 𝑅𝑖𝑗(𝑥), 𝑖, 𝑗 = 1, . . . , 𝑑) ⊂ R𝑋 and note that dim𝑉 ≤ 𝑑2. Now given ℓ ≤ ℓmax

a facet inequality of 𝑃 we know that there exists 𝐵 ∈ S𝑑
+ such that ℓmax − ℓ(𝑥) =

⟨𝐴(𝑥), 𝐵⟩ for all 𝑥 ∈ 𝑋. We can write 𝐵 as 𝐵 = 𝐶𝐶𝑇 to get

ℓmax − ℓ(𝑥) = ⟨𝑅(𝑥)𝑅(𝑥)𝑇 , 𝐶𝐶𝑇 ⟩ = ‖𝐶𝑇𝑅(𝑥)‖2𝐹 .

Since each entry of 𝑥 ↦→ 𝐶𝑇𝑅(𝑥) is an element of 𝑉 the previous equation gives a
sum-of-squares certificate of ℓmax − ℓ|𝑋 using functions from 𝑉 . This completes the
proof.

Example 4. The lift of the square [−1, 1]2 discussed earlier can be explained in terms
of sum-of-squares certificates. Note that the facet inequality 1−𝑥1 ≥ 0 can be certified
using sum-of-squares as follows:

1− 𝑥1 =
1

2
(1− 𝑥1)

2 ∀𝑥 ∈ {−1, 1}2.

It is crucial to note that the equality above is understood on {−1, 1}2 (the equality
is of course not true globally because the left hand side is a polynomial of degree 1
whereas the right-hand side is a polynomial of degree 2). Since we are working on
{−1, 1}2 the right-hand side expands to 1

2
(1 − 2𝑥1 + 𝑥21) =

1
2
(1 − 2𝑥1 + 1) = 1 − 𝑥1

where we used the fact that 𝑥21 = 1. Similarly one can show that the other facet
inequalities have the following sum-of-squares certificates:

1− 𝑥2 =
1

2
(1− 𝑥2)

2 ∀𝑥 ∈ {−1, 1}2,

1 + 𝑥1 =
1

2
(1 + 𝑥1)

2 ∀𝑥 ∈ {−1, 1}2,

1 + 𝑥2 =
1

2
(1 + 𝑥2)

2 ∀𝑥 ∈ {−1, 1}2.

Thus if we let 𝑉 be the space of polynomials of degree at most 1 on {−1, 1}2 (i.e., by
an abuse of notation 𝑉 = span(1, 𝑥1, 𝑥2)) the condition (*) of Theorem 5 holds true.
Thus this shows that [−1, 1]2 has a SDP lift of size dim𝑉 = 3. ♦
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2.2.4 Proof of the factorization theorem for SDP lifts

We now give a proof of Theorem 3.

Proof of Theorem 3. The proof follows the same steps as the proof of Theorem 1 for
LP lifts. The only difference is that we use the generalized Farkas’ lemma/strong
duality for SDPs.

Assume that 𝑃 = 𝜋(S𝑑
+ ∩ 𝐿) is an SDP lift of 𝑃 of size 𝑑 where 𝐿 is an affine

subspace of S𝑑 and 𝜋 a linear map. Let ℓ ≤ ℓmax be any facet inequality of 𝑃 . Since
𝜋(S𝑑

+ ∩ 𝐿) ⊆ 𝑃 the following implication holds for all 𝑌 ∈ S𝑑:
{︃
𝑌 ⪰ 0

𝑌 ∈ 𝐿
⇒ ℓmax − ℓ ∘ 𝜋(𝑌 ) ≥ 0.

We will now show using Farkas’ lemma/strong duality for SDP that there is a positive
semidefinite matrix 𝐵 ∈ S𝑑

+, an affine form 𝛾 that vanishes on 𝐿 such that

ℓmax − ℓ ∘ 𝜋(𝑌 ) = ⟨𝐵, 𝑌 ⟩+ 𝛾(𝑌 ) ∀𝑌 ∈ S𝑑. (2.15)

To see why (2.15) is true let 𝐿0 be the linear space in S𝑑 parallel to 𝐿 and let 𝑌0 ∈ S𝑑

such that 𝐿 = 𝑌0 + 𝐿0. The following problems are dual to each other and the value
of the primal (maximization) problem is equal to ℓmax:

max
𝑌 ∈S𝑑

(ℓ ∘ 𝜋)(𝑌 )

s.t. 𝑌 ∈ S𝑑
+

𝑌 − 𝑌0 ∈ 𝐿0

min
𝐵,𝐻∈S𝑑

−⟨𝐻,𝑌0⟩
s.t. −ℓ ∘ 𝜋 = 𝐵 +𝐻

𝐵 ∈ S𝑑
+, 𝐻 ∈ 𝐿⊥

0

(2.16)

We can assume that the intersection of 𝐿 with the interior of S𝑑
+ is nonempty (other-

wise the intersection lies on a strict face of S𝑑
+ which means that one can reduce the

size of the SDP lift). In this case strong duality holds, the optimal values of the two
SDPs (2.16) are equal to ℓmax and the dual (minimization) problem is attained. Let
𝐵,𝐻 be the optimal points of the dual problem in (2.16). From dual feasibility we
have −ℓ ∘ 𝜋 = 𝐵 +𝐻 and so since ℓmax = −⟨𝐻,𝑌0⟩ we get that:

ℓmax − ℓ ∘ 𝜋 = 𝐵 +𝐻 − ⟨𝐻,𝑌0⟩.

Note that this shows (2.15) where the affine map 𝛾 is 𝛾(𝑌 ) = ⟨𝐻, 𝑌 −𝑌0⟩. For 𝑥 ∈ 𝑋
let 𝐴(𝑥) be any element in S𝑑

+∩𝐿 such that 𝜋(𝐴(𝑥)) = 𝑥. Evaluating (2.15) at 𝐴(𝑥),
for any 𝑥 ∈ 𝑋 we get:

ℓmax − ℓ(𝑥) = ⟨𝐵,𝐴(𝑥)⟩
where we used the fact that 𝜋(𝐴(𝑥)) = 𝑥 and that 𝛾(𝐴(𝑥)) = 0 since 𝐴(𝑥) ∈ 𝐿. This
proves our claim.

We now prove the converse. We show how to construct an SDP lift of 𝑃 from
a psd factorization of its slack matrix. Assume 𝑃 = {𝑥 ∈ R𝑛 : 𝐹𝑥 ≤ 𝑔} is a facet
description of 𝑃 where 𝐹 ∈ R𝑁×𝑛, 𝑔 ∈ R𝑁 . Let 𝑆 be the slack matrix of 𝑃 and let

25



𝑆𝑥,ℓ = ⟨𝐴(𝑥), 𝐵(ℓ)⟩ be a psd factorization of 𝑆 of size 𝑑, where 𝐴(𝑥), 𝐵(ℓ) ∈ S𝑑
+ (here

𝑥 ∈ 𝑋 is a vertex of 𝑃 and ℓ ≤ ℓmax is a facet-defining inequality of 𝑃 ). It is easy to
verify that we have the following description of 𝑃 :

𝑃 =
{︀
𝑥 ∈ R𝑛 : ∃𝐴 ∈ S𝑑, 𝐴 ⪰ 0 and 𝑔𝑗 − 𝑓𝑇

𝑗 𝑥 = ⟨𝐴,𝐵𝑗⟩ ∀𝑗 = 1, . . . , 𝑁
}︀

(2.17)

where 𝑓𝑇
𝑗 is the 𝑗’th row of 𝐹 . To see why the inclusion “⊆” holds let 𝑥 ∈ 𝑋 be

a vertex of 𝑃 and take 𝐴 = 𝐴(𝑥) in the right-hand side. The reverse inclusion
“⊇” follows immediately by observing that ⟨𝐴,𝐵𝑗⟩ ≥ 0 since 𝐴 and 𝐵𝑗 are positive
semidefinite.

The remaining part of the proof is to show that (2.17) is indeed a positive semidef-
inite lift of 𝑃 , i.e., that it can be put in the form 𝑃 = 𝜋(S𝑑

+ ∩ 𝐿) for some linear
map 𝜋 and affine subspace 𝐿. Let 𝑇 : S𝑑 → R𝑁 be the linear map defined by
𝑇 (𝐴) = (⟨𝐴,𝐵1⟩, . . . , ⟨𝐴,𝐵𝑁⟩). Then we can rewrite (2.17) as:

𝑃 =
{︀
𝑥 ∈ R𝑛 : ∃𝐴 ∈ S𝑑

+ s.t. 𝑔 − 𝐹𝑥 = 𝑇 (𝐴)
}︀
.

Since 𝑃 is bounded and dim(𝑃 ) > 0, we know that rank(𝐹 ) = 𝑛 and 𝑔 /∈ Im(𝐹 ).
Since rank(𝐹 ) = 𝑛 the equation 𝐹𝑥 = 𝑔 − 𝑇 (𝐴) (in 𝑥) has a unique solution 𝑥𝐴 if
𝑔−𝑇 (𝐴) ∈ Im(𝐹 ) and no solution otherwise. It is easy to see that the map that sends
𝐴 to 𝑥𝐴, defined on the affine subspace 𝐿 = {𝐴 : 𝑔− 𝑇 (𝐴) ∈ Im(𝐹 )}, is affine. Since
0 does not belong to 𝐿 (this is because 𝑔 /∈ Im(𝐹 )) this affine map can be extended
to a linear map 𝜋 on the whole space. We thus finally get that 𝑃 = 𝜋(S𝑑

+ ∩ 𝐿). This
shows that 𝑃 is the projection of a spectrahedron of size 𝑑.

2.2.5 Pseudo-expectation point of view

We now give the pseudo-expectation point of view of the lift (2.17) as we did in the
case of LP lifts (cf. Section 2.1.5). Recall that conv(𝑋) has the following trivial
representation which simply comes from the definition of the convex hull:

conv(𝑋) =
{︀
(𝐸(𝑒1), . . . , 𝐸(𝑒𝑛)) : 𝐸 is the expectation operator of some

probability measure 𝜇 supported on 𝑋
}︀
.

(2.18)

Assume now that we have a map 𝐴 : 𝑋 → S𝑑
+ as in Theorem 3. Note that if 𝐸 is any

valid expectation operator on 𝑋 then it has to satisfy 𝐸𝑥(𝐴(𝑥)) ∈ S𝑑
+ (the subscript

𝑥 is just to indicate that we are taking the expectation with respect to 𝑥). By simply
imposing this condition and the normalization constraint 𝐸(1) = 1 we thus get the
following relaxation of conv(𝑋):

conv(𝑋) ⊆
{︁
( ̃︀𝐸(𝑒1), . . . , ̃︀𝐸(𝑒𝑛)) : ̃︀𝐸 ∈ (R𝑋)*, ̃︀𝐸(1) = 1, ̃︀𝐸𝑥(𝐴(𝑥)) ∈ S𝑑

+

}︁
. (2.19)

In the same way as in the LP case, one can show that if the condition of Theorem 3
is satisfied then we have equality in (2.19). We omit the proof here since it is very
similar to the LP case explained in Section 2.1.5.
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The case of sum-of-squares lifts (see Section 2.2.3) also has a simple interpretation
in this setting. It simply consists in enforcing the constraint that 𝐸(𝑓 2) ≥ 0 for all
𝑓 ∈ 𝑉 , where 𝑉 is the subspace of functions in Theorem 5. Under the conditions of
Theorem 5 we can show:

conv(𝑋) =
{︁
( ̃︀𝐸(𝑒1), . . . , ̃︀𝐸(𝑒𝑛)) : ̃︀𝐸 ∈ (R𝑋)*, ̃︀𝐸(1) = 1, ̃︀𝐸(𝑓 2) ≥ 0 ∀𝑓 ∈ 𝑉

}︁
. (2.20)

Note that the constraint ̃︀𝐸(𝑓 2) ≥ 0 for all 𝑓 ∈ 𝑉 can be written as a positive
semidefinite constraint of size dim𝑉 since it expresses the fact that the quadratic
form 𝑓 ∈ 𝑉 ↦→ ̃︀𝐸(𝑓 2) is positive semidefinite. The symmetric matrix associated to
this quadratic form is often called a moment matrix.

As we mentioned earlier when discussing the LP case the map ̃︀𝐸 is often called
a pseudo-expectation. In fact this terminology is most often used in the case of the
sum-of-squares relaxations, see e.g., [2].

2.3 Hierarchies
The theorems presented in the previous sections show that constructing a lift of a
polytope 𝑃 is equivalent to finding certificates of nonnegativity for the facet inequal-
ities. The question is: how do we find such certificates? how can we find, in a
systematic way, the functions 𝑎1, . . . , 𝑎𝑑 of Theorem 1 (LP lifts), or the subspace 𝑉
of Theorem 5 (sum-of-squares lifts)? There is of course no magical way of produc-
ing such functions in general but some of the existing hierarchies can be shown to
correspond to specific choices. In this section we briefly outline these choices.

2.3.1 Krivine/Handelman/Sherali-Adams hierarchy

Assume that our polytope 𝑃 = conv(𝑋) is 0-1, i.e., that the vertex set 𝑋 is a subset
of {0, 1}𝑛, and more precisely that it can be written as

𝑋 = {𝑥 ∈ {0, 1}𝑛 : 𝑔1(𝑥) ≥ 0, . . . , 𝑔𝑚(𝑥) ≥ 0}

where 𝑔1, . . . , 𝑔𝑚 are some polynomials. In this case it is not difficult to come up with
functions that are nonnegative on 𝑋. In fact for any choice of subsets 𝐼 ⊆ 𝑇 ⊆ [𝑛]
and integers 𝛾 ∈ N𝑚 the following function is nonnegative on 𝑋:

𝑎𝑇,𝐼,𝛾(𝑥) =
∏︁

𝑖∈𝐼
𝑥𝑖
∏︁

𝑖∈𝑇∖𝐼
(1− 𝑥𝑖)

𝑚∏︁

𝑗=1

𝑔𝑗(𝑥)
𝛾𝑗 .

Note that 𝑎𝑇,𝐼,𝛾 is a polynomial of degree at most |𝑇 |+∑︀𝑚
𝑗=1 𝛾𝑗 deg(𝑔𝑗). For a fixed

integer 𝑘 we can consider the outer-relaxation (2.11) of 𝑃 obtained by considering
only the functions 𝑎𝑇,𝐼,𝛾 of degree at most 𝑘. By increasing 𝑘 we get a hierarchy of
increasingly tighter relaxations to our polytope 𝑃 = conv(𝑋). Certificates of this
form are the basis of the well-known Sherali-Adams hierarchy [96], and also of the
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Handelman hierarchy [58, 75]. In fact such certificates have been investigated as early
as 1964 by Krivine in [66]. We refer the reader to [71, 75] for more details on the
specifics of each hierarchy (which functions to include at the level 𝑘 of the hierarchy)
and for questions related to the convergence of the hierarchy.

2.3.2 Lasserre/theta-body hierarchy

One of the most studied methods to produce SDP lifts of polytopes is the so-called
Lasserre/theta-body hierarchy [69, 49]. This method can be explained very simply in
terms of the terminology set up in Section 2.2.5. The relaxation at level 𝑘 is exactly
given by (2.20) where the subspace 𝑉 consists of the space of polynomials of degree
at most 𝑘. More explicitly, the 𝑘’th level of the Lasserre/theta-body hierarchy for
conv(𝑋) can be expressed as:

TH𝑘(𝑋) :=
{︀
( ̃︀𝐸(𝑒1), . . . , ̃︀𝐸(𝑒𝑛)) : ̃︀𝐸 ∈ (R𝑋)*, ̃︀𝐸(1) = 1

̃︀𝐸(𝑓 2) ≥ 0 ∀𝑓 ∈ Pol≤𝑘(𝑋)
}︀ (2.21)

where Pol≤𝑘(𝑋) is the space of polynomials of degree at most 𝑘 on 𝑋 ⊂ R𝑛, i.e., it is
the restriction to 𝑋 of polynomials in R[𝑥1, . . . , 𝑥𝑛] of degree at most 𝑘:

Pol≤𝑘(𝑋) := {𝑓 ∈ R𝑋 : ∃𝑝 ∈ R[𝑥1, . . . , 𝑥𝑛]≤𝑘 s.t. 𝑝(𝑥) = 𝑓(𝑥) ∀𝑥 ∈ 𝑋}.

The notation TH in (2.21) is for “theta-body”, see [49]. The smallest 𝑘 such that
TH𝑘(𝑋) = conv(𝑋) is known as the theta-rank of 𝑋. The Lasserre/theta-body re-
laxations have been extensively studied in combinatorial optimization and theoretical
computer science, as well as in the more recent field of convex algebraic geometry; we
refer the reader to [10, 74, 2] for more details.

2.4 Complexity-theoretic considerations
Before concluding this chapter we discuss in this section some complexity-theoretic
implications related to the existence/inexistence of polynomial-size LP/SDP lifts for
polytopes arising from combinatorial optimization problems.

Many combinatorial optimization problems can be formulated using linear pro-
gramming over a “naturally”-defined polytope. Consider for example the traveling
salesman problem which asks to find the minimum weight Hamiltonian cycle on a
given weighted graph 𝐺. We can assume for simplicity that the graph 𝐺 is the com-
plete graph on 𝑛 nodes (this does not affect the computational complexity of the
problem). To model this problem using linear programming, define 𝜒𝑆 ∈ R𝐸 to be
the characteristic vector of a subset 𝑆 ⊆ 𝐸 of the edges of the complete graph:

𝜒𝑆(𝑒) =

{︃
1 if 𝑒 ∈ 𝑆

0 else.
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The TSP polytope is defined as the convex hull of all characteristic vectors of Hamil-
tonian cycles in the complete graph 𝐾𝑛:

TSP(𝑛) := conv {𝜒𝑆 : 𝑆 Hamiltonian cycle in 𝐾𝑛} ⊂ R(
𝑛
2).

Given a weight function 𝑤 : 𝐸 → R+ the minimum weight Hamiltonian cycle can be
obtained by solving the following linear program:

minimize
∑︁

𝑒∈𝐸
𝑤(𝑒)𝑥(𝑒) subject to 𝑥 ∈ TSP(𝑛).

One can similarly define the matching polytope, the stable set polytope, the cut poly-
tope which are associated to their respective combinatorial optimization problems.
For example the (perfect) matching polytope on a complete 𝑛-node graph is defined
as:

MATCH(𝑛) := conv {𝜒𝑆 : 𝑆 perfect matching in 𝐾𝑛} ⊂ R𝐸.

It is clear that if one can find a LP lift for the TSP polytope of polynomial-size
then one could solve the traveling salesman problem in polynomial-time using e.g., the
ellipsoid method or path-following methods. With some additional technical details
the same would also be true if we have a polynomial-size SDP lift 2.

It was shown by Fiorini et al. [41] that the TSP polytope does not, in fact, have
a polynomial-size LP lift, and more recently Lee et al. [76] generalized their result
to show that it does not admit a polynomial-size SDP lift. It is important to note
however that these results do not imply in any way that TSP is not in the complexity
class P.3 The fact that TSP(𝑛) does not admit a polynomial-size LP lift does not
rule out for example that TSP(𝑛) could have a polynomial-time separation oracle:
in fact it was shown recently by Rothvoß [89] that the matching polytope does not
admit a polynomial-size LP lift despite having a well-known efficient separation oracle
[57]. Also note that when expressing the TSP problem using linear programming we
used a certain encoding of the problem in terms of the characteristic vectors, that is
admittedly natural, but nevertheless not the only one. A different encoding of the
problem could yield a different polytope with different extension complexities.

2More precisely, in addition to having TSP(𝑛) = 𝜋𝑛(S
𝑑(𝑛)
+ ∩ 𝐿𝑛) where 𝑑(𝑛) is polynomial in 𝑛

and a description of 𝜋𝑛 and 𝐿𝑛 that can be generated in time polynomial 𝑛, we also need to have
𝑋𝑛 ∈ S𝑑(𝑛), 𝑟𝑛, 𝑅𝑛 > 0 such that 𝐵(𝑋𝑛, 𝑟𝑛) ⊆ S

𝑑(𝑛)
+ ∩𝐿𝑛 ⊆ 𝐵(𝑋𝑛, 𝑅𝑛) where log(𝑅𝑛/𝑟𝑛) = poly(𝑛)

and where 𝐵(𝑥, 𝑟) is the Euclidean ball centered at 𝑥 with radius 𝑟. Under these assumptions one can
get, using the ellipsoid method or interior-point method, an 𝜖-approximation of the TSP problem in
time polynomial in the problem size and log(1/𝜖), for any 𝜖 > 0. We refer the reader to [57] and [28]
for more details on the complexity results concerning SDP using ellipsoid method and interior-point
methods.

3There was some confusion about this in some online discussions, see e.g., the
comments section of http://mat.tepper.cmu.edu/blog/?p=1587, https://spokutta.
wordpress.com/2012/01/05/1311/, http://blog.computationalcomplexity.org/2014/04/
favorite-theorems-extended-formulations.html.
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2.5 Summary of chapter

We summarize briefly the main results in this section.

∙ Let 𝑃 = conv(𝑋) be a polytope. Any facet inequality ℓ(𝑥) ≤ ℓmax where
ℓmax := max𝑥∈𝑋 ℓ(𝑥) can be seen as a nonnegative function ℓmax − ℓ on 𝑋.
Constructing a small lift of 𝑃 is equivalent to finding “small” certificates of
nonnegativity of all the facet inequalities ℓmax − ℓ|𝑋 .

∙ For LP lifts, the certificates of nonnegativity that we want have the form

ℓmax − ℓ(𝑥) =
𝑑∑︁

𝑖=1

𝑏𝑖𝑎𝑖(𝑥) ∀𝑥 ∈ 𝑋

where 𝑎1, . . . , 𝑎𝑑 are fixed nonnegative functions on 𝑋 (i.e., independent of
the facet ℓ ≤ ℓmax) and 𝑏1, . . . , 𝑏𝑑 ≥ 0 depend on ℓ. The size of the lift in
this case is 𝑑.

∙ For SDP lifts, the certificates of nonnegativity take the form

ℓmax − ℓ(𝑥) = ⟨𝐴(𝑥), 𝐵⟩ ∀𝑥 ∈ 𝑋

where 𝐴 : 𝑋 → S𝑑
+ is fixed and 𝐵 ∈ S𝑑

+ depends on ℓ.

∙ Sum-of-squares lifts (which are a special case of SDP lifts) consist in finding
a subspace 𝑉 of R𝑋 such that any facet inequality has a certificate:

ℓmax − ℓ|𝑋 =
𝐽∑︁

𝑗=1

ℎ2𝑗

where ℎ1, . . . , ℎ𝐽 ∈ 𝑉 . Such a subspace yields an SDP lift of 𝑃 of size
dim𝑉 .
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Chapter 3

Nonnegative rank

In this chapter we study the nonnegative rank which was introduced in Chapter 2 (see
Definition 2). After briefly reviewing existing techniques to obtain lower bounds on
the nonnegative rank we propose a new method to obtain such bounds which unifies
some of the existing techniques and which inherits many of the structural properties
of the nonnegative rank (invariance under scaling, subadditivity, monotonicity, etc.).
Our technique also applies to other special notions of rank and we outline such ex-
tensions briefly at the end of the chapter. The content of this chapter is based on the
paper [34].
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3.1 Preliminaries
Recall from Chapter 2, Definition 2 that the nonnegative rank of an entrywise non-
negative matrix 𝐴 ∈ R𝑚×𝑛

+ is the smallest 𝑟 such that we can find 𝑈 ∈ R𝑚×𝑟
+ and

𝑉 ∈ R𝑟×𝑛
+ such that 𝐴 = 𝑈𝑉 . Equivalently, rank+(𝐴) can also be defined as the

smallest 𝑟 such that there exist nonnegative rank-one matrices 𝑅1, . . . , 𝑅𝑟 such that

𝐴 =
𝑟∑︁

𝑖=1

𝑅𝑖. (3.1)

The correspondence between a decomposition (3.1) and a factorization 𝐴 = 𝑈𝑉 is
𝑅𝑖 = 𝑢𝑖𝑣

𝑇
𝑖 where 𝑢𝑖 is the 𝑖’th column of 𝑈 and 𝑣𝑇𝑖 the 𝑖’th row of 𝑉 . Note that

rank+(𝐴) always satisfies:

rank(𝐴) ≤ rank+(𝐴) ≤ min(𝑚,𝑛).

Applications of nonnegative rank We saw in Chapter 2, Theorem 2 that the
nonnegative rank of the slack matrix of a polytope 𝑃 is equal to the size of the smallest
LP lift of 𝑃 . The nonnegative rank also plays an important role in other areas such
as statistical modeling [30, 67] and communication complexity [78, 81]. In statistical
modeling the matrix 𝐴 is interpreted as the joint probability distribution of a pair of
random variables (𝑋, 𝑌 ):

𝐴(𝑥, 𝑦) = P[𝑋 = 𝑥, 𝑌 = 𝑦].

In this context a nonnegative factorization of 𝐴 of size 𝑟 consists in expressing (𝑋, 𝑌 )
as a mixture of 𝑟 pairs of random variables (𝑋𝑖, 𝑌𝑖) where 𝑋𝑖 and 𝑌𝑖 are independent.
Indeed such a decomposition takes the form:

P[𝑋 = 𝑥, 𝑌 = 𝑦] =
𝑟∑︁

𝑖=1

P[𝑊 = 𝑖] · P[𝑋 = 𝑥|𝑊 = 𝑖] · P[𝑌 = 𝑦|𝑊 = 𝑖],

where 𝑊 is the mixing distribution, taking values in {1, . . . , 𝑟} and 𝑋 and 𝑌 are
conditionally independent given 𝑊 (the pair (𝑋𝑖, 𝑌𝑖) is given by the conditional dis-
tribution (𝑋, 𝑌 )|𝑊 = 𝑖). This is exactly a nonnegative factorization of 𝐴 of the form
(3.1) where the rank-one matrix 𝑅𝑖 is given by 𝑅𝑖(𝑥, 𝑦) = P[𝑊 = 𝑖]P[𝑋 = 𝑥|𝑊 =
𝑖]P[𝑌 = 𝑦|𝑊 = 𝑖].

Another application of the nonnegative rank is in communication complexity
where one is interested in the minimum number of bits that need to be exchanged
between two parties in order to compute a binary function 𝑓 : 𝒳 × 𝒴 → {0, 1},
assuming that initially each party holds only one of the two arguments of the func-
tion. This quantity is known as the communication complexity of 𝑓 and is tightly
related to the nonnegative rank of the |𝒳 | × |𝒴| matrix 𝑀𝑓 associated to 𝑓 defined
by 𝑀𝑓 (𝑥, 𝑦) = 𝑓(𝑥, 𝑦) [78, 81].
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Notations Throughout this chapter a matrix 𝑀 is called nonnegative if it is entry-
wise nonnegative. For convenience we define the following partial order on the indices
of a matrix 𝐴 ∈ R𝑚×𝑛 that will be used later:

(𝑖, 𝑗) ≤ (𝑘, 𝑙) ⇔ 𝑖 ≤ 𝑘 and 𝑗 ≤ 𝑙, (3.2)

and we write (𝑖, 𝑗) < (𝑘, 𝑙) if 𝑖 < 𝑘 and 𝑗 < 𝑙.

3.2 Existing methods to lower bound the nonnega-
tive rank

In this section we briefly review some of the existing techniques to bound the non-
negative rank. We start by reviewing combinatorial lower bounds on the nonnegative
rank which only use the support pattern of the matrix 𝐴. We then describe so-called
hyperplane separation bounds, and finally we discuss bounds based on information
theoretic quantities.

3.2.1 Combinatorial bounds

Let 𝐴 ∈ R𝑚×𝑛
+ be a nonnegative matrix. A monochromatic rectangle for 𝐴 is a

rectangle 𝑅 = 𝐼 × 𝐽 ⊆ [𝑚] × [𝑛] such that 𝐴𝑖,𝑗 > 0 for any (𝑖, 𝑗) ∈ 𝑅, i.e., the
rectangle does not touch any zero entry of 𝐴.

Definition 6. The boolean rank of 𝐴 (also called the rectangle covering number),
denoted rank𝐵(𝐴) is the minimum number of monochromatic rectangles needed to
cover all the nonzero entries of 𝐴.

Note that in any nonnegative factorization 𝐴 =
∑︀𝑟

𝑖=1 𝑢𝑖𝑣
𝑇
𝑖 , the rectangles 𝑅𝑖 =

supp(𝑢𝑖) × supp(𝑣𝑖) are necessarily monochromatic for 𝐴. From this observation we
get that:

rank𝐵(𝐴) ≤ rank+(𝐴).

Example 5. Let 𝐴 = 𝐼𝑛 be the identity matrix of size 𝑛. It is easy to see that any
monochromatic rectangle for 𝐼𝑛 is a singleton and has the form 𝑅 = {𝑖} × {𝑖} where
𝑖 = 1, . . . , 𝑛. Thus rank𝐵(𝐼𝑛) = 𝑛. ♦

Rectangle graph As noted in [40] the boolean rank of 𝐴 can be expressed as the
chromatic number of a certain graph constructed from 𝐴. Define the rectangle graph
of 𝐴, denoted RG(𝐴) as follows: the vertex set of RG(𝐴) is the set of indices (𝑖, 𝑗)
such that 𝐴𝑖,𝑗 > 0; furthermore there is an edge (undirected) between vertices (𝑖, 𝑗)
and (𝑘, 𝑙) if, and only if, 𝐴𝑖,𝑙𝐴𝑘,𝑗 = 0. Note that if two entries (𝑖, 𝑗) and (𝑘, 𝑙) of 𝐴
are connected by an edge in RG(𝐴), then the two entries cannot be covered by the
same monochromatic rectangle (see Figure 3-1 for an illustration).
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[︂
𝐴𝑖,𝑗 𝐴𝑖,𝑙

𝐴𝑘,𝑗 𝐴𝑘,𝑙

]︂

Figure 3-1: If 𝐴𝑖,𝑗 > 0 and 𝐴𝑘,𝑙 > 0 and one of 𝐴𝑖,𝑙 or 𝐴𝑘,𝑗 is zero, then it is not
possible to cover 𝐴𝑖,𝑗 and 𝐴𝑘,𝑙 with the same monochromatic rectangle. In this case
we put an edge between vertices (𝑖, 𝑗) and (𝑘, 𝑙) in the graph RG(𝐴).

Using this observation, it is not hard to show that the minimum number of
monochromatic rectangles needed to cover the nonzero entries 𝐴 is precisely the chro-
matic number of RG(𝐴) [40, Lemma 5.3]:

rank𝐵(𝐴) = 𝜒(RG(𝐴)).

An obvious lower bound on the chromatic number of RG(𝐴) is the clique number of
RG(𝐴), i.e., the size of the largest clique, which is denoted by 𝜔(RG(𝐴)). The clique
number 𝜔(RG(𝐴)) is also sometimes known as the fooling set number of𝐴. Other well-
known lower bounds on 𝜒(RG(𝐴)) are the fractional chromatic number 𝜒frac(RG(𝐴))
and the (complement) Lovász theta number 𝜗(RG(𝐴)). These quantities satisfy the
following inequalities:

fool(𝐴) = 𝜔(RG(𝐴)) ≤ 𝜗(RG(𝐴)) ≤ 𝜒frac(RG(𝐴)) ≤ 𝜒(RG(𝐴)) = rank𝐵(𝐴) .

Application Fiorini et al. showed in [41] that the cut polytope (among others) does
not admit polynomial-sized extended formulation. In order to do so, they showed
that the boolean rank of (a submatrix of) the slack matrix of the cut polytope is
superpolynomial.

3.2.2 Hyperplane separation bounds

Another bounding technique that proved powerful for the nonnegative rank is the
so-called hyperplane separation bound. This technique was used by Rothvoß in his
major result [89] where he obtained an exponential lower bound on the LP extension
complexity of the matching polytope. In the next proposition we denote by ‖𝐴‖∞ =
max𝑖𝑗 |𝐴𝑖𝑗| the entrywise infinity norm of a matrix 𝐴.

Proposition 1 (Hyperplane separation bound for the ‖ · ‖∞ norm). Let 𝐴 ∈ R𝑚×𝑛
+

be a nonnegative matrix. Assume that 𝐿 : R𝑚×𝑛 → R is a linear map that satisfies
the following assumption:

𝐿(𝑅) ≤ 1 for any nonnegative rank-one matrix 𝑅 ∈ R𝑚×𝑛
+ satisfying ‖𝑅‖∞ = 1.

(3.3)
Then we have

rank+(𝐴) ≥
𝐿(𝐴)

‖𝐴‖∞
. (3.4)
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Proof. Let 𝐴 =
∑︀𝑟

𝑖=1𝑅𝑖 be a nonnegative decomposition of 𝐴 with 𝑟 = rank+(𝐴)
terms. Since all the 𝑅𝑖s are elementwise nonnegative we have, for each 𝑖 = 1, . . . , 𝑟,
the elementwise inequalities 0 ≤ 𝑅𝑖 ≤ 𝐴. Using this observation, the bound (3.4)
then follows easily from the following sequence of inequalities:

𝐿(𝐴) =
𝑟∑︁

𝑖=1

𝐿(𝑅𝑖)
(𝑎)

≤
𝑟∑︁

𝑖=1

‖𝑅𝑖‖∞
(𝑏)

≤
𝑟∑︁

𝑖=1

‖𝐴‖∞ = 𝑟‖𝐴‖∞

where in (𝑎) we used the fact that 𝐿(𝑅𝑖) = ‖𝑅𝑖‖∞𝐿( 1
‖𝑅𝑖‖∞𝑅𝑖) ≤ ‖𝑅𝑖‖∞ which follows

from the hypothesis (3.3) and the fact that the entrywise maximum of 𝑅𝑖/‖𝑅𝑖‖∞ is 1,
and in (𝑏) we used the fact that 0 ≤ 𝑅𝑖 ≤ 𝐴 which implies that ‖𝑅𝑖‖∞ ≤ ‖𝐴‖∞.

As it is clear from the proof of Proposition 1, there is nothing specific about the
infinity norm, except monotonicity, which makes the bounding technique possible. We
discuss generalizations of Proposition 1 with other norms in more detail in Section
3.3.6.

3.2.3 Information-theoretic bounds

Information theoretic quantities can also be used to get lower bounds on the nonneg-
ative rank; in fact such bounds were used in [17, 18, 16] in the context of extended
formulations of polytopes. To see how these lower bounds work, recall from Section
3.1 that if 𝐴 is a nonnegative matrix representing the joint distribution of a pair of
random variables (𝑋, 𝑌 ), then a nonnegative factorization of 𝐴 of size 𝑟 expresses
the fact that (𝑋, 𝑌 ) is a mixture of 𝑟 independent random variables. Using this
interpretation, the nonnegative rank of 𝐴 can thus be formulated as:

rank+(𝐴) = min
𝑋−𝑊−𝑌
(𝑋,𝑌 )∼𝐴

| supp(𝑊 )|, (3.5)

where | supp(𝑊 )| is the number of values that 𝑊 takes, and where the Markov chain
constraint𝑋−𝑊−𝑌 means that𝑋 and 𝑌 are conditionally independent given𝑊 (the
random variable 𝑊 plays the role of the mixing distribution). The formulation (3.5)
allows us to draw connections between the nonnegative rank and certain information-
theoretic quantities. Consider for example the Wyner common information 𝐶(𝑋;𝑌 )
defined in [100] as:

𝐶(𝑋;𝑌 ) = min
𝑋−𝑊−𝑌

𝐼(𝑋𝑌 ;𝑊 ).

Wyner showed in [100] that 𝐶(𝑋;𝑌 ) quantifies the minimum number of bits that two
parties need to share in order to generate samples from the joint distribution (𝑋, 𝑌 ).
Since 𝐼(𝑋𝑌 ;𝑊 ) ≤ log | supp(𝑊 )| it follows that 𝐶(𝑋;𝑌 ) is always a lower bound for
log rank+(𝐴):

𝐶(𝑋;𝑌 ) ≤ log rank+(𝐴). (3.6)

The lower bound (3.6) has been used in the context of extended formulations of
polytopes and we refer the reader to [17, 16] for more details.
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3.3 Self-scaled bounds for nonnegative rank
In this section we introduce our new bound on the nonnegative rank and outline its
connection to combinatorial as well as hyperplane separation bounds. The method
we propose can be applied to a general class of ranks but we will mainly focus here on
the nonnegative rank. We mention at the end (Section 3.3.7) the possible extensions
to other notions of ranks.

3.3.1 Definition

We start by explaining the main idea of the lower bound. Let 𝐴 ∈ R𝑚×𝑛
+ and consider

a decomposition of 𝐴 of the form:

𝐴 =
𝑟∑︁

𝑖=1

𝑅𝑖 (3.7)

where 𝑅𝑖, for 𝑖 = 1, . . . , 𝑟 are rank-one and nonnegative. An important observation
is that each term 𝑅𝑖 in the decomposition above necessarily satisfies

0 ≤ 𝑅𝑖 ≤ 𝐴

where ≤ denotes entrywise inequality of matrices. In other words, if we define the
set:

𝒜+(𝐴) :=
{︁
𝑅 ∈ R𝑚×𝑛 : rank𝑅 ≤ 1 and 0 ≤ 𝑅 ≤ 𝐴

}︁
, (3.8)

then in any decomposition of 𝐴 of the form (3.7), all the terms 𝑅𝑖 must necessarily
belong to 𝒜+(𝐴). As a consequence, if we can produce a linear functional 𝐿 such
that 𝐿(𝑅) ≤ 1 for all 𝑅 ∈ 𝒜+(𝐴), then clearly 𝐿(𝐴) is a lower bound on the minimal
number of terms in any decomposition of 𝐴 of the form (3.7). Indeed this is because
we have:

𝐿(𝐴) =
𝑟∑︁

𝑖=1

𝐿(𝑅𝑖) ≤
𝑟∑︁

𝑖=1

1 = 𝑟.

Thus for such an 𝐿 we have 𝐿(𝐴) ≤ rank+(𝐴). Now to obtain the best lower bound,
one can look for the linear functional 𝐿 which maximizes the value of 𝐿(𝐴) while
satisfying 𝐿 ≤ 1 on 𝒜+(𝐴). We call this quantity 𝜏+(𝐴) and this is the main object
we study in this section:

𝜏+(𝐴) := max
𝐿 linear

𝐿(𝐴) subject to 𝐿(𝑅) ≤ 1 ∀𝑅 ∈ 𝒜+(𝐴). (3.9)

3.3.2 Duality and self-scaled property

Minimization formulation of 𝜏+ Using convex duality, one can obtain a dual
formulation of 𝜏+(𝐴) as the solution of a certain minimization problem. In fact the
next lemma shows that 𝜏+(𝐴) is nothing but the atomic norm of 𝐴 [22] associated to
the set of atoms 𝒜+(𝐴). This interpretation of 𝜏+(𝐴) will be very useful later when
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studying its properties.

Lemma 1. If 𝐴 ∈ R𝑚×𝑛
+ then we have:

𝜏+(𝐴) = min{𝑡 > 0 : 𝐴 ∈ 𝑡 conv(𝒜+(𝐴))}. (3.10)

In other words, 𝜏+(𝐴) is the Minkowski gauge function of conv(𝒜+(𝐴)), evaluated at
𝐴.

Proof. Observe that Equation (3.9) expresses the fact that 𝜏+(𝐴) is the support func-
tion of conv(𝒜+(𝐴))

∘, evaluated at 𝐴. Theorem 14.5 in [88] shows that the support
function of the polar 𝐶∘ of a closed convex set 𝐶 is equal to the Minkowski gauge
function of 𝐶. Thus it follows that 𝜏+(𝐴) is equal to the Minkowski gauge function
of conv(𝒜+(𝐴)), evaluated at 𝐴, which is precisely Equation (3.10).

Illustration The next example illustrates the geometric picture underlying the
atomic norm formulation of 𝜏+(𝐴).

Example 6. Assume 𝐴 is a 2 × 2 diagonal matrix 𝐴 = diag(𝑎1, 𝑎2) where 𝑎𝑖 ≥ 0. In
this case one can easily verify that 𝒜+(𝐴) is given by:

𝒜+(𝐴) =

{︂
𝑅 ∈ R2×2 : rank𝑅 ≤ 1 and 0 ≤ 𝑅 ≤

[︂
𝑎1 0
0 𝑎2

]︂}︂

=

{︂[︂
𝑥 0
0 0

]︂
with 0 ≤ 𝑥 ≤ 𝑎1

}︂
∪
{︂[︂

0 0
0 𝑦

]︂
with 0 ≤ 𝑦 ≤ 𝑎2

}︂
.

(3.11)

The convex hull of 𝒜+(𝐴) (projected onto the diagonal elements) is depicted in Figure
3-2. Observe that, when 𝑎1, 𝑎2 > 0, the smallest 𝑡 such that 𝐴 ∈ 𝑡 conv(𝒜+(𝐴)) is
𝑡 = 2 and thus 𝜏+(𝐴) = 2 = rank+(𝐴). ♦

a1

a2
A

conv A+(A)
2a1

2a2
2 conv A+(A)

0

Figure 3-2: Depiction of the set of atoms 𝒜+(𝐴) and its convex hull for a 2 × 2
diagonal matrix 𝐴 (cf. Equation (3.11)). The set 𝒜+(𝐴) consists of the two dark
heavy lines joining the origin to 𝑎1 and 𝑎2. The convex hull of 𝒜+(𝐴) is formed by
the triangle 0, 𝑎1, 𝑎2.
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Self-scaled property We can see in Example 6 the self-scaled1 feature of the bound
𝜏+(𝐴). This is in contrast with the existing hyperplane separation methods to lower
bound rank+(𝐴) where the scaling of the atoms is independent of 𝐴: for example in
Proposition 1 the scaling is done using the entrywise infinity norm, and in [33] the
scaling is with respect to the Frobenius norm. This feature is explained in more detail
in Section 3.3.6 where we show that 𝜏+ always yields better bounds than any such
hyperplane separation method.

3.3.3 Semidefinite relaxation

The quantity 𝜏+(𝐴) defined in (3.9) cannot be efficiently computed in general, since
we do not have an efficient description of the feasible set {𝐿 linear : 𝐿(𝑅) ≤ 1 ∀𝑅 ∈
𝒜+(𝐴)} (note however that (3.9) is a convex optimization problem). In this section we
introduce a semidefinite programming relaxation of 𝜏+(𝐴). To do so, we construct an
over-relaxation of the set conv(𝒜+(𝐴)) which can be represented using linear matrix
inequalities. Recall that 𝒜+(𝐴) is the intersection of the variety of rank-one matrices
with the set {𝑅 ∈ R𝑚×𝑛 : 0 ≤ 𝑅 ≤ 𝐴}. The variety of rank-one matrices is described
by the vanishing of 2× 2 minors, i.e.,

𝑅𝑖,𝑗𝑅𝑘,𝑙 −𝑅𝑖,𝑙𝑅𝑘,𝑗 = 0 (3.12)

for all (1, 1) ≤ (𝑖, 𝑗) < (𝑘, 𝑙) ≤ (𝑚,𝑛) (recall the partial order (𝑖, 𝑗) < (𝑘, 𝑙) ⇔ 𝑖 <
𝑘 and 𝑗 < 𝑙, see Equation (3.2)). Let 𝑟 = vec(𝑅) be the vector obtained by stacking
all the columns of 𝑅 and consider the following positive-semidefinite matrix:

[︂
1
𝑟

]︂ [︂
1
𝑟

]︂𝑇
=

[︂
1 𝑟𝑇

𝑟 𝑟𝑟𝑇

]︂
. (3.13)

Note that 𝑟𝑟𝑇 is a symmetric 𝑚𝑛×𝑚𝑛 matrix whose rows and columns are indexed
by entries of 𝑅. The quadratic equations (3.12) corresponding to the vanishing of
2× 2 minors of 𝑅 can be written as linear equations in the entries of 𝑟𝑟𝑇 , namely:

(𝑟𝑟𝑇 )𝑖𝑗,𝑘𝑙 − (𝑟𝑟𝑇 )𝑖𝑙,𝑘𝑗 = 0

for (1, 1) ≤ (𝑖, 𝑗) < (𝑘, 𝑙) ≤ (𝑚,𝑛) (in the equation above, the subscripts “𝑖𝑗” and “𝑘𝑙”
in (𝑟𝑟𝑇 )𝑖𝑗,𝑘𝑙 are the indices in {1, . . . ,𝑚𝑛} for the entries (𝑖, 𝑗) and (𝑘, 𝑙) respectively—
we will use this slight abuse of notation to avoid having heavy notations).
Also note that the inequality 𝑅 ≤ 𝐴 implies that:

(𝑟𝑟𝑇 )𝑖𝑗,𝑖𝑗 ≤ 𝑟𝑖𝑗𝐴𝑖𝑗 (3.14)
1We use the word self-scaled as a descriptive term to convey the main idea of the lower bound

presented here. It is not related to the term as used in the context of interior-point methods (e.g.,
“self-scaled barrier” [84]).
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which is a linear inequality in the entries of the matrix (3.13). Using these two
observations we have the following over-relaxation of conv(𝒜+(𝐴)):

conv(𝒜+(𝐴)) ⊆ 𝒜sos
+ (𝐴) (3.15)

where

𝒜sos
+ (𝐴) =

{︃
𝑅 ∈ R𝑚×𝑛 : ∃𝑋 ∈ S𝑚𝑛 such that

[︂
1 vec(𝑅)𝑇

vec(𝑅) 𝑋

]︂
⪰ 0

and 𝑋𝑖𝑗,𝑖𝑗 ≤ 𝑅𝑖𝑗𝐴𝑖𝑗 ∀𝑖 ∈ [𝑚], 𝑗 ∈ [𝑛]

and 𝑋𝑖𝑗,𝑘𝑙 −𝑋𝑖𝑙,𝑘𝑗 = 0 ∀(1, 1) ≤ (𝑖, 𝑗) < (𝑘, 𝑙) ≤ (𝑚,𝑛)

}︃
.

(3.16)
If we define 𝜏 sos

+ (𝐴) as:

𝜏 sos
+ (𝐴) = min{𝑡 > 0 : 𝐴 ∈ 𝑡𝒜sos

+ (𝐴)}

then we clearly have (by the inclusion (3.15)):

𝜏 sos
+ (𝐴) ≤ 𝜏+(𝐴) ≤ rank+(𝐴).

Furthermore, the quantity 𝜏 sos
+ (𝐴) can be computed using semidefinite programming.

Indeed, it is not difficult to show using the description (3.16) of 𝒜sos
+ (𝐴) that we have:

𝜏 sos
+ (𝐴) = min

𝑡,𝑋
𝑡

s.t.

[︃
𝑡 vec(𝐴)𝑇

vec(𝐴) 𝑋

]︃
⪰ 0

𝑋𝑖𝑗,𝑖𝑗 ≤ 𝐴2
𝑖𝑗 ∀𝑖 ∈ [𝑚], 𝑗 ∈ [𝑛]

𝑋𝑖𝑗,𝑘𝑙 = 𝑋𝑖𝑙,𝑘𝑗 ∀(1, 1) ≤ (𝑖, 𝑗) < (𝑘, 𝑙) ≤ (𝑚,𝑛)

(3.17)

Duality and sum-of-squares interpretation The dual of the semidefinite pro-
gram (3.17) takes the form of a sum-of-squares program, namely we have2:

𝜏 sos
+ (𝐴) = max 𝐿(𝐴)

s.t. 𝐿 is a linear form
1− 𝐿(𝑋) = 𝑆𝑂𝑆(𝑋) +

∑︀
𝑖𝑗 𝐷𝑖𝑗𝑋𝑖𝑗(𝐴𝑖𝑗 −𝑋𝑖𝑗) mod 𝐼

𝐷𝑖𝑗 ≥ 0
𝑆𝑂𝑆(𝑋) is a sum-of-squares polynomial

(3.18)

2 To obtain (3.18), we write the Lagrangian dual of (3.17) and then do the change of variables
𝐿𝑖𝑗 := −2Λ𝑖𝑗 −𝐷𝑖𝑗𝐴𝑖𝑗 , where 𝐷𝑖𝑗 is the dual variable for the constraint 𝑋𝑖𝑗,𝑖𝑗 ≤ 𝐴2

𝑖𝑗 and Λ is the

top-right 1×𝑚𝑛 block of the dual variable for the constraint
[︁

𝑡 vec(𝐴)𝑇

vec(𝐴) 𝑋

]︁
⪰ 0. The 𝐿𝑖𝑗 are the

coordinates of the linear form 𝐿, i.e., 𝐿(𝑋) =
∑︀

𝑖𝑗 𝐿𝑖𝑗𝑋𝑖𝑗 .
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Here 𝐼 is the ideal in R[𝑋11, . . . , 𝑋𝑚𝑛] corresponding to the variety of 𝑚 × 𝑛 rank-
one matrices, i.e., it is ideal generated by the 2 × 2 minors 𝑋𝑖𝑗𝑋𝑘𝑙 − 𝑋𝑖𝑙𝑋𝑘𝑗. The
sum-of-squares constraint in (3.18) means that the polynomials on each side of the
equality are equal when 𝑋 is rank-one. Note that this sum-of-squares constraint can
be rewritten more explicitly as requiring that:

1−𝐿(𝑋)−
∑︁

𝑖𝑗

𝐷𝑖𝑗𝑋𝑖𝑗(𝐴𝑖𝑗 −𝑋𝑖𝑗)−
∑︁

(𝑖,𝑗)<(𝑘,𝑙)

𝜈𝑖𝑗𝑘𝑙(𝑋𝑖𝑗𝑋𝑘𝑙−𝑋𝑖𝑙𝑋𝑘𝑗) is a sum-of-squares

where the parameters 𝜈𝑖𝑗𝑘𝑙 are real numbers3. It is clear that any such 𝐿 satisfies
𝐿(𝑋) ≤ 1 for all 𝑋 ∈ 𝒜+(𝐴). As such, (3.18) is a natural sum-of-squares relaxation
of (3.9).

Zero entries in 𝐴 When the matrix 𝐴 has some entries equal to 0, the semidefinite
program (3.17) that defines 𝜏 sos

+ (𝐴) can be reduced, since in this case the feasible set is
contained in a low-dimensional face of the positive semidefinite cone (such a reduction
is called facial reduction, see e.g., [13] and [87] for more information and applications
of facial reduction). Let 𝑆 = supp(𝐴) = {(𝑖, 𝑗) : 𝐴𝑖,𝑗 > 0} be the set of nonzero
entries of 𝐴, and define

𝜋 : R𝑚×𝑛 → R𝑆, 𝜋(𝐴) = (𝐴𝑖,𝑗)𝑖𝑗∈𝑆

to be the linear map that projects onto the entries in 𝑆. Observe that, in the SDP
(3.17), if 𝐴𝑖,𝑗 = 0 for some (𝑖, 𝑗) then necessarily 𝑋𝑖𝑗,𝑖𝑗 = 0. Thus by the positive
semidefiniteness constraint this implies that the 𝑖𝑗’th row and 𝑖𝑗’th column of 𝑋 are
identically zero, and one can thus eliminate this row and column from the program.
Using this fact, one can show that 𝜏 sos

+ (𝐴) can be computed using the following
reduced semidefinite program where the size of the matrix 𝑋 is now | supp(𝐴)| ×
| supp(𝐴)|, instead of 𝑚𝑛 ×𝑚𝑛 (recall that 𝜋(𝐴) is the vectorization of 𝐴 where we
only keep the nonzero entries of 𝐴):

𝜏 sos
+ (𝐴) = min

𝑡,𝑋
𝑡

s.t.
[︂

𝑡 𝜋(𝐴)𝑇

𝜋(𝐴) 𝑋

]︂
⪰ 0

∀(𝑖, 𝑗) s.t. 𝐴𝑖,𝑗 > 0 : 𝑋𝑖𝑗,𝑖𝑗 ≤ 𝐴2
𝑖𝑗

∀(1, 1) ≤ (𝑖, 𝑗) < (𝑘, 𝑙) ≤ (𝑚,𝑛) s.t. 𝐴𝑖,𝑗𝐴𝑘,𝑙 > 0 or 𝐴𝑖,𝑙𝐴𝑘,𝑗 > 0 :⎧
⎪⎨
⎪⎩

if 𝐴𝑖,𝑙𝐴𝑘,𝑗 = 0 : 𝑋𝑖𝑗,𝑘𝑙 = 0

if 𝐴𝑖,𝑗𝐴𝑘,𝑙 = 0 : 𝑋𝑖𝑙,𝑘𝑗 = 0

else 𝑋𝑖𝑗,𝑘𝑙 −𝑋𝑖𝑙,𝑘𝑗 = 0

(3.19)
3One can show that the sum-of-squares polynomial cannot have degree more than 2 and the

multipliers 𝜈𝑖𝑗𝑘𝑙 are necessarily real numbers.
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3.3.4 Structural properties

In this section we explore some of the properties of 𝜏+(𝐴) and 𝜏 sos
+ (𝐴). We show

that 𝜏+(𝐴) and 𝜏 sos
+ (𝐴) have many appealing properties (invariance under diagonal

scaling, subadditivity, monotonicity, etc.) which are not present in most of currently
existing bounds on the nonnegative rank.

Theorem 6. Let 𝐴 ∈ R𝑚×𝑛
+ be a nonnegative matrix.

1. Invariance under diagonal scaling: If 𝐷1 and 𝐷2 are diagonal matrices with
strictly positive entries on the diagonal, then 𝜏+(𝐷1𝐴𝐷2) = 𝜏+(𝐴) and 𝜏 sos

+ (𝐷1𝐴𝐷2) =
𝜏 sos
+ (𝐴).

2. Invariance under permutation of rows or columns: If 𝑃1 and 𝑃2 are permutation
matrices of size 𝑚 × 𝑚 and 𝑛 × 𝑛 respectively, then 𝜏+(𝑃1𝐴𝑃2) = 𝜏+(𝐴) and
𝜏 sos
+ (𝑃1𝐴𝑃2) = 𝜏 sos

+ (𝐴).

3. Subadditivity: If 𝐵 ∈ R𝑚×𝑛
+ is a nonnegative matrix then:

𝜏+(𝐴+𝐵) ≤ 𝜏+(𝐴) + 𝜏+(𝐵) and 𝜏 sos
+ (𝐴+𝐵) ≤ 𝜏 sos

+ (𝐴) + 𝜏 sos
+ (𝐵).

4. Product: If 𝐵 ∈ R𝑛×𝑝
+ , then

𝜏+(𝐴𝐵) ≤ min(𝜏+(𝐴), 𝜏+(𝐵)) and 𝜏 sos
+ (𝐴𝐵) ≤ min(𝜏 sos

+ (𝐴), 𝜏 sos
+ (𝐵)).

5. Monotonicity: If 𝐵 is a submatrix of 𝐴 (i.e., 𝐵 = 𝐴[𝐼, 𝐽 ] for some 𝐼 ⊆ [𝑚] and
𝐽 ⊆ [𝑛]), then 𝜏+(𝐵) ≤ 𝜏+(𝐴) and 𝜏 sos

+ (𝐵) ≤ 𝜏 sos
+ (𝐴).

6. Block-diagonal composition: Let 𝐵 ∈ R𝑚′×𝑛′

+ be another nonnegative matrix and
define

𝐴⊕𝐵 =

[︂
𝐴 0
0 𝐵

]︂
.

Then

𝜏+(𝐴⊕𝐵) = 𝜏+(𝐴) + 𝜏+(𝐵) and 𝜏 sos
+ (𝐴⊕𝐵) = 𝜏 sos

+ (𝐴) + 𝜏 sos
+ (𝐵)

Proof. See Section 3.5.1.

3.3.5 Comparison with combinatorial bounds

We will now see that the quantities 𝜏+(𝐴) and 𝜏 sos
+ (𝐴) can be interpreted as non-

combinatorial equivalents of 𝜒frac(RG(𝐴)) and 𝜗(RG(𝐴)) respectively, where 𝜒frac(RG(𝐴))
is the fractional rectangle covering number of 𝐴 and 𝜗(RG(𝐴)) is the complement of
the Lovász 𝜗 number for the rectangle graph of 𝐴 (these quantities were defined in
Section 3.2.1). In fact one can prove the following theorem:
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Theorem 7. If 𝐴 ∈ R𝑚×𝑛
+ is a nonnegative matrix, then

𝜏+(𝐴) ≥ 𝜒frac(RG(𝐴)) and 𝜏 sos
+ (𝐴) ≥ 𝜗(RG(𝐴)).

Proof. See Section 3.5.2.

To give insights into the relation between 𝜏+(𝐴) and 𝜏 sos
+ (𝐴) with 𝜒frac(RG(𝐴))

and 𝜗(RG(𝐴)) we recall below the definitions of the fractional chromatic number and
the Lovász theta number and we give their expression for the rectangle graph RG(𝐴).

∙ The fractional chromatic number of a graph 𝐺 is a linear programming relax-
ation of the chromatic number (note however that the size of this LP relaxation
may have exponential size and the fractional chromatic number is actually NP-
hard [82]). When applied to the rectangle graph of 𝐴, the quantity is called the
fractional rectangle cover of𝐴 (see e.g., [65]). Let 𝒜𝐵(𝐴) be the set of monochro-
matic rectangles valid for 𝐴 (the subscript “B” here stands for “Boolean”):

𝒜𝐵(𝐴) =
{︁
𝑅 ∈ {0, 1}𝑚×𝑛 : 𝑅 is a monochromatic rectangle for 𝐴

}︁
.

Using this notation, the fractional rectangle cover number of 𝐴 is the solution
of the following linear program:

𝜒frac(RG(𝐴)) = min
∑︁

𝑅∈𝒜𝐵(𝐴)

𝑥𝑅

s.t. ∀𝑅 ∈ 𝒜𝐵(𝐴) : 𝑥𝑅 ≥ 0

∀(𝑖, 𝑗), 𝐴𝑖,𝑗 > 0 ⇒
∑︁

𝑅∈𝒜𝐵(𝐴)

𝑥𝑅𝑅𝑖,𝑗 ≥ 1.

(3.20)

Note that if we replace the constraint 𝑥𝑅 ≥ 0 with the binary constraint 𝑥𝑅 ∈
{0, 1}, we get the exact rectangle cover number of 𝐴. We can rewrite the linear
program above in the following form, which emphasizes the connection with the
quantity 𝜏+(𝐴) (cf. Equation (3.10)):

𝜒frac(RG(𝐴)) = min 𝑡
s.t. ∃𝑌 ∈ 𝑡 conv(𝒜𝐵(𝐴)) s.t. ∀(𝑖, 𝑗), 𝐴𝑖,𝑗 > 0 ⇒ 𝑌𝑖,𝑗 ≥ 1.

(3.21)
The variable 𝑌 above plays the role of

∑︀
𝑅∈𝒜𝐵(𝐴) 𝑥𝑅𝑅 in (3.20).

Note that a result of Lovász [80] shows that for any graph 𝐺 = (𝑉,𝐸) the
fractional chromatic number of 𝐺 is always within a ln |𝑉 | factor from 𝜒(𝐺),
namely:

1

1 + ln |𝑉 |𝜒(𝐺) ≤ 𝜒frac(𝐺) ≤ 𝜒(𝐺).

∙ Given a graph 𝐺 = (𝑉,𝐸), the complement Lovász theta number 𝜗(𝐺) def
= 𝜗(𝐺)
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is defined by the following semidefinite program:

𝜗(𝐺) = min 𝑡

subject to
[︂
𝑡 1𝑇

1 𝑋

]︂
⪰ 0

𝑋𝑢,𝑢 = 1 ∀𝑢 ∈ 𝑉
𝑋𝑢,𝑣 = 0 ∀{𝑢, 𝑣} ∈ 𝐸

When applied to the rectangle graph RG(𝐴) of a nonnegative matrix 𝐴, we get:

𝜗(RG(𝐴)) = min 𝑡

subject to
[︂
𝑡 1𝑇

1 𝑋

]︂
⪰ 0

∀(𝑖, 𝑗) s.t. 𝐴𝑖,𝑗 > 0 : 𝑋𝑖𝑗,𝑖𝑗 = 1
∀(1, 1) ≤ (𝑖, 𝑗) < (𝑘, 𝑙) ≤ (𝑚,𝑛) :{︃

if 𝐴𝑖,𝑙𝐴𝑘,𝑗 = 0 : 𝑋𝑖𝑗,𝑘𝑙 = 0 (3.22a)
if 𝐴𝑖,𝑗𝐴𝑘,𝑙 = 0 : 𝑋𝑖𝑙,𝑘𝑗 = 0 (3.22b)

(3.22)
Note how the semidefinite program above resembles the semidefinite program
(3.19) which defines 𝜏 sos

+ (𝐴).

Figure 3-3 summarizes the different quantities discussed in this section and how
they relate to the quantities 𝜏+(𝐴) and 𝜏 sos

+ (𝐴):

𝜏 sos
+ (𝐴) ≤ 𝜏+(𝐴) ≤ rank+(𝐴)≥ ≥ ≥

fool(𝐴) = 𝜔(RG(𝐴)) ≤ 𝜗(RG(𝐴)) ≤ 𝜒frac(RG(𝐴)) ≤ 𝜒(RG(𝐴)) = rank𝐵(𝐴)

Figure 3-3: Summary of the relations between 𝜏+(𝐴), 𝜏 sos
+ (𝐴) and some combinatorial

lower bounds on rank+(𝐴).

3.3.6 Comparison with hyperplane separation bounds

In this section we compare our bound to hyperplane separation bounds which we saw
in Section 3.2.2. We first introduce a generalization of Proposition 1 which holds for
a larger class of norms (not just the entrywise infinity norm).

Definition 7. A function N : R𝑚×𝑛
+ → R+ is called positively homogeneous if it

satisfies N(𝜆𝐴) = 𝜆N(𝐴) for any 𝐴 ∈ R𝑚×𝑛
+ and 𝜆 ≥ 0. Furthermore, it is called

monotone if for any 𝐴,𝐵 ∈ R𝑚×𝑛
+ such that 𝐴 ≤ 𝐵 (componentwise inequality) we

have N(𝐴) ≤ N(𝐵).
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Norms on R𝑚×𝑛 form a natural class of positively homogeneous functions. Many
norms also satisfy the monotonicity property, like for example, the Frobenius norm
(i.e., the ℓ2 entrywise norm):

‖𝐴‖𝐹 =

⎯⎸⎸⎷
𝑚∑︁

𝑖=1

𝑛∑︁

𝑗=1

𝐴2
𝑖,𝑗,

or the ℓ∞ entrywise norm:
‖𝐴‖∞ = max

1≤𝑖≤𝑚
1≤𝑗≤𝑛

|𝐴𝑖,𝑗|.

Define 𝒜N to be the set of rank-one matrices in the “unit ball” of N, i.e.,

𝒜N := {𝑋 ∈ R𝑚×𝑛
+ : rank𝑋 ≤ 1 and N(𝑋) ≤ 1}. (3.23)

We can also define:

N*(𝐴) = min{𝑡 > 0 : 𝐴 ∈ 𝑡 conv(𝒜N)}
= max{𝐿(𝐴) : 𝐿 linear and 𝐿(𝑋) ≤ 1 ∀𝑋 ∈ 𝒜N}.

(3.24)

The fact that the two formulations of N*(𝐴) in Equation (3.24) are equal follows from
convex duality and the same arguments used in Lemma 1. The following proposition,
which generalizes Proposition 1, shows that one can obtain a lower bound on rank+(𝐴)
using N*(𝐴) and N(𝐴):

Proposition 2. Let N : R𝑚×𝑛
+ → R+ be a monotone positively homogeneous function,

and let N* be defined as in Equation (3.24). Then for any 𝐴 ∈ R𝑚×𝑛
+ , we have:

rank+(𝐴) ≥
N*(𝐴)

N(𝐴)
.

Proof. Let 𝐴 =
∑︀𝑟

𝑖=1𝐴𝑖 be a decomposition of 𝐴 with 𝑟 = rank+(𝐴) terms and
where each 𝐴𝑖 is rank-one and nonnegative. Let 𝐿 be the optimal solution in the
maximization problem of Equation (3.24). Then we have:

N*(𝐴) = 𝐿(𝐴) =
𝑟∑︁

𝑖=1

𝐿(𝐴𝑖) =
𝑟∑︁

𝑖=1

N(𝐴𝑖)𝐿

(︂
1

N(𝐴𝑖)
𝐴𝑖

)︂

(𝑎)

≤
𝑟∑︁

𝑖=1

N(𝐴𝑖)
(𝑏)

≤
𝑟∑︁

𝑖=1

N(𝐴) = 𝑟N(𝐴)

where in (𝑎) we used the homogeneity of N and the fact that 𝐿(𝑋) ≤ 1 when N(𝑋) ≤
1, and in (𝑏) we used the fact that for each 𝑖 we have 𝐴𝑖 ≤ 𝐴, and thus by monotonicity
of N we have N(𝐴𝑖) ≤ N(𝐴). Thus we finally get that

𝑟 ≥ N*(𝐴)

N(𝐴)
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which is what we wanted.

In [33] we studied the case where N is the Frobenius norm, and where the asso-
ciated quantity N* was called the nonnegative nuclear norm and was denoted by 𝜈+.
For this particular choice of N the following stronger lower bound was shown to hold:

rank+(𝐴) ≥
(︂
𝜈+(𝐴)

‖𝐴‖𝐹

)︂2

.

In the next theorem we show that any lower bound on rank+ obtained from
monotone positively homogeneous functions like in Proposition 2 is always dominated
by 𝜏+(𝐴).

Theorem 8. Let N : R𝑚×𝑛
+ → R+ be a monotone positively homogeneous function,

and let N* be as defined in Equation (3.24). Then for any 𝐴 ∈ R𝑚×𝑛
+ we have:

rank+(𝐴) ≥ 𝜏+(𝐴) ≥
N*(𝐴)

N(𝐴)
.

Proof. First note that we have the inclusion

1

N(𝐴)
𝒜+(𝐴) ⊆ 𝒜N. (3.25)

Indeed if 𝑅 is rank-one and satisfies 0 ≤ 𝑅 ≤ 𝐴 then we have, by homogeneity and
monotonicity of N,

N

(︂
1

N(𝐴)
𝑅

)︂
=

1

N(𝐴)
N(𝑅) ≤ 1

N(𝐴)
N(𝐴) ≤ 1.

Let 𝐿 be the optimal linear form in the definition of N*(𝐴) in (3.24). Since 𝐿 ≤ 1
on 𝒜N, by the inclusion (3.25) we have that 𝐿 ≤ 1 on 1

N(𝐴)
𝒜+(𝐴) or equivalently that

1
N(𝐴)

𝐿 ≤ 1 on 𝒜+(𝐴). Thus by definition of 𝜏+(𝐴) we have

𝜏+(𝐴) ≥
1

N(𝐴)
𝐿(𝐴) =

N*(𝐴)

N(𝐴)
.

We now show that the quantity 𝜏+(𝐴) actually fits in the class of lower bounds of
Proposition 2, where the homogeneous function N depends on 𝐴. Specifically if 𝐴 is
a nonnegative matrix, we can define N𝐴 as follows:

N𝐴(𝑋) = min{𝑡 > 0 : 𝑋 ≤ 𝑡𝐴}.

Clearly N𝐴 is a monotone positively homogeneous function, and it satisfies N𝐴(𝐴) = 1.
Note that the set of atoms 𝒜N𝐴

associated to N𝐴 (cf. Equation (3.23)) is nothing but
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𝒜+(𝐴). Thus it follows directly from the definition (3.24) of N*(𝐴) that N*
𝐴(𝐴) =

𝜏+(𝐴). To summarize we can write that:

𝜏+(𝐴) = sup
N monotone and

positively homogeneous

N*(𝐴)

N(𝐴)
.

3.3.7 Extension to other notions of rank

The technique presented in this chapter can be applied not only to the nonnegative
rank, but more generally to a general class of rank which we call atomic cone ranks.

Definition 8. Let 𝐾 be a convex pointed4 cone and 𝑉 be a given algebraic variety in
some Euclidean space. Given 𝐴 ∈ 𝐾 we define rank𝐾,𝑉 (𝐴) to be the smallest integer
𝑟 for which we can write

𝐴 =
𝑟∑︁

𝑖=1

𝑅𝑖

where each 𝑅𝑖 ∈ 𝐾 ∩ 𝑉 . The function rank𝐾,𝑉 is called the atomic rank function
associated to 𝐾 and 𝑉 .

The nonnegative rank corresponds to the special case where 𝐾 is the cone of
nonnegative matrices in R𝑚×𝑛, and 𝑉 is the variety of rank-one matrices. Another
example of atomic cone rank is the so-called completely positive rank : A symmetric
matrix 𝐴 ∈ S𝑛 is called completely-positive [7] if it admits a decomposition of the
form:

𝐴 =
𝑟∑︁

𝑖=1

𝑢𝑖𝑢
𝑇
𝑖 ,

where the vectors 𝑢𝑖 are nonnegative. The cp-rank of 𝐴 is defined as the smallest 𝑟 for
which such a decomposition of 𝐴 exists. It corresponds to the atomic rank where 𝐾
is the cone of completely positive matrices, and 𝑉 is the variety of rank-one matrices.

To generalize the technique described in this chapter to atomic cone ranks, observe
that if 𝐴 ∈ 𝐾 admits a decomposition of the form:

𝐴 =
𝑟∑︁

𝑖=1

𝑅𝑖 where 𝑅𝑖 ∈ 𝑉 ∩𝐾 ∀𝑖 = 1, . . . , 𝑟 (3.26)

then necessarily each term 𝑅𝑖 satisfies

0 ⪯𝐾 𝑅𝑖 ⪯𝐾 𝐴

where ⪯𝐾 denotes the inequality induced by the cone 𝐾 (recall that 𝑥 ⪯𝐾 𝑦 ⇔
𝑦 − 𝑥 ∈ 𝐾). We can now define the set

𝒜𝐾,𝑉 (𝐴) :=
{︁
𝑅 ∈ 𝑉 such that 0 ⪯𝐾 𝑅 ⪯𝐾 𝐴

}︁
, (3.27)

4A cone 𝐾 is called pointed if 𝐾 ∩ (−𝐾) = {0}. We require that the cone 𝐾 is pointed so that
the order ⪯𝐾 associated to 𝐾 is a valid partial order (in particular, that it is antisymmetric).
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which plays the same role as 𝒜+(𝐴) defined in (3.8) in the case of nonnegative rank.
Now if we can produce a linear functional 𝐿 such that 𝐿(𝑅) ≤ 1 for all 𝑅 ∈ 𝒜𝐾,𝑉 (𝐴),
then clearly 𝐿(𝐴) is a lower bound on the minimal number of terms in any decompo-
sition of 𝐴 of the form (3.26), i.e., on rank𝐾,𝑉 (𝐴). Again this is because

𝐿(𝐴) =
𝑟∑︁

𝑖=1

𝐿(𝑅𝑖) ≤
𝑟∑︁

𝑖=1

1 = 𝑟.

The quantity 𝜏𝐾,𝑉 (𝐴) is the best lower bound on rank𝐾,𝑉 (𝐴) one can obtain this way:

𝜏𝐾,𝑉 (𝐴) := max
𝐿 linear

𝐿(𝐴) subject to 𝐿(𝑅) ≤ 1 ∀𝑅 ∈ 𝒜𝐾,𝑉 (𝐴). (3.28)

We refer the reader to the paper [34] for more examples where one can use this
bounding technique, and for the specific cases of the nonnegative tensor rank and the
cp-rank.

3.4 Summary of chapter

∙ Let 𝐴 ∈ R𝑚×𝑛 be a nonnegative matrix. Define 𝒜+(𝐴) to be the set of
nonnegative rank-one matrices that are entrywise smaller than 𝐴:

𝒜+(𝐴) :=
{︁
𝑅 ∈ R𝑚×𝑛 : rank𝑅 ≤ 1 and 0 ≤ 𝑅 ≤ 𝐴

}︁
.

Then the quantity

𝜏+(𝐴) = min{𝑡 > 0 : 𝐴 ∈ 𝑡 conv(𝒜+(𝐴))}.

satisfies 𝜏+(𝐴) ≤ rank+(𝐴).

∙ 𝜏+(𝐴) can be interpreted as a non-combinatorial version of the fractional
rectangle cover number of 𝐴, see Figure 3-3. The sum-of-squares relaxation
𝜏 sos
+ (𝐴) of 𝜏+(𝐴) is also related to the Lovász theta number of the rectangle

graph of 𝐴.

∙ 𝜏+(𝐴) is the best bound one can get using the hyperplane separation tech-
nique (where “best” is in the sense of the best norm used), see Theorem 8.

∙ 𝜏+(𝐴) and 𝜏 sos
+ (𝐴) inherit many of the structural properties of the nonneg-

ative rank (invariance under scaling, subadditivity, monotonicity, ...), see
Theorem 6.

∙ A similar approach can be used to obtain bounds on other notions of atomic
cone ranks, such as the cp-rank [34].
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3.5 Proofs

3.5.1 Proof of Theorem 6 on the structural properties of 𝜏+
and 𝜏 sos

+

Invariance under diagonal scaling

1. We first prove invariance under diagonal scaling for 𝜏+, then we consider 𝜏 sos
+ .

Let 𝐴′ = 𝐷1𝐴𝐷2 where 𝐷1 and 𝐷2 are two diagonal matrices with strictly
positive entries on the diagonal. Observe that the set of atoms 𝒜+(𝐴

′) of 𝐴′

can be obtained from the atoms 𝒜+(𝐴) of 𝐴 as follows:

𝒜+(𝐴
′) = {𝐷1𝑅𝐷2 : 𝑅 ∈ 𝒜+(𝐴)} =: 𝐷1𝒜+(𝐴)𝐷2. (3.29)

Indeed, if 𝑅 is rank-one and 0 ≤ 𝑅 ≤ 𝐴 then clearly 𝐷1𝑅𝐷2 is rank-one and
satisfies 0 ≤ 𝐷1𝑅𝐷2 ≤ 𝐷1𝐴𝐷2 = 𝐴′ thus 𝐷1𝑅𝐷2 ∈ 𝒜+(𝐴

′). Conversely if
𝑅′ ∈ 𝒜+(𝐴

′), then by letting 𝑅 = 𝐷−1
1 𝑅𝐷−1

2 we see that 𝑅′ = 𝐷1𝑅𝐷2 with 𝑅
rank-one and 0 ≤ 𝑅 ≤ 𝐴. Thus this shows equality (3.29). Thus we have:

𝜏+(𝐴
′) = min {𝑡 : 𝐴′ ∈ 𝑡 conv(𝒜+(𝐴

′))}
= min {𝑡 : 𝐷1𝐴𝐷2 ∈ 𝑡 conv(𝐷1𝒜+(𝐴)𝐷2)}
= min {𝑡 : 𝐷1𝐴𝐷2 ∈ 𝑡𝐷1 conv(𝒜+(𝐴))𝐷2}
= min {𝑡 : 𝐴 ∈ 𝑡 conv(𝒜+(𝐴))}
= 𝜏+(𝐴).

(3.30)

2. We now prove invariance under diagonal scaling for the SDP relaxation 𝜏 sos
+ .

For this we use the maximization formulation of 𝜏 sos
+ given in Equation (3.18).

Let 𝐿 be the optimal linear form in (3.18) for the matrix 𝐴, i.e., 𝐿(𝐴) = 𝜏 sos
+ (𝐴)

and 𝐿 satisfies:

1− 𝐿(𝑋) = 𝑆𝑂𝑆(𝑋) +
∑︁

𝑖𝑗

𝐷𝑖𝑗𝑋𝑖𝑗(𝐴𝑖𝑗 −𝑋𝑖𝑗) mod 𝐼. (3.31)

Define the linear polynomial 𝐿′(𝑋) = 𝐿(𝐷−1
1 𝑋𝐷−1

2 ). We can verify that:

1− 𝐿′(𝑋) = 1− 𝐿(𝐷−1
1 𝑋𝐷−1

2 )

= 𝑆𝑂𝑆(𝐷−1
1 𝑋𝐷−1

2 ) +
∑︁

𝑖𝑗

𝐷𝑖𝑗
𝑋𝑖𝑗

(𝐷1)𝑖𝑖(𝐷2)𝑗𝑗

(︂
𝐴𝑖𝑗 −

𝑋𝑖𝑗

(𝐷1)𝑖𝑖(𝐷2)𝑗𝑗

)︂
mod 𝐼

= 𝑆𝑂𝑆(𝐷−1
1 𝑋𝐷−1

2 ) +
∑︁

𝑖𝑗

𝐷𝑖𝑗
𝑋𝑖𝑗

(𝐷1)2𝑖𝑖(𝐷2)2𝑗𝑗
(𝐴′

𝑖𝑗 −𝑋𝑖𝑗) mod 𝐼

where in the last equality we used the fact that 𝐴𝑖𝑗 =
𝐴′

𝑖𝑗

(𝐷1)𝑖𝑖(𝐷2)𝑗𝑗
. Thus this

shows that 𝐿′ is feasible for the sum-of-squares program (3.18) for the matrix
𝐴′. Thus since 𝐿′(𝐴′) = 𝐿(𝐴) = 𝜏 sos

+ (𝐴), we get that 𝜏 sos
+ (𝐴′) ≥ 𝜏 sos

+ (𝐴). With
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the same reasoning we can show that:

𝜏 sos
+ (𝐴) = 𝜏 sos

+ (𝐷−1
1 (𝐷1𝐴𝐷2)𝐷

−1
2 ) ≥ 𝜏 sos

+ (𝐷1𝐴𝐷2) = 𝜏 sos
+ (𝐴′).

Thus we have 𝜏 sos
+ (𝐴′) = 𝜏 sos

+ (𝐴).

Invariance under permutation

The proof of invariance under permutation is very similar to the one for invariance
under diagonal scaling. To prove the claim for 𝜏+ one proceeds by showing that the
set of atoms 𝒜+(𝐴

′) of 𝐴′ = 𝑃1𝐴𝑃2 can be obtained from the atoms of 𝐴 by applying
the permutations 𝑃1 and 𝑃2, namely:

𝒜+(𝐴
′) = {𝑃1𝑅𝑃2 : 𝑅 ∈ 𝒜+(𝐴)} =: 𝑃1𝒜+(𝐴)𝑃2.

For the SDP relaxation we also use the same idea as the previous proof by constructing
a certificate 𝐿′ for 𝐴′ using the certificate 𝐿 for 𝐴. We omit the details here since
they are very similar to the previous proof.

Subadditivity

1. We first prove the subadditivity property for 𝜏+, i.e., 𝜏+(𝐴+𝐵) ≤ 𝜏+(𝐴)+𝜏+(𝐵).
Observe that we have

𝒜+(𝐴) ∪ 𝒜+(𝐵) ⊆ 𝒜+(𝐴+𝐵). (3.32)

Indeed if 𝑅 ∈ 𝒜+(𝐴), i.e., 𝑅 is rank-one and 0 ≤ 𝑅 ≤ 𝐴, then we also have
0 ≤ 𝑅 ≤ 𝐴 + 𝐵 (since 𝐵 is nonnegative) and thus 𝑅 ∈ 𝒜+(𝐴 + 𝐵). Thus this
shows 𝒜+(𝐴) ⊆ 𝒜+(𝐴 + 𝐵), and the same reason gives 𝒜+(𝐵) ⊆ 𝒜+(𝐴 + 𝐵),
and thus we get (3.32). By definition of 𝜏+(𝐴) and 𝜏+(𝐵), we know there
exist decompositions of 𝐴 and 𝐵 of the form 𝐴 =

∑︀
𝑖 𝛼𝑖𝑅𝑖 and 𝐵 =

∑︀
𝑗 𝛽𝑗𝑆𝑗

where
∑︀

𝑖 𝛼𝑖 = 𝜏+(𝐴) and
∑︀

𝑗 𝛽𝑗 = 𝜏+(𝐵) and where 𝑅𝑖 ∈ 𝒜+(𝐴) for all 𝑖 and
𝑆𝑗 ∈ 𝒜+(𝐵) for all 𝑗. Adding these two decompositions, we get:

𝐴+𝐵 =
∑︁

𝑖

𝛼𝑖𝑅𝑖 +
∑︁

𝑗

𝛽𝑗𝑆𝑗

where 𝑅𝑖 ∈ 𝒜+(𝐴+𝐵) and 𝑆𝑗 ∈ 𝒜+(𝐴+𝐵) for all 𝑖 and 𝑗. This decomposition
shows that

𝜏+(𝐴+𝐵) ≤ 𝜏+(𝐴) + 𝜏+(𝐵).

2. We now prove the property for 𝜏 sos
+ . Let (𝑡,𝑋) and (𝑡′, 𝑋 ′) be the optimal points

of the semidefinite program (3.17) for 𝐴 and 𝐵 respectively (i.e., 𝑡 = 𝜏 sos
+ (𝐴)

and 𝑡′ = 𝜏 sos
+ (𝐵)). It is not hard to see that (𝑡 + 𝑡′, 𝑋 +𝑋 ′) is feasible for the

semidefinite program that defines 𝜏 sos
+ (𝐴+𝐵) (in particular we use the fact that

since 𝐴 and 𝐵 are nonnegative we have 𝐴2
𝑖𝑗 + 𝐵2

𝑖𝑗 ≤ (𝐴𝑖𝑗 + 𝐵𝑖𝑗)
2). Thus this

shows that 𝜏 sos
+ (𝐴+𝐵) ≤ 𝜏 sos

+ (𝐴) + 𝜏 sos
+ (𝐵).
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Product

1. We first show the property for 𝜏+. We need to show that 𝜏+(𝐴𝐵) ≤ min(𝜏+(𝐴), 𝜏+(𝐵)).
To see why note that if 𝑅 ∈ 𝒜+(𝐴), then 𝑅𝐵 ∈ 𝒜+(𝐴𝐵). Thus if we have
𝐴 =

∑︀
𝑖 𝛼𝑖𝑅𝑖 with 𝑅𝑖 ∈ 𝒜+(𝐴) and

∑︀
𝑖 𝛼𝑖 = 𝜏+(𝐴), then we get 𝐴𝐵 =∑︀

𝑖 𝛼𝑖𝑅𝑖𝐵 where each 𝑅𝑖𝐵 ∈ 𝒜+(𝐴𝐵) and thus 𝜏+(𝐴𝐵) ≤ ∑︀
𝑖 𝛼𝑖 = 𝜏+(𝐴).

The same reasoning shows that 𝜏+(𝐴𝐵) ≤ 𝜏+(𝐵), and thus we get 𝜏+(𝐴𝐵) ≤
min(𝜏+(𝐴), 𝜏+(𝐵)).

2. We now prove the property for 𝜏 sos
+ , i.e., we show 𝜏 sos

+ (𝐴𝐵) ≤ min(𝜏 sos
+ (𝐴), 𝜏 sos

+ (𝐵)).
We will show here that 𝜏 sos

+ (𝐴𝐵) ≤ 𝜏 sos
+ (𝐴), and a similar reasoning can then

be used to show 𝜏 sos
+ (𝐴𝐵) ≤ 𝜏 sos

+ (𝐵).

Let (𝑡,𝑋) be the optimal point of the semidefinite program (3.17) that defines
𝜏 sos
+ (𝐴), i.e., 𝑡 = 𝜏 sos

+ (𝐴). We will show that the pair (𝑡, ̃︀𝑋) with

̃︀𝑋 = (𝐵𝑇 ⊗ 𝐼𝑚)𝑋(𝐵 ⊗ 𝐼𝑚),

is feasible for the semidefinite program that defines 𝜏 sos
+ (𝐴𝐵) and thus this will

show that 𝜏 sos
+ (𝐴𝐵) ≤ 𝑡 = 𝜏 sos

+ (𝐴).

Observe that we have vec (𝐴𝐵) = (𝐵𝑇 ⊗ 𝐼𝑚) vec (𝐴) thus:
[︂

𝑡 vec (𝐴𝐵)𝑇

vec (𝐴𝐵) ̃︀𝑋

]︂
=

[︂
1 0
0 𝐵𝑇 ⊗ 𝐼

]︂ [︂
𝑡 vec (𝐴)𝑇

vec (𝐴) 𝑋

]︂ [︂
1 0
0 𝐵 ⊗ 𝐼

]︂

and thus this shows that the matrix
[︂

𝑡 vec (𝐴𝐵)𝑇

vec (𝐴𝐵) ̃︀𝑋

]︂

is positive semidefinite.

Using the definition of Kronecker product one can verify that the entries of ̃︀𝑋
are given by:

̃︀𝑋𝑖𝑗,𝑘𝑙 =
𝑚′∑︁

𝛼,𝛽=1

𝐵𝛼𝑗𝐵𝛽𝑙𝑋𝑖𝛼,𝑘𝛽.

Using this formula we easily verify that ̃︀𝑋 satisfies the rank-one equality con-
straints:

̃︀𝑋𝑖𝑗,𝑘𝑙 = ̃︀𝑋𝑖𝑙,𝑘𝑗

since 𝑋 itself satisfies the constraints.

Finally it remains to show that ̃︀𝑋𝑖𝑗,𝑖𝑗 ≤ (𝐴𝐵)2𝑖𝑗. For this we need the following
simple lemma:

Lemma 2. Let (𝑡,𝑋) be a feasible point for the semidefinite program (3.17).
Then 𝑋𝑖𝑗,𝑘𝑙 ≤ 𝐴𝑖𝑗𝐴𝑘𝑙 for any 𝑖, 𝑗, 𝑘, 𝑙.
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Proof. Consider the 2× 2 principal submatrix of 𝑋:
[︂
𝑋𝑖𝑗,𝑖𝑗 𝑋𝑖𝑗,𝑘𝑙

𝑋𝑘𝑙,𝑖𝑗 𝑋𝑘𝑙,𝑘𝑙

]︂
.

We know that 𝑋𝑖𝑗,𝑖𝑗 ≤ 𝐴2
𝑖𝑗 and 𝑋𝑘𝑙,𝑘𝑙 ≤ 𝐴2

𝑘𝑙. Furthermore since 𝑋 is positive
semidefinite we have 𝑋𝑖𝑗,𝑖𝑗𝑋𝑘𝑙,𝑘𝑙 −𝑋2

𝑖𝑗,𝑘𝑙 ≥ 0. Thus we get that:

𝑋2
𝑖𝑗,𝑘𝑙 ≤ 𝑋𝑖𝑗,𝑖𝑗𝑋𝑘𝑙,𝑘𝑙 ≤ (𝐴𝑖𝑗𝐴𝑘𝑙)

2.

Thus since 𝐴𝑖𝑗𝐴𝑘𝑙 ≥ 0 we have 𝑋𝑖𝑗,𝑘𝑙 ≤ 𝐴𝑖𝑗𝐴𝑘𝑙.

Using this lemma we get:

̃︀𝑋𝑖𝑗,𝑖𝑗 =
𝑚′∑︁

𝛼,𝛽=1

𝐵𝛼𝑗𝐵𝛽𝑗𝑋𝑖𝛼,𝑖𝛽 ≤
𝑚′∑︁

𝛼,𝛽=1

𝐵𝛼𝑗𝐵𝛽𝑗𝐴𝑖𝛼𝐴𝑖𝛽 = ((𝐴𝐵)𝑖𝑗)
2

which is what we want.

Monotonicity

Here we prove the monotonicity property of 𝜏+ and 𝜏 sos
+ . More precisely we show that

if 𝐴 ∈ R𝑚×𝑛
+ is a nonnegative matrix, and 𝐵 is a submatrix of 𝐴, then 𝜏+(𝐵) ≤ 𝜏+(𝐴)

and 𝜏 sos
+ (𝐵) ≤ 𝜏 sos

+ (𝐴).

1. We prove the claim first for 𝜏+. Let 𝐼 ⊆ [𝑚] and 𝐽 ⊆ [𝑛] such that 𝐵 = 𝐴[𝐼, 𝐽 ]
(i.e., 𝐵 is obtained from 𝐴 by keeping only the rows in 𝐼 and the columns
in 𝐽). Let 𝑋 ∈ conv𝒜+(𝐴) such that 𝐴 = 𝜏+(𝐴)𝑋. Define 𝑌 = 𝑋[𝐼, 𝐽 ]
and note that 𝑌 ∈ conv(𝒜+(𝐵)). Furthermore observe that we have 𝐵 =
𝐴[𝐼, 𝐽 ] = 𝜏+(𝐴)𝑋[𝐼, 𝐽 ] = 𝜏+(𝐴)𝑌 . Hence, since 𝑌 ∈ conv𝒜+(𝐵), this shows,
by definition of 𝜏+(𝐵) that 𝜏+(𝐵) ≤ 𝜏+(𝐴).

2. We prove the claim now for the semidefinite programming relaxation 𝜏 sos
+ . As

above, let 𝐼 ⊆ [𝑚] and 𝐽 ⊆ [𝑛] such that 𝐵 = 𝐴[𝐼, 𝐽 ]. Let (𝑡,𝑋) be the optimal
point in (3.17) for the matrix 𝐴. It is easy to see that (𝑡,𝑋[𝐼, 𝐽 ]) is feasible for
the semidefinite program (3.17) for the matrix 𝐵 = 𝐴[𝐼, 𝐽 ]. Thus this shows
that 𝜏 sos

+ (𝐵) ≤ 𝜏 sos
+ (𝐴).

Block-diagonal matrices

We now turn to prove the following: if 𝐴 ∈ R𝑚×𝑛
+ and 𝐵 ∈ R𝑚′×𝑛′

+ are two nonnegative
matrices and 𝐴⊕𝐵 is the block-diagonal matrix:

𝐴⊕𝐵 =

[︂
𝐴 0
0 𝐵

]︂
,
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then

𝜏+(𝐴⊕𝐵) = 𝜏+(𝐴) + 𝜏+(𝐵) and 𝜏 sos
+ (𝐴⊕𝐵) = 𝜏 sos

+ (𝐴) + 𝜏 sos
+ (𝐵)

1. We first prove the claim for the quantity 𝜏+. Observe that the set 𝒜+(𝐴⊕ 𝐵)
is equal to:

𝒜+(𝐴⊕𝐵) =

{︂[︂
𝑅 0
0 0

]︂
: 𝑅 ∈ 𝒜+(𝐴)

}︂
∪
{︂[︂

0 0
0 𝑅′

]︂
: 𝑅′ ∈ 𝒜+(𝐵)

}︂
. (3.33)

Indeed any element in 𝒜+(𝐴 ⊕ 𝐵) must have the off-diagonal blocks equal to
zero (since the off-diagonal blocks of 𝐴⊕𝐵 are zero), and thus by the rank-one
constraint at least one of the diagonal blocks is also equal to zero. Thus this
shows that 𝒜+(𝐴⊕𝐵) decomposes as in (3.33).

We start by showing 𝜏+(𝐴 ⊕ 𝐵) ≥ 𝜏+(𝐴) + 𝜏+(𝐵). Let 𝑌 ∈ conv𝒜+(𝐴 ⊕ 𝐵)
such that

𝐴⊕𝐵 = 𝜏+(𝐴⊕𝐵)𝑌.

Since 𝒜+(𝐴⊕𝐵) has the form (3.33), we know that 𝑌 can be decomposed as:

𝑌 =
𝑟∑︁

𝑖=1

𝜆𝑖

[︂
𝑅𝑖 0
0 0

]︂
+

𝑟′∑︁

𝑗=1

𝜇𝑗

[︂
0 0
0 𝑅′

𝑖′

]︂
,

where 𝑅𝑖 ∈ 𝒜+(𝐴), 𝑅
′
𝑗 ∈ 𝒜+(𝐵) and

∑︀
𝑖 𝜆𝑖 +

∑︀
𝑗 𝜇𝑗 = 1 with 𝜆, 𝜇 ≥ 0. Note

that since 𝐴⊕𝐵 = 𝜏+(𝐴⊕𝐵)𝑌 we have:

𝐴 = 𝜏+(𝐴⊕𝐵)
𝑟∑︁

𝑖=1

𝜆𝑖𝑅𝑖,

and

𝐵 = 𝜏+(𝐴⊕𝐵)
𝑟′∑︁

𝑗=1

𝜇𝑗𝑅
′
𝑗.

Hence 𝜏+(𝐴) ≤ 𝜏+(𝐴⊕𝐵)
∑︀𝑟

𝑖=1 𝜆𝑖 and 𝜏+(𝐵) ≤ 𝜏+(𝐴⊕𝐵)
∑︀𝑟′

𝑗=1 𝜇𝑗 and we thus
get:

𝜏+(𝐴) + 𝜏+(𝐵) ≤ 𝜏+(𝐴⊕𝐵)

(︃
𝑟∑︁

𝑖=1

𝜆𝑖 +
𝑟′∑︁

𝑗=1

𝜇𝑗

)︃
= 𝜏+(𝐴⊕𝐵).

We now prove the converse inequality, i.e., 𝜏+(𝐴 ⊕ 𝐵) ≤ 𝜏+(𝐴) + 𝜏+(𝐵): Let
𝑡 = 𝜏+(𝐴), 𝑡′ = 𝜏+(𝐵) and 𝑋 ∈ conv𝒜+(𝐴), 𝑋

′ ∈ conv𝒜+(𝐵) such that
𝐴 = 𝑡𝑋 and 𝐵 = 𝑡′𝑋 ′. Define the matrix

𝑌 =

[︂ 𝑡
𝑡+𝑡′

𝑋 0

0 𝑡′

𝑡+𝑡′
𝑋 ′

]︂
,

and note that 𝐴 ⊕ 𝐵 = (𝑡 + 𝑡′)𝑌 . If we show that 𝑌 ∈ conv𝒜+(𝐴 ⊕ 𝐵) then
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this will show that 𝜏+(𝐴⊕𝐵) ≤ 𝑡+ 𝑡′. We can rewrite 𝑌 as:

𝑌 =
𝑡

𝑡+ 𝑡′

[︂
𝑋 0
0 0

]︂
+

𝑡′

𝑡+ 𝑡′

[︂
0 0
0 𝑋 ′

]︂
,

and it is easy to see from this expression that 𝑌 ∈ conv𝒜+(𝐴⊕𝐵).

We have thus proved that 𝜏+(𝐴⊕𝐵) = 𝜏+(𝐴) + 𝜏+(𝐵).

2. We now prove the claim for the SDP relaxation 𝜏 sos
+ . Let 𝑎 = vec (𝐴) and

𝑏 = vec (𝐵). Since the matrix 𝐴 ⊕ 𝐵 has zeros on the off-diagonal, the SDP
defining 𝜏 sos

+ (𝐴⊕𝐵) can be simplified and we can eliminate the zero entries from
the program. One can show that after the simplification we get that 𝜏 sos

+ (𝐴⊕𝐵)
is equal to the value of the SDP below:

minimize 𝑡

subject to

⎡
⎢⎢⎣
𝑡 𝑎𝑇 𝑏𝑇

𝑎 𝑋 0

𝑏 0 𝑋 ′

⎤
⎥⎥⎦ ⪰ 0

𝑋𝑖𝑗,𝑖𝑗 ≤ 𝐴2
𝑖𝑗 ∀(𝑖, 𝑗) ∈ [𝑚]× [𝑛]

𝑋𝑖𝑗,𝑘𝑙 = 𝑋𝑖𝑙,𝑘𝑗 1 ≤ 𝑖 < 𝑘 ≤ 𝑚 and 1 ≤ 𝑗 < 𝑙 ≤ 𝑛

𝑋 ′
𝑖′𝑗′,𝑖′𝑗′ ≤ 𝐵2

𝑖′𝑗′ ∀(𝑖′, 𝑗′) ∈ [𝑚′]× [𝑛′]

𝑋 ′
𝑖′𝑗′,𝑘′𝑙′ = 𝑋𝑖′𝑙′,𝑘′𝑗′ 1 ≤ 𝑖′ < 𝑘′ ≤ 𝑚′ and 1 ≤ 𝑗′ < 𝑙′ ≤ 𝑛′

(3.34)

It is well-known (see e.g., [56]) that the following equivalence always holds:
⎡
⎣
𝑡 𝑎𝑇 𝑏𝑇

𝑎 𝑋 0
𝑏 0 𝑋 ′

⎤
⎦ ⪰ 0 ⇐⇒ ∃𝑡1, 𝑡2 : 𝑡1 + 𝑡2 = 𝑡,

[︂
𝑡1 𝑎𝑇

𝑎 𝑋

]︂
⪰ 0,

[︂
𝑡2 𝑏𝑇

𝑏 𝑋 ′

]︂
⪰ 0

Using this equivalence, the semidefinite program (3.34) becomes:

minimize 𝑡1 + 𝑡2

subject to
[︂
𝑡1 𝑎𝑇

𝑎 𝑋

]︂
⪰ 0

𝑋𝑖𝑗,𝑖𝑗 ≤ 𝐴2
𝑖𝑗 ∀(𝑖, 𝑗) ∈ [𝑚]× [𝑛]

𝑋𝑖𝑗,𝑘𝑙 = 𝑋𝑖𝑙,𝑘𝑗 1 ≤ 𝑖 < 𝑘 ≤ 𝑚 and 1 ≤ 𝑗 < 𝑙 ≤ 𝑛[︂
𝑡2 𝑏𝑇

𝑏 𝑋 ′

]︂
⪰ 0

𝑋 ′
𝑖′𝑗′,𝑖′𝑗′ ≤ 𝐵2

𝑖′𝑗′ ∀(𝑖′, 𝑗′) ∈ [𝑚′]× [𝑛′]
𝑋 ′

𝑖′𝑗′,𝑘′𝑙′ = 𝑋𝑖′𝑙′,𝑘′𝑗′ 1 ≤ 𝑖′ < 𝑘′ ≤ 𝑚′ and 1 ≤ 𝑗′ < 𝑙′ ≤ 𝑛′

(3.35)

The semidefinite program is decoupled and it is easy to see that its value is
equal to 𝜏 sos

+ (𝐴) + 𝜏 sos
+ (𝐵).
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3.5.2 Proof of Theorem 7 on the relation between 𝜏+ and 𝜏 sos
+

with combinatorial bounds

Proof of Theorem 7. 1. We prove first that 𝜏+(𝐴) ≥ 𝜒frac(RG(𝐴)). For conve-
nience, we recall below the definitions of 𝜏+(𝐴) and 𝜒frac(RG(𝐴)):

𝜏+(𝐴) 𝜒frac(RG(𝐴))

min 𝑡

s.t. 𝐴 ∈ 𝑡 conv(𝒜+(𝐴))

min 𝑡

s.t. ∃𝑌 ∈ 𝑡 conv(𝒜𝐵(𝐴))

s.t. ∀(𝑖, 𝑗), 𝐴𝑖,𝑗 > 0 ⇒ 𝑌𝑖,𝑗 ≥ 1

Let 𝑡 = 𝜏+(𝐴) and 𝑋 ∈ conv(𝒜+(𝐴)) such that 𝐴 = 𝑡𝑋. Consider the decom-
position of 𝑋:

𝑋 =
𝑟∑︁

𝑘=1

𝜆𝑘𝑋𝑘,

where 𝑋𝑘 ∈ 𝒜+(𝐴), 𝜆𝑘 ≥ 0 and
∑︀𝑟

𝑘=1 𝜆𝑘 = 1. Let 𝑅𝑘 = supp(𝑋𝑘) (i.e., 𝑅𝑘

is obtained by replacing the nonzero entries of 𝑋𝑘 with ones) and observe that
𝑅𝑘 ∈ 𝒜𝐵(𝐴). Define

𝑌 = 𝑡
𝑟∑︁

𝑘=1

𝜆𝑘𝑅𝑘 ∈ 𝑡 conv(𝒜𝐵(𝐴))

Observe that for any (𝑖, 𝑗) such that 𝐴𝑖,𝑗 > 0 we have:

𝑌𝑖,𝑗 = 𝑡
∑︁

𝑘:𝑋𝑘[𝑖,𝑗]>0

𝜆𝑘 𝑅𝑘[𝑖, 𝑗]⏟  ⏞  
=1

(𝑎)

≥ 𝑡
∑︁

𝑘:𝑋𝑘[𝑖,𝑗]

𝜆𝑘
𝑋𝑘[𝑖, 𝑗]

𝐴𝑖,𝑗

(𝑏)
=
𝐴𝑖,𝑗

𝐴𝑖,𝑗

= 1

where in (a) we used the fact that 𝑋𝑘 ≤ 𝐴 (by definition of 𝑋𝑘 ∈ 𝒜+(𝐴)) and
in (b) we used the fact that 𝐴 = 𝑡

∑︀
𝑘 𝜆𝑘𝑋𝑘. Thus this shows that (𝑡, 𝑌 ) is

feasible for the optimization program defining 𝜒frac(RG(𝐴)) and thus we have
𝜒frac(RG(𝐴)) ≤ 𝑡 = 𝜏+(𝐴).

2. We now show that 𝜏 sos
+ (𝐴) ≥ 𝜗(RG(𝐴)). For convenience, we recall the two

SDPs (3.19) and (3.22) that define 𝜏 sos
+ (𝐴) and 𝜗(RG(𝐴)) below (note the con-

straint 𝑋𝑖𝑗,𝑖𝑗 = 𝐴2
𝑖𝑗 in the SDP on the left appears as an inequality constraint

in (3.19)—in fact it is not hard to see that with an equality constraint we get
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the same optimal value):

𝜏 sos
+ (𝐴) = min. 𝑡

s.t.

⎡
⎣ 𝑡 𝜋(𝐴)𝑇

𝜋(𝐴) 𝑋

⎤
⎦ ⪰ 0

∀(𝑖, 𝑗) s.t. 𝐴𝑖,𝑗 > 0 : 𝑋𝑖𝑗,𝑖𝑗 = 𝐴2
𝑖𝑗

∀(1, 1) ≤ (𝑖, 𝑗) < (𝑘, 𝑙) ≤ (𝑚,𝑛) :⎧
⎪⎨
⎪⎩

if 𝐴𝑖,𝑙𝐴𝑘,𝑗 = 0 : 𝑋𝑖𝑗,𝑘𝑙 = 0 (a)
if 𝐴𝑖,𝑗𝐴𝑘,𝑙 = 0 : 𝑋𝑖𝑙,𝑘𝑗 = 0 (b)
else 𝑋𝑖𝑗,𝑘𝑙 −𝑋𝑖𝑙,𝑘𝑗 = 0 (c)

𝜗(RG(𝐴)) = min. 𝑡

s.t.

⎡
⎣𝑡 1𝑇

1 𝑋

⎤
⎦ ⪰ 0

∀(𝑖, 𝑗) s.t. 𝐴𝑖,𝑗 > 0 : 𝑋𝑖𝑗,𝑖𝑗 = 1

∀(1, 1) ≤ (𝑖, 𝑗) < (𝑘, 𝑙) ≤ (𝑚,𝑛) :{︃
if 𝐴𝑖,𝑙𝐴𝑘,𝑗 = 0 : 𝑋𝑖𝑗,𝑘𝑙 = 0 (a’)
if 𝐴𝑖,𝑗𝐴𝑘,𝑙 = 0 : 𝑋𝑖𝑙,𝑘𝑗 = 0 (b’)

Observe that the two semidefinite programs are very similar except that 𝜏 sos
+ (𝐴)

has more constraints than 𝜗(RG(𝐴)); cf. constraints (c) for 𝜏 sos
+ (𝐴). To show

that 𝜏 sos
+ (𝐴) ≥ 𝜗(RG(𝐴)), let (𝑡,𝑋) be the solution of the SDP on the left for

𝜏 sos
+ (𝐴). We will construct 𝑋 ′ such that (𝑡,𝑋 ′) is feasible for the SDP on the

right and thus this will show that 𝜏 sos
+ (𝐴) ≥ 𝜗(RG(𝐴)). Define 𝑋 ′ by:

𝑋 ′ = diag(𝜋(𝐴))−1𝑋 diag(𝜋(𝐴))−1.

We show that (𝑡,𝑋 ′) is feasible for the SDP on the right: Note that:
[︂
𝑡 1𝑇

1 𝑋 ′

]︂
=

[︂
1 0
0 diag(𝜋(𝐴))−1

]︂ [︂
𝑡 𝜋(𝐴)𝑇

𝜋(𝐴) 𝑋

]︂ [︂
1 0
0 diag(𝜋(𝐴))−1

]︂
⪰ 0

Second we clearly have 𝑋 ′
𝑖𝑗,𝑖𝑗 = 𝐴−2

𝑖𝑗 𝑋𝑖𝑗,𝑖𝑗 = 1. Finally constraints (a’) and (b’)
are also clearly true. Thus this shows that (𝑡,𝑋 ′) is feasible for the SDP of
𝜗(RG(𝐴)) and thus 𝜗(RG(𝐴)) ≤ 𝑡 = 𝜏 sos

+ (𝐴).
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Chapter 4

Equivariant semidefinite lifts

In this chapter we study the class of semidefinite lifts that respect symmetries, which
we call “equivariant SDP lifts”. We prove a structure theorem that gives a character-
ization of these lifts in terms of sum-of-squares certificates of the facet inequalities
from an invariant subspace. We use this characterization to prove lower bounds on
the size of equivariant SDP lifts for certain families of polytopes (cut polytope, parity
polytope, regular polygons). This chapter is mostly based on the paper [37], except
Section 4.6 on regular polygons which is based on part of [36].
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4.8.1 Proof of Theorem 9: equivariance of sum of squares lifts when
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4.1 Preliminaries: definitions and examples
Many polytopes 𝑃 ⊂ R𝑛 of interest in discrete and combinatorial optimization have
symmetries, i.e., they are invariant under a certain group of transformations of R𝑛.
For such symmetric polytopes one may be interested in lifts that “respect” this symme-
try. In the context of linear programming, such lifts were first studied by Yannakakis
[101] where he showed that any symmetric LP lift of the matching polytope and
of the traveling salesman polytope must have exponential size. In the more recent
works [63, 47, 86, 50], it was shown that the symmetry requirement can have a sig-
nificant impact on the size of lifts, i.e., there are polytopes (like the permutahedron
for example) where there is a large gap between the smallest LP lift and the smallest
symmetric LP lift. The recent work of Chan el al. [21] establishes, among others,
a strong connection between symmetric LP lifts and the Sherali-Adams hierarchy:
it is shown that the approximation quality of any polynomial-size symmetric LP for
the maximum cut problem can be achieved by a constant number of rounds of the
Sherali-Adams hierarchy1.

Equivariant SDP lifts The works cited above studied the symmetry requirement
in the context of LP lifts. Here we are interested in SDP lifts that respect the symme-
tries of the polytope 𝑃 . Intuitively a SDP lift 𝑃 = 𝜋(𝑄) where 𝑄 = S𝑑

+ ∩ 𝐿 respects
the symmetry of 𝑃 if any transformation 𝑔 ∈ 𝐺𝐿𝑛(R) which leaves 𝑃 invariant can
be lifted to a transformation Φ(𝑔) ∈ 𝐺𝐿(S𝑑) that preserves both S𝑑

+ and 𝐿, and so
that the following equivariance relation holds: for any 𝑦 ∈ 𝑄, 𝜋(Φ(𝑔)𝑦) = 𝑔𝜋(𝑦). It
is known that the transformations of S𝑑 which leave the psd cone S𝑑

+ invariant are
precisely congruence transformations, see e.g. [99, Theorem 9.6.1]. This motivates
the following definition of equivariant SDP lift which we adopt here:

Definition 9. Let 𝑃 ⊂ R𝑛 be a polytope invariant under the action of a group
𝐺 ⊂ 𝐺𝐿𝑛(R). Assume 𝑃 = 𝜋(S𝑑

+ ∩ 𝐿) is a SDP lift of 𝑃 of size 𝑑. The lift is called
𝐺-equivariant if there is a group homomorphism 𝜌 : 𝐺 → 𝐺𝐿𝑑(R) such that the

1In fact the paper [21] establishes a connection between general LP formulations, possibly non-
symmetric, and the Sherali-Adams hierarchy however the results are stronger in the case of symmetric
LPs.
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following two conditions hold:
(i) The subspace 𝐿 is invariant under congruence by 𝜌(𝑔), for all 𝑔 ∈ 𝐺:

𝜌(𝑔)𝑌 𝜌(𝑔)𝑇 ∈ 𝐿 ∀𝑔 ∈ 𝐺, ∀𝑌 ∈ 𝐿. (4.1)

(ii) The following equivariance relation holds:

𝜋
(︀
𝜌(𝑔)𝑌 𝜌(𝑔)𝑇

)︀
= 𝑔𝜋(𝑌 ) ∀𝑔 ∈ 𝐺, ∀𝑌 ∈ S𝑑

+ ∩ 𝐿. (4.2)

Observe that the notion of equivariant lift is defined with respect to a group 𝐺
which leaves 𝑃 invariant and this group does not have to be the full automorphism
group of 𝑃 . Indeed one may be interested in lifts that preserve only a certain subset of
the symmetries of 𝑃 , but not all of them. One example we discuss in detail later is the
parity polytope which is invariant under permutation of coordinates as well as under
certain sign switches. In Section 4.4 we mention two examples of well-known lifts of
the parity polytope which are equivariant with respect to one set of transformations
but not the other.

Examples To illustrate the definition of equivariant SDP lift, we now give a simple
example of an equivariant SDP lift and another example of a SDP lift that does not
satisfy the definition of equivariance.
Example 7. An equivariant SDP lift of the square [−1, 1]2

Consider the SDP lift of the square [−1, 1]2 that we saw in Example 2, Chapter 2.
We recall the lift here for convenience:

[−1, 1]2 =

⎧
⎨
⎩(𝑥1, 𝑥2) ∈ R2 : ∃𝑢 ∈ R

⎡
⎣
1 𝑥1 𝑥2
𝑥1 1 𝑢
𝑥2 𝑢 1

⎤
⎦ ⪰ 0

⎫
⎬
⎭ . (4.3)

We can write this lift in standard form as [−1, 1]2 = 𝜋(S3
+ ∩ 𝐿) where 𝐿 and 𝜋 are

given by:

𝐿 = {𝑋 ∈ S3 : 𝑋11 = 𝑋22 = 𝑋33 = 1} and 𝜋(𝑋) = (𝑋12, 𝑋13) ∈ R2.

The symmetry group of the square [−1, 1]2 is the dihedral group of order 8, denoted
𝐷8. To show that the lift (4.3) is 𝐷8-equivariant, consider the group homomorphism
𝜌 : 𝐷8 → 𝐺𝐿3(R) defined by:

𝜌(𝑔) =

[︂
1 0
0 𝑔

]︂
∀𝑔 ∈ 𝐷8.

It is easy to see that the congruence operation by 𝜌(𝑔) stabilizes the subspace 𝐿, and
that the following equivariance relation holds:

𝜋(𝜌(𝑔)𝑋𝜌(𝑔)𝑇 ) = 𝑔𝜋(𝑋) ∀𝑔 ∈ 𝐷8,∀𝑋 ∈ S3
+ ∩ 𝐿.

Thus this shows that the SDP lift (4.3) is 𝐷8-equivariant. ♦
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We now show an example of a non-equivariant SDP lift.

Example 8. A nonequivariant SDP lift of the hyperboloid
Let 𝐻 be the hyperboloid in R3 defined by:

𝐻 = {(𝑥1, 𝑥2, 𝑥3) ∈ R3 : 𝑥1, 𝑥2, 𝑥3 ≥ 0 and 𝑥1𝑥2𝑥3 ≥ 1}.

One can construct a SDP lift of 𝐻 of size 6 as follows (see e.g., [10, page 261]):

𝐻 =
{︀
(𝑥1, 𝑥2, 𝑥3) ∈ R3 : ∃𝑦, 𝑧 ≥ 0 𝑥1𝑥2 ≥ 𝑦2, 𝑥3 ≥ 𝑧2, 𝑦𝑧 ≥ 1

}︀

=

{︂
(𝑥1, 𝑥2, 𝑥3) ∈ R3 : ∃𝑦, 𝑧

[︂
𝑥1 𝑦
𝑦 𝑥2

]︂
⪰ 0,

[︂
𝑥3 𝑧
𝑧 1

]︂
⪰ 0,

[︂
𝑦 1
1 𝑧

]︂
⪰ 0

}︂
.

(4.4)
The hyperboloid 𝐻 is clearly invariant under permutation of coordinates, i.e., for any
permutation 𝜎 ∈ S3 we have (𝑥1, 𝑥2, 𝑥3) ∈ 𝐻 ⇒ 𝜎 · (𝑥1, 𝑥2, 𝑥3) ∈ 𝐻. However the lift
we just constructed does not respect this symmetry: indeed to construct the lift we
imposed a particular ordering of the variables where the last coordinate 𝑥3 does not
play the same role as the first two coordinates 𝑥1 and 𝑥2. It is not difficult to formally
show that the lift (4.4) does not satisfy Definition 9 of equivariance when 𝐺 = S3.
Note however that the lift is equivariant with respect to permuting the coordinates
𝑥1 and 𝑥2. ♦

Relation with symmetric LP lift Symmetric LP lifts can be interpreted as equiv-
ariant SDP lifts, where each 𝜌(𝑔) consists of a permutation matrix. In fact, recall
that an LP lift of a polytope 𝑃 takes the form 𝑃 = 𝜋(R𝑑

+ ∩ 𝐿) where 𝐿 is an affine
subspace of R𝑑 and 𝜋 : R𝑑 → R𝑛 is a linear map. An LP lift 𝑃 = 𝜋(R𝑑

+ ∩ 𝐿) is called
𝐺-symmetric (or 𝐺-equivariant) if there exists 𝜃 : 𝐺→ S𝑑 (where S𝑑 is the group of
permutations on 𝑑 elements) such that for any 𝑦 ∈ R𝑑

+ ∩ 𝐿, 𝜋(𝜃(𝑔) · 𝑦) = 𝑔 · 𝜋(𝑦). By
working with diagonal matrices, any symmetric LP lift can be rewritten as an equivari-
ant SDP lift: indeed, if 𝑃 = 𝜋(R𝑑

+∩𝐿) is a symmetric LP lift of 𝑃 , then 𝑃 = ̃︀𝜋(S𝑑
+∩̃︀𝐿)

is an equivariant SDP lift where ̃︀𝐿 = {𝑌 ∈ S𝑑, 𝑌 is diagonal and diag(𝑌 ) ∈ 𝐿} and
̃︀𝜋 = 𝜋 ∘ diag where diag : S𝑑 → R𝑑 is the operator extracting the diagonal of a
symmetric matrix. This SDP lift clearly satisfies the definition of equivariance where
𝜌(𝑔) is the permutation matrix associated to 𝜃(𝑔).

Related work In independent work, Lee et al. [77] have also considered symmetric
SDP lifts. In their work however they adopted a definition of symmetric SDP lift that
is different from the one we consider here. Since the focus of [77] is on constraint satis-
faction problems, the authors only consider symmetry with respect to the permutation
group. If 𝑃 is a polytope invariant under permutation of coordinates then an SDP
lift 𝑃 = 𝜋(S𝑑

+ ∩ 𝐿) is called symmetric in [77] if for any permutation 𝜎 of {1, . . . , 𝑛}
there exists a 𝑑 × 𝑑 permutation matrix 𝜌(𝜎) such that 𝜋(𝜌(𝜎)𝑌 𝜌(𝜎)𝑇 ) = 𝜎 · 𝜋(𝑌 )
for all 𝑌 ∈ S𝑑

+ ∩ 𝐿. Note that this definition is more restrictive than ours since it
requires 𝜌(𝜎) to be a permutation matrix whereas in our Definition 9, we allow 𝜌(𝜎)
to be any invertible matrix in 𝐺𝐿𝑑(R). In this regard our framework is more general

59



and applies to a wider class of SDP lifts.

Organization of the chapter The chapter is organized as follows. In Section 4.2
we review some background material and terminology in representation theory that
we use later in the chapter. In Section 4.3 we state and prove the main theorem
(Theorem 10) which gives a characterization of equivariant SDP lifts in terms of
sum-of-squares certificates of facet inequalities from an invariant subspace. We then
apply our main theorem to three different examples of polytopes: the parity polytope
(Section 4.4), the cut polytope (Section 4.5), and regular polygons (Section 4.6). For
the parity polytope and the cut polytope we show that any equivariant SDP lift must
have exponential size. For regular 𝑁 -gons we show that any equivariant SDP lift
must have size at least Ω(log𝑁).

4.2 Background: invariant subspaces and irreducible
subspaces

We recall some basic facts concerning representation theory of finite groups which will
be used later. We refer to [95] for a reference. Given a finite group 𝐺, a real finite-
dimensional representation of 𝐺 is a pair (𝑉, 𝜌) where 𝑉 is a real finite-dimensional
vector space and 𝜌 : 𝐺 → 𝐺𝐿(𝑉 ) is a group homomorphism. Two representations
(𝑉1, 𝜌1) and (𝑉2, 𝜌2) are called 𝐺-isomorphic if there is an isomorphism 𝑓 : 𝑉1 → 𝑉2
such that 𝑓(𝜌1(𝑔)𝑥) = 𝜌2(𝑔)𝑓(𝑥) for all 𝑥 ∈ 𝑉1 and 𝑔 ∈ 𝐺. A subspace 𝑊 of 𝑉
is an invariant subspace for the representation 𝜌 if for any 𝑥 ∈ 𝑊 and 𝑔 ∈ 𝐺 we
have 𝜌(𝑔)𝑥 ∈ 𝑊 . The representation (𝑉, 𝜌) of 𝐺 is called irreducible if it does not
contain any invariant subspace except {0} and 𝑉 itself. Irreducible representations
of a group 𝐺 are the building blocks of any representation of 𝐺. The following result
is a standard fact in representation theory: any finite-dimensional real representation
(𝑉, 𝜌) of 𝐺 can be decomposed as

𝑉 = 𝑉1 ⊕ · · · ⊕ 𝑉𝑘 (4.5)

where each 𝑉𝑖 is isomorphic to a direct sum of 𝑚𝑖 copies of an irreducible represen-
tation 𝑊𝑖 of 𝐺. This decomposition (4.5) is a canonical decomposition and is called
the isotypic decomposition of 𝑉 . It satisfies the following important property: if 𝑊
is an irreducible subspace of 𝑉 that is 𝐺-isomorphic to 𝑊𝑖 then 𝑊 is contained in 𝑉𝑖.
The subspace 𝑉𝑖 is called the isotypic component of the irreducible representation 𝑊𝑖

in 𝑉 .
This decomposition result can be used to prove the following proposition which

will be needed later:

Proposition 3. Let (𝑉, 𝜌) be a real finite-dimensional representation of a finite group
𝐺 and assume

𝑉 = 𝑊1 ⊕ · · · ⊕𝑊ℎ
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is a decomposition of 𝑉 into irreducibles, i.e., each 𝑊𝑖 is an irreducible subspace of
𝑉 . Assume furthermore that the 𝑊𝑖 are sorted in nondecreasing order of dimension,
i.e., dim𝑊1 ≤ dim𝑊2 ≤ · · · ≤ dim𝑊ℎ. Assume 𝑊 is an invariant subspace of 𝑉
with dim𝑊 < dim𝑊𝑖0 for some 𝑖0 ∈ {1, . . . , ℎ}. Then necessarily 𝑊 is contained in
the direct sum 𝑊1 ⊕ · · · ⊕𝑊𝑖0−1.

Proof. Any irreducible subrepresentation of 𝑊 is isomorphic to one of the 𝑊𝑖 for
some 𝑖 < 𝑖0. Thus 𝑊 is contained in the direct sum of isotypic components of the
𝑊𝑖’s for 𝑖 < 𝑖0, thus 𝑊 is contained in

⨁︀𝑖0−1
𝑖=1 𝑊𝑖.

The following well-known proposition will also be useful later.

Proposition 4. Let 𝜌 : 𝐺 → 𝐺𝐿𝑛(R) be a real finite-dimensional representation of
a finite group 𝐺. Then there exists an invertible matrix 𝑄 such that 𝑄𝜌(𝑔)𝑄−1 is
orthogonal for all 𝑔 ∈ 𝐺.

Proof. With the choice𝑄 = (
∑︀

𝑔∈𝐺 𝜌(𝑔)𝜌(𝑔)
𝑇 )−1/2, one can easily verify that𝑄𝜌(𝑔)𝑄−1

is orthogonal for all 𝑔 ∈ 𝐺.

4.3 Structure theorem

4.3.1 Sums of squares from invariant subspaces

We saw in Chapter 2 (see Theorem 5) that finding an SDP lift of conv(𝑋) can be
reduced to finding sum of squares certificates of the facet inequalities of conv(𝑋) from
a low-dimensional subspace 𝑉 of R𝑋 . It is not difficult to turn this theorem into a
theorem that produces 𝐺-equivariant SDP lifts, where 𝐺 is a symmetry group for 𝑋.
In fact one way to obtain such an equivariant lift is to require that the subspace 𝑉
be invariant under the action of 𝐺. Here, the action of 𝐺 on R𝑋 is defined in the
natural way as:

(𝑔 · 𝑓)(𝑥) = 𝑓(𝑔−1 · 𝑥)
for any 𝑔 ∈ 𝐺, 𝑓 ∈ R𝑋 , 𝑥 ∈ 𝑋. A subspace 𝑉 of R𝑋 is called 𝐺-invariant if 𝑔 · 𝑓 ∈ 𝑉
for any 𝑓 ∈ 𝑉 and 𝑔 ∈ 𝐺.

The following example illustrates the notion of invariant subspace.
Example 9. Consider the set 𝑋 ⊂ R2 of 𝑁 roots of unity, i.e.,

𝑋 = {𝑥𝑘 = (cos(2𝜋𝑘)/𝑁, sin(2𝜋𝑘/𝑁)) : 𝑘 ∈ Z𝑁}.

The symmetry group of 𝑋 is the dihedral group which consists of 𝑁 rotations and 𝑁
reflections. The rotation of angle 2𝜋𝑡/𝑁 , where 𝑡 ∈ Z𝑁 maps the point 𝑥𝑘 to the point
𝑥𝑘+𝑡. The reflection indexed by 𝑡 ∈ Z𝑁 maps point 𝑥𝑘 to 𝑥𝑡−𝑘. Since the elements of
𝑋 are indexed by Z𝑁 we can think of a function 𝑓 ∈ R𝑋 as a vector 𝑓 ∈ RZ𝑁 . The
action of a rotation of angle 2𝜋𝑡/𝑁 on 𝑓 corresponds to shifting the components of
𝑓 . This depicted in Figure 4-1.

Consider the subspace 𝑉𝑗 of R𝑋 ∼= RZ𝑁 spanned by the two functions 𝑐𝑗(𝑘) =
cos(2𝑗𝜋𝑘/𝑁) and 𝑠𝑗(𝑘) = sin(2𝑗𝜋𝑘/𝑁). We claim that 𝑉𝑗 is invariant under the
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Figure 4-1: Action of rotation by 2𝜋/𝑁 on a function 𝑓 ∈ R𝑋 .

action of the dihedral group. Indeed if 𝑔 is the rotation that maps 𝑥𝑘 to 𝑥𝑘+𝑡 then we
have:

(𝑔 · 𝑐𝑗)(𝑘) = cos(2𝑗𝜋(−𝑡+ 𝑘)/𝑁)

= cos(2𝑗𝜋𝑡/𝑁) cos(2𝑗𝜋𝑘/𝑁) + sin(2𝑗𝜋𝑡/𝑁) sin(2𝑗𝜋𝑘/𝑁)

= cos(2𝑗𝜋𝑡/𝑁)𝑐𝑗(𝑘) + sin(2𝑗𝜋𝑡/𝑁)𝑠𝑗(𝑘).

In other words we have 𝑔 · 𝑐𝑗 ∈ span(𝑐𝑗, 𝑠𝑗) = 𝑉𝑗. Similarly we can show that if 𝑔 is
a reflection then 𝑔 · 𝑐𝑗 ∈ 𝑉𝑗 and the same for 𝑠𝑗 instead of 𝑐𝑗. Thus this shows that
𝑉𝑗 is invariant with respect to the dihedral group of order 2𝑁 . We will revisit this
example of regular 𝑁 -gons in more detail in Section 4.6 of this chapter. ♦

The following definition will be useful in the rest of this section.

Definition 10. Given 𝑓 ∈ R𝑋 and 𝑉 a subspace of R𝑋 we say that 𝑓 is 𝑉 -sos if
there exist functions ℎ1, . . . , ℎ𝐽 ∈ 𝑉 such that 𝑓 =

∑︀𝐽
𝑗=1 ℎ

2
𝑗 .

The following theorem should be compared to Theorem 5 (sufficiency part). It
shows that if the subspace 𝑉 is invariant under the action of the symmetry group 𝐺
then the resulting SDP lift we obtain is 𝐺-equivariant.

Theorem 9. Let 𝑃 ⊂ R𝑛 be a full-dimensional polytope with vertex set 𝑋 and assume
that 𝑋 is invariant under the action of a group 𝐺. Assume furthermore that there is
a 𝐺-invariant subspace 𝑉 of R𝑋 such that for any facet inequality ℓ ≤ ℓmax of 𝑃 the
function ℓmax − ℓ|𝑋 is 𝑉 -sos on 𝑋. Then conv(𝑋) has a 𝐺-equivariant SDP lift of
size dim𝑉 .

Proof. See Section 4.8.1.

Remark 5. Recall from Chapter 2 (see Section 2.3.2) that the well-known Lasserre/theta-
body lift of conv(𝑋) is obtained by taking 𝑉 to be the space of polynomials of degree
at most 𝑘 on 𝑋 (for a well-chosen 𝑘). Since the subspace of polynomials of degree at
most 𝑘 is 𝐺-invariant (for any linear action of a group 𝐺 on R𝑛) it follows that the
Lasserre/theta-body lifts are 𝐺-equivariant.

4.3.2 Statement of structure theorem

A natural question is to ask whether Theorem 9 has a converse, namely whether
for any small equivariant SDP lift there is an associated small invariant subspace of
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functions from which we can certify nonnegativity of the facet inequalities using sums
of squares. Our main theorem stated below shows that this is indeed the case.

Orbitopes We will focus on a family of polytopes that are symmetric “by construc-
tion” and are known as orbitopes [5, 4, 93]. These are constructed as follows: let 𝐺 be
a finite subgroup of 𝐺𝐿𝑛(R) and let 𝑥0 ∈ R𝑛. Define 𝑋 = 𝐺 · 𝑥0 := {𝑔 · 𝑥0 : 𝑔 ∈ 𝐺}
to be the orbit of 𝑥0 under 𝐺, and consider the associated orbitope defined as the
convex hull of 𝑋:

𝑃 = conv(𝑋) = conv(𝐺 · 𝑥0). (4.6)

Orbitopes are symmetric by construction. For example they are clearly invariant
under the action of 𝐺. One example of orbitopes are regular polygons in the plane:
if we let 𝑥0 = (1, 0) and 𝐺 ∼= Z𝑁 be the group of rotations of angle {2𝜋𝑘/𝑁, 𝑘 =
0, . . . , 𝑁 − 1} then 𝐺 · 𝑥0 are the 𝑁 roots of unity and conv(𝐺 · 𝑥0) is the regular
𝑁 -gon.

The next theorem gives a converse to Theorem 9. It shows that any equivariant
SDP lift of an orbitope must be of the “sum-of-squares form” where the subspace 𝑉
is 𝐺-invariant.

Theorem 10 (Structure theorem for equivariant SDP lifts). Let 𝐺 be a finite group
acting on R𝑛 and let 𝑋 = 𝐺 ·𝑥0 where 𝑥0 ∈ R𝑛. Let 𝑃 = conv(𝑋) and assume that 𝑃
has a 𝐺-equivariant SDP lift of size 𝑑. Then there exists a 𝐺-invariant subspace 𝑉 of
R𝑋 with dim𝑉 ≤ 𝑑3 such that the following holds: for any facet inequality ℓ ≤ ℓmax

of 𝑃 the function ℓmax − ℓ|𝑋 is 𝑉 -sos on 𝑋.

Before presenting the proof of the theorem, we first give some comments:

∙ Theorem 10 is the analogue of Theorem 5 (necessity part) for the case of equiv-
ariant SDP lifts. It shows that if the SDP lift is equivariant, then the subspace
𝑉 can be chosen to be 𝐺-invariant. The bound on the dimension is slightly
worse (𝑑3 instead of 𝑑2). In Section 4.3.3 we describe a specific situation where
the bound can be improved.

∙ Theorem 10 shows that in order to obtain lower bounds on the sizes of equiv-
ariant SDP lifts, one has to study the structure of 𝐺-invariant subspaces of R𝑋 .
For example, if one can show that such subspaces correspond to low-degree poly-
nomials, then any lower bound on the Lasserre/theta-body hierarchy will yield
a lower bound on 𝐺-equivariant SDP lifts. This will be our strategy to obtain
lower bounds on equivariant SDP lifts of the parity polytope and cut polytope.
In some cases however (e.g., regular polygons) low-dimensional invariant sub-
spaces however do not necessarily correspond to low-degree polynomials and in
this case proving lower bounds can be more challenging (cf. Section 4.6).

We conclude this section by presenting the proof of Theorem 10. The proof relies
on a certain factorization theorem from [50] which we recall here and prove later for
completeness.
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Theorem 11 ([50, Theorem 2]). Let 𝐺 be a finite group acting on R𝑛 and let 𝑋 =
𝐺 · 𝑥0 where 𝑥0 ∈ R𝑛. Assume conv(𝑋) = 𝜋(S𝑑

+ ∩ 𝐿) is a 𝐺-equivariant SDP lift
of conv(𝑋) of size 𝑑, i.e., there is a homomorphism 𝜌 : 𝐺 → 𝐺𝐿𝑑(R) such that
conditions (i) and (ii) of Definition 9 hold. Then there exists a map 𝐴 : 𝑋 → S𝑑

+

with the following properties:

(i) For any linear form ℓ on R𝑛 there exists 𝐵(ℓ) ∈ S𝑑
+ such that if we let ℓmax :=

max𝑥∈𝑋 ℓ(𝑥) we have:

ℓmax − ℓ(𝑥) = ⟨𝐴(𝑥), 𝐵(ℓ)⟩ ∀𝑥 ∈ 𝑋.

(ii) The map 𝐴 satisfies the following equivariance relation:

𝐴(𝑔 · 𝑥) = 𝜌(𝑔)𝐴(𝑥)𝜌(𝑔)𝑇 ∀𝑥 ∈ 𝑋, ∀𝑔 ∈ 𝐺.

In particular if 𝐻 denotes the stabilizer of 𝑥0, then we have:

𝐴(𝑥0) = 𝜌(ℎ)𝐴(𝑥0)𝜌(ℎ)
𝑇 ∀ℎ ∈ 𝐻. (4.7)

Furthermore, the representation 𝜌 : 𝐺 → 𝐺𝐿𝑑(R) can be taken to be orthogonal, i.e.,
𝜌(𝑔) ∈ 𝑂𝑑(R) for all 𝑔 ∈ 𝐺.

Proof. The proof is given in Section 4.8.2.

We now proceed to the proof of the structure theorem, Theorem 10.

Proof of Theorem 10. Assume we have a 𝐺-equivariant SDP lift of size 𝑑 of conv(𝑋).
By the factorization theorem (Theorem 11), we know that there exist maps 𝐴 : 𝑋 →
S𝑑
+ and 𝐵 : (R𝑛)* → S𝑑

+ such that for any linear form ℓ ∈ (R𝑛)* we have:

ℓmax − ℓ(𝑥) = ⟨𝐴(𝑥), 𝐵(ℓ)⟩ ∀𝑥 ∈ 𝑋 (4.8)

where ℓmax := max𝑥∈𝑋 ℓ(𝑥). Furthermore, since the lift is 𝐺-equivariant, the map 𝐴
satisfies the equivariance relation

𝐴(𝑔 · 𝑥) = 𝜌(𝑔)𝐴(𝑥)𝜌(𝑔)𝑇 ∀𝑥 ∈ 𝑋 ∀𝑔 ∈ 𝐺 (4.9)

where 𝜌 : 𝐺→ 𝑂(R𝑑) is a group homomorphism.
Let 𝐻 be the stabilizer of 𝑥0, i.e., 𝐻 = {𝑔 ∈ 𝐺 : 𝑔 · 𝑥0 = 𝑥0}. Note that the set 𝑋

can be identified with 𝐺/𝐻, the set of left cosets of 𝐻. Furthermore the left action of
𝐺 on 𝑋 is isomorphic to the left action of 𝐺 on 𝐺/𝐻. For simplicity of notation, we
will thus think of functions on 𝑋 as functions on 𝐺/𝐻, or equivalently, as functions
on 𝐺 that are constant on the left cosets of 𝐻. For example since the point 𝑥0 is
identified with the left coset 1𝐺𝐻 of 𝐻, we will write 𝐴(1𝐺) instead of 𝐴(𝑥0).

We first show how to construct the subspace 𝑉 of R𝑋 ∼= R𝐺/𝐻 and then we prove
that it satisfies the properties of the statement.
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∙ Definition of 𝑉 : Let

𝐴(1𝐺) =
𝑟∑︁

𝑖=1

𝜆𝑖𝑃𝑊𝑖

be an eigendecomposition of 𝐴(1𝐺), where each 𝑃𝑊𝑖
is an orthogonal projection on the

eigenspace 𝑊𝑖. Observe that from Equation (4.7) we have 𝐴(1𝐺) = 𝜌(ℎ)𝐴(1𝐺)𝜌(ℎ)
𝑇

for all ℎ ∈ 𝐻. Since 𝜌(ℎ) is orthogonal, this means that 𝐴(1𝐺) commutes with
𝜌(ℎ), and so 𝜌(ℎ)𝑊𝑖 = 𝑊𝑖 for each eigenspace 𝑊𝑖 of 𝐴(1𝐺), which also implies that
𝜌(ℎ)𝑃𝑊𝑖

𝜌(ℎ)𝑇 = 𝑃𝑊𝑖
. An important consequence of this is that the functions 𝑔 ↦→

𝜌(𝑔)𝑃𝑊𝑖
𝜌(𝑔)𝑇 are constant on the left cosets of 𝐻, thus we can think of them as

functions on 𝐺/𝐻. Let 𝑉 be the subspace of R𝐺/𝐻 spanned by the matrix entries of
𝑥 ∈ 𝐺/𝐻 ↦→ 𝜌(𝑥)𝑃𝑊𝑖

𝜌(𝑥)𝑇 , namely

𝑉 = span
{︁
𝑥 ∈ 𝐺/𝐻 ↦→ (𝜌(𝑥)𝑃𝑊𝑖

𝜌(𝑥)𝑇 )𝑘,𝑙, 𝑖 = 1, . . . , 𝑟 and 𝑘, 𝑙 = 1, . . . , 𝑑
}︁
.

(4.10)
∙ It is clear that 𝑉 is 𝐺-invariant (since 𝜌 is a homomorphism) and that dim𝑉 ≤

𝑑3. It thus remains to show that ℓmax − ℓ is 𝑉 -sos on 𝑋 for any ℓ ∈ (R𝑛)*. We know
from (4.8) that there exists 𝐵 = 𝐵(ℓ) ∈ S𝑑

+ such that ℓmax− ℓ(𝑥) = ⟨𝐴(𝑥), 𝐵⟩ for any
𝑥 ∈ 𝑋. Now for any 𝑥 ∈ 𝐺/𝐻 we have:

⟨𝐴(𝑥), 𝐵⟩ = ⟨𝜌(𝑥)𝐴(1𝐺)𝜌(𝑥)𝑇 , 𝐵⟩ =
𝑟∑︁

𝑖=1

𝜆𝑖⟨𝜌(𝑥)𝑃𝑊𝑖
𝜌(𝑥)𝑇 , 𝐵⟩. (4.11)

Note that even though 𝜌(𝑥) is not well-defined when 𝑥 ∈ 𝐺/𝐻, the quantities
𝜌(𝑥)𝐴(1𝐺)𝜌(𝑥)

𝑇 and 𝜌(𝑥)𝑃𝑊𝑖
𝜌(𝑥)𝑇 are well-defined and do not depend on the rep-

resentative of the coset 𝑥 ∈ 𝐺/𝐻 (cf. previous remarks). Observe that since 𝑃𝑊𝑖

is an orthogonal projection and 𝜌(𝑥) is orthogonal, we have (𝜌(𝑥)𝑃𝑊𝑖
𝜌(𝑥)𝑇 )2 =

𝜌(𝑥)𝑃𝑊𝑖
𝜌(𝑥)𝑇 . Thus continuing from Equation (4.11) we can write:

⟨𝐴(𝑥), 𝐵⟩ =
𝑟∑︁

𝑖=1

𝜆𝑖⟨(𝜌(𝑥)𝑃𝑊𝑖
𝜌(𝑥)𝑇 )2, 𝐵⟩ =

𝑟∑︁

𝑖=1

𝜆𝑖‖𝐿𝑇𝜌(𝑥)𝑃𝑊𝑖
𝜌(𝑥)𝑇‖2𝐹

where 𝐿 is such that 𝐵 = 𝐿𝑇𝐿. Since each entry function of

𝑥 ∈ 𝐺/𝐻 ↦→ 𝐿𝑇𝜌(𝑥)𝑃𝑊𝑖
𝜌(𝑥)𝑇

lives in 𝑉 , this shows that ⟨𝐴(𝑥), 𝐵⟩ is a sum-of-squares of functions in 𝑉 , which is
what we wanted.

4.3.3 Groups with a product structure

In the case where the group 𝐺 has a certain product structure, one can strengthen
the conclusion of Theorem 10 with a better bound on the dimension of 𝑉 . We thus
assume in this section that the group 𝐺 has the following property:
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Assumption 1 (Product structure). Any element 𝑔 ∈ 𝐺 can be written in a unique
way as 𝑔 = 𝑛ℎ where 𝑛 ∈ 𝑁, ℎ ∈ 𝐻 where 𝑁 and 𝐻 are subgroups of 𝐺 that satisfy
the following:

∙ 𝑁 is a normal subgroup of 𝐺, i.e., for any 𝑛 ∈ 𝑁 we have 𝑔𝑛𝑔−1 ∈ 𝑁 for all
𝑔 ∈ 𝐺

∙ 𝐻 stabilizes 𝑥0, i.e., ℎ · 𝑥0 = 𝑥0 for all ℎ ∈ 𝐻

In group-theoretic terms the conditions above can be summarized by saying that
𝐺 is the semidirect product of 𝑁 and 𝐻, i.e., 𝐺 = 𝑁 o𝐻 and that 𝐻 stabilizes 𝑥0.
The following example shows that the symmetry group of the cube has such a product
structure.

Example 10 (The hypercube). Let 𝑥0 = (1, . . . , 1) ∈ R𝑛 and let 𝐺 ⊂ 𝐺𝐿𝑛(R) be the
group of signed permutations, i.e., the group of permutation matrices where nonzero
entries are either +1 or −1. The orbit 𝐺 ·𝑥0 is {−1, 1}𝑛. Note that 𝐺 has the product
structure described above where

𝑁 = {diag(𝜖) : 𝜖 ∈ {−1, 1}𝑛}
𝐻 = permutation matrices.

Indeed any signed permutation matrix can be written as a product 𝑛ℎ where 𝑛 ∈ 𝑁
and ℎ ∈ 𝐻. Furthermore 𝐻 stabilizes 𝑥0 since 𝑥0 = (1, . . . , 1). Finally 𝑁 is normal
because if ℎ is any permutation matrix and 𝑛 ∈ 𝑁 then ℎ𝑛ℎ−1 ∈ 𝑁 . ♦

We now state our structure theorem when the group 𝐺 has a product structure.

Theorem 12 (Structure theorem; special case with product structure). Let 𝐺 be
a finite group acting on R𝑛 and let 𝑋 = 𝐺 · 𝑥0 where 𝑥0 ∈ R𝑛. Assume that 𝐺
satisfies Assumption 1: namely 𝐺 = 𝑁 o𝐻 where 𝑁 is a normal subgroup of 𝐺 and
𝐻 stabilizes 𝑥0. Assume 𝑃 has a 𝐺-equivariant SDP lift of size 𝑑. Then there exists
a 𝐺-invariant subspace 𝑉 of R𝑋 with the following properties:

(i) For any facet inequality ℓ ≤ ℓmax of 𝑃 = conv(𝑋) the nonnegative function
ℓmax − ℓ|𝑋 is 𝑉 -sos on 𝑋.

(ii) dim𝑉 ≤ 𝛼𝑁(𝑑) · 𝑑 where 𝛼𝑁(𝑑) is the largest dimension of any real irreducible
representation of 𝑁 of dimension ≤ 𝑑 (in particular dim𝑉 ≤ 𝑑2).

Remark 6. Note that the worst case bound on the dimension of 𝑉 here is 𝑑2 whereas
in Theorem 10 it is 𝑑3. Furthermore in the examples that we will consider later in
the chapter the quantity 𝛼𝑁(𝑑) will be equal to 1 in which case the bound reduces
simply to 𝑑.

Proof of Theorem 12. Assume we have a 𝐺-equivariant SDP lift of size 𝑑 of conv(𝑋).
By the factorization theorem (Theorem 11), we know that there exist maps 𝐴 : 𝑋 →
S𝑑
+ and 𝐵 : (R𝑛)* → S𝑑

+ such that for any linear form ℓ ∈ (R𝑛)* we have:

ℓmax − ℓ(𝑥) = ⟨𝐴(𝑥), 𝐵(ℓ)⟩ ∀𝑥 ∈ 𝑋 (4.12)
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where ℓmax := max𝑥∈𝑋 ℓ(𝑥). Furthermore, since the lift is 𝐺-equivariant, the map 𝐴
satisfies the equivariance relation

𝐴(𝑔 · 𝑥) = 𝜌(𝑔)𝐴(𝑥)𝜌(𝑔)𝑇 ∀𝑥 ∈ 𝑋 ∀𝑔 ∈ 𝐺 (4.13)

where 𝜌 : 𝐺 → 𝐺𝐿(R𝑑) is a group homomorphism (in fact we can choose 𝜌 to take
values in 𝑂(R𝑑) however we will not need this in this proof).

Note that since 𝐺 has the product structure 𝐺 = 𝑁 o𝐻 and 𝐻 is the stabilizer
of 𝑥0 we can identify 𝑋 with 𝑁 , and the left action of 𝐺 on 𝑋 is isomorphic to the
left action of 𝐺 on 𝑁 defined by 𝑔 · 𝑥 = 𝑛ℎ𝑥ℎ−1 ∈ 𝑁 , where 𝑔 = 𝑛ℎ ∈ 𝐺 and 𝑥 ∈ 𝑁 .
Thus in the rest of the proof we will think of functions on 𝑋 as functions on 𝑁 . For
example since the point 𝑥0 is identified with 1𝑁 , we will write 𝐴(1𝑁) instead of 𝐴(𝑥0).

We now define the subspace 𝑉 of R𝑋 ∼= R𝑁 and then we show it has the required
properties.

∙ Definition of 𝑉 : Let 𝑉 be the subspace of R𝑁 spanned by the matrix entry
functions of 𝜌|𝑁 , i.e.,

𝑉 = span
{︁
𝑥 ∈ 𝑁 ↦→ 𝜌(𝑥)𝑖𝑗, 𝑖, 𝑗 = 1, . . . , 𝑑

}︁
.

∙ We need to show that 𝑉 is a 𝐺-invariant subspace and that Properties (i) and
(ii) in the statement of the theorem are satisfied.

* To see why 𝑉 is 𝐺-invariant, note that for any 𝑥 ∈ 𝑁 and 𝑔 = 𝑛ℎ ∈ 𝐺 we
have 𝜌(𝑔 · 𝑥) = 𝜌(𝑛ℎ𝑥ℎ−1) = 𝜌(𝑛ℎ)𝜌(𝑥)𝜌(ℎ−1) thus for any 𝑖, 𝑗 the function
𝑥 ↦→ 𝜌(𝑔 · 𝑥)𝑖𝑗 is a linear combination of the functions 𝑥 ↦→ 𝜌(𝑥)𝑘,𝑙. This shows
that 𝑉 is 𝐺-invariant.

* To prove that dim𝑉 ≤ 𝛼𝑁(𝑑) ·𝑑, observe that if 𝑛1, . . . , 𝑛𝑘 are the dimensions of
the irreducible components of the representation 𝜌|𝑁 : 𝑁 → 𝐺𝐿(R𝑑) of 𝑁 , then
the matrices 𝜌(𝑥) (𝑥 ∈ 𝑁) are all, up to a global change of basis, block-diagonal
with blocks of size 𝑛1, . . . , 𝑛𝑘. Thus we have dim𝑉 ≤ ∑︀

𝑖 𝑛
2
𝑖 ≤ ∑︀

𝑖 𝑛𝑖𝛼𝑁(𝑑) =
𝛼𝑁(𝑑) · 𝑑 since each 𝑛𝑖 ≤ 𝛼𝑁(𝑑) and

∑︀
𝑖 𝑛𝑖 = 𝑑.

* Finally, it remains to prove Property (i). Let ℓ ∈ (R𝑛)* and let 𝐵 = 𝐵(ℓ) ∈ S𝑑
+

such that (4.12) is true. Note that for any 𝑥 ∈ 𝑁 we have:

⟨𝐴(𝑥), 𝐵⟩ = ⟨𝜌(𝑥)𝐴(1𝑁)𝜌(𝑥)𝑇 , 𝐵⟩ = Tr(𝜌(𝑥)𝐴(1𝑁)𝜌(𝑥)
𝑇𝐵). (4.14)

Since 𝐴(1𝑁) and 𝐵 are positive semidefinite matrices, we can write 𝐴(1𝑁) =
𝐿𝐴𝐿

𝑇
𝐴 and 𝐵 = 𝐿𝐵𝐿

𝑇
𝐵 for some matrices 𝐿𝐴 and 𝐿𝐵. Then we have:

⟨𝐴(𝑥), 𝐵⟩ = Tr(𝜌(𝑥)𝐿𝐴𝐿
𝑇
𝐴𝜌(𝑥)

𝑇𝐿𝐵𝐿
𝑇
𝐵) = ‖𝐿𝑇

𝐵𝜌(𝑥)𝐿𝐴‖2𝐹 .

Since each entry function of 𝑥 ↦→ 𝐿𝑇
𝐵𝜌(𝑥)𝐿𝐴 lives in 𝑉 , it follows that 𝑥 ↦→

⟨𝐴(𝑥), 𝐵⟩ has a sum-of-squares representation with functions from 𝑉 . This
completes the proof.
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Remark 7. Observe that the theorem above could be stated more generally without
using the language of lifts. Assume 𝑝(𝑥) is a function that is nonnegative on 𝑋 and
has an equivariant certificate of nonnegativity of the form

𝑝(𝑥) = ⟨𝐴(𝑥), 𝐵⟩ ∀𝑥 ∈ 𝑋

where 𝐵 ∈ S𝑑
+ and 𝐴 : 𝑋 → S𝑑

+ satisfies the equivariance relation:

𝐴(𝑔 · 𝑥) = 𝜌(𝑔)𝐴(𝑥)𝜌(𝑔)𝑇 ∀𝑥 ∈ 𝑋, ∀𝑔 ∈ 𝐺.

Then the arguments in the proofs above show that 𝑝(𝑥) must be a sum of squares
of functions from a 𝐺-invariant subspace 𝑉 of R𝑋 whose dimension is bounded by
a certain function of 𝑑 (𝑑3 in the setting of Theorem 10 and 𝛼𝑁(𝑑)𝑑 in the setting
of Theorem 12). In the theorems above, the function 𝑝(𝑥) corresponds to the facet-
defining linear function 𝑝(𝑥) = ℓmax − ℓ(𝑥) but the proofs did not use this specific
form of the function 𝑝(𝑥). This will be useful later when analyzing approximate SDP
lifts of the cut polytope (Section 4.5).

4.3.4 Illustration: the square [−1, 1]2

In this section we illustrate how one can use the structure theorems to derive a lower
bound on equivariant SDP lifts of the square 𝑃 = [−1, 1]2. We will show, via Theorem
12 that the square [−1, 1]2 does not admit a 𝐺-equivariant SDP lift of size smaller
than 3 where 𝐺 = 𝐷8 is the symmetry group of the square (the dihedral group of
order 8).

First recall that in Example 7 we gave a 𝐺-equivariant SDP lift of 𝑃 = [−1, 1]2

of size 3. We can apply Theorem 12 to this lift (recall from Example 10 that the
symmetry group here has the required product structure): Theorem 12 says that
there must exist a 𝐺-invariant subspace 𝑉 of R{−1,1}2 with the following properties:

(i) Any facet inequality ℓ(𝑥) ≤ ℓmax of 𝑃 has a sum-of-squares certificate with
functions from 𝑉 :

ℓmax − ℓ(𝑥) =
∑︁

𝑗

𝑓𝑗(𝑥)
2 ∀𝑥 ∈ {−1, 1}2

where 𝑓𝑗 ∈ 𝑉 .

(ii) dim𝑉 ≤ 1 · 3 = 3 (indeed 𝛼𝑁(3) = 1 since 𝑁 is isomorphic to Z2
2 for which all

the real irreducible representations have dimension one).

It is actually not difficult to construct this subspace 𝑉 explicitly. In fact, we have
already constructed it in Example 4 from Chapter 2: the subspace 𝑉 of polynomials
of degree at most 1 on {−1, 1}2 (i.e., 𝑉 = span(1, 𝑥1, 𝑥2)) satisfies point (i) above,
has dimension 3 and is clearly 𝐺-invariant.
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Now one may wonder if there exists an equivariant SDP lift of the square 𝑃 =
[−1, 1]2 of size 2. Using Theorem 12 this would mean that there exists a 𝐺-invariant
subspace 𝑉 of R{−1,1}2 of dimension ≤ 2 which allows us to certify the four facet
inequalities of 𝑃 using sum-of-squares. Later in the chapter we will study in more
detail the space of functions on the hypercube {−1, 1}𝑛 and their invariant subspaces,
cf. Lemma 4. Using this lemma one can actually show that such a subspace 𝑉 of
dimension ≤ 2 cannot exist, ruling out the existence of 𝐺-equivariant SDP lifts of
size 2 of the square [−1, 1]2.

Remark 8. Actually it is known that there does not exist any SDP lift (even a
nonequivariant one) of the square [−1, 1]2 of size 2. Indeed it was shown in [51]
that any SDP lift of a full-dimensional polytope 𝑃 in R𝑛 must have size at least 𝑛+1.

4.4 Application 1: the parity polytope
In this section we derive lower bounds on the size of equivariant SDP lifts of the
parity polytope using the structure theorem.

4.4.1 Definitions

Define EVEN𝑛 to be the set of points 𝑥 ∈ {−1, 1}𝑛 that have an even number of −1’s,
i.e.:

EVEN𝑛 =

{︃
𝑥 ∈ {−1, 1}𝑛 :

𝑛∏︁

𝑖=1

𝑥𝑖 = 1

}︃
. (4.15)

The convex hull of EVEN𝑛 is called the parity polytope and is denoted PAR𝑛:

PAR𝑛 = conv(EVEN𝑛).

Symmetry group The group of transformations that leave the parity polytope
invariant consist of evenly signed permutation matrices, i.e., permutation matrices
where each entry can be either +1 or −1 with the constraint that the total number of
−1’s is even. We denote by 𝐺parity this group. We prove in this section an exponential
lower bound on the size of 𝐺parity-equivariant SDP lifts of the parity polytope.

Theorem 13. Any 𝐺parity-equivariant SDP lift of PAR𝑛 for 𝑛 ≥ 8 must have size
≥
(︀

𝑛
⌈𝑛/4⌉

)︀
.

Product structure of the symmetry group Note that the symmetry group of
the parity polytope has the product structure corresponding to Section 4.3.3. The
reasoning is very similar to the hypercube group considered in Example 10. In fact
let 𝑁parity ⊂ 𝐺𝐿𝑛(R) be the subgroup of 𝐺𝐿𝑛(R) consisting of diagonal matrices with
+1 or −1 on the diagonal and with an even number of −1’s, i.e.:

𝑁parity = {diag(𝑥) : 𝑥 ∈ EVEN𝑛}.
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It is not difficult to see that any element of 𝑔 ∈ 𝐺parity can be written in a unique way
as 𝑔 = 𝜖ℎ where 𝜖 ∈ 𝑁parity and ℎ is a permutation matrix. Since 𝑁parity is normal in
𝐺 and permutation matrices stabilize 𝑥0 = (1, . . . , 1) it follows that Assumption 1 is
satisfied.

Facet description of the parity polytope When 𝑛 > 2, the parity polytope
is a full-dimensional polytope in R𝑛. It has the following description using linear
inequalities (see [101, 60]):

PAR𝑛 =
{︁
𝑥 ∈ R𝑛 : −1 ≤ 𝑥 ≤ 1,

∑︁

𝑖∈𝐴𝑐

𝑥𝑖 −
∑︁

𝑖∈𝐴
𝑥𝑖 ≤ 𝑛− 2 ∀𝐴 ⊆ [𝑛], |𝐴| odd

}︁
.

(4.16)
If 𝑛 ≥ 4 each of the 2𝑛+2𝑛−1 inequalities are facet-defining. If 𝑛 = 3 the inequalities
−1 ≤ 𝑥 ≤ 1 are redundant giving the simpler description with 4 facets

PAR3 = {𝑥 ∈ R𝑛 : 𝑥1 + 𝑥2 − 𝑥3 ≤ 1
𝑥1 − 𝑥2 + 𝑥3 ≤ 1

−𝑥1 + 𝑥2 + 𝑥3 ≤ 1
−𝑥1 − 𝑥2 − 𝑥3 ≤ 1}.

(4.17)

Nonequivariant polynomial-size lifts of the parity polytope Polynomial-size
lifts of the parity polytope have been known since the original paper of Yannakakis
[101]. In fact there are two known LP lifts of the parity polytope of size respectively
𝑂(𝑛2) and 𝑂(𝑛). The two lifts respect some of the symmetry of the parity polytope
however none of them is equivariant with respect to the full symmetry group 𝐺parity =
𝑁parity oS𝑛.

∙ The lift of size 𝑂(𝑛2) given by Yannakakis [101] relies on the observation that

PAR𝑛 = conv

(︃ ⋃︁

𝑘 even

𝑆𝑘

)︃

where 𝑆𝑘 are the “slices” of the hypercube defined by the equation 1𝑇 𝑥 = 𝑛−2𝑘:

𝑆𝑘 = conv{𝑥 ∈ {−1, 1}𝑛 : 𝑥 has exactly 𝑘 components equal to −1}
= {𝑥 ∈ [−1, 1]𝑛 : 1𝑇 𝑥 = 𝑛− 2𝑘}.

Since each 𝑆𝑘 has a simple description using only 𝑂(𝑛) linear inequalities, this
can be used to construct a lift of PAR𝑛 of size 𝑂(𝑛2). One can easily verify
that this lift is equivariant with respect to permutation of the coordinates. One
can show however that this lift is not equivariant with respect to switching an
even number of signs. Intuitively, the reason behind this is that the operation
of switching signs does not preserve the slices 𝑆𝑘.

∙ There is a smaller yet less well known LP lift of the parity polytope due to [20,
Section 2.6.3] (see also [62]) which has size 𝑂(𝑛). This lift is equivariant with
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respect to switching an even number of signs, however it is not equivariant with
respect to the permutation action. The key observation behind this LP lift is
that (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ EVEN𝑛 if and only if there exists 𝑧 ∈ {−1, 1} such that
(𝑥1, 𝑥2, 𝑧) ∈ EVEN3 and (𝑧, 𝑥3, . . . , 𝑥𝑛) ∈ EVEN𝑛−1 (simply take 𝑧 = 𝑥1𝑥2). In
fact one can establish an analog of this statement for the parity polytope:

PAR𝑛 = {𝑥 ∈ R𝑛 : ∃𝑧 s.t. (𝑥1, 𝑥2, 𝑧) ∈ PAR3

and (𝑧, 𝑥3, . . . , 𝑥𝑛) ∈ PAR𝑛−1}.
(4.18)

Repeatedly applying (4.18) shows that

PAR𝑛 =
{︁
𝑥 ∈ R𝑛 : ∃𝑧2, 𝑧3, . . . , 𝑧𝑛−2 s.t.

(𝑥1, 𝑥2, 𝑧2) ∈ PAR3, (𝑧𝑛−2, 𝑥𝑛−1, 𝑥𝑛) ∈ PAR3,

and (𝑧𝑖, 𝑥𝑖+1, 𝑧𝑖+1) ∈ PAR3 for 𝑖 ∈ {2, 3, . . . , 𝑛− 3}
}︁
.

This description shows that PAR𝑛 is the projection of a polytope with 4(𝑛− 2)
facets. It is not too hard to show that this lift is actually equivariant with respect
to switching an even number of signs. However one can see that this lift is not
equivariant with respect to permutations since we have broken permutation
symmetry by imposing a particular ordering on the variables.

4.4.2 Invariant subspaces of functions on EVEN𝑛

In order to understand equivariant SDP lifts of PAR𝑛, we need to understand 𝐺parity-
invariant subspaces of REVEN𝑛 . This is the object of this section.

If 𝐼 ⊆ [𝑛] define the monomial map R𝑛 ∋ 𝑥 ↦→ 𝑥𝐼 :=
∏︀

𝑖∈𝐼 𝑥𝑖. We can regard these
as functions on EVEN𝑛 by simply restricting their domain. When we do so, we write
them as 𝑒𝐼 so that:

𝑒𝐼 : EVEN𝑛 → R, 𝑒𝐼(𝑥) = 𝑥𝐼 .

When working on the hypercube {−1, 1}𝑛 it is well-known that the functions (𝑒𝐼)𝐼⊆[𝑛]

form a basis of functions on the hypercube. When working on EVEN𝑛 we have the
additional fact that 𝑒𝐼 = 𝑒𝐼𝑐 and so one only needs half of these functions. This is
made precise in the next theorem.

Proposition 5. Let 𝑛 ≥ 1.

∙ If 𝑛 is odd, then the functions 𝑒𝐼 for |𝐼| < 𝑛/2 form a basis of REVEN𝑛.

∙ If 𝑛 is even, then the functions 𝑒𝐼 with |𝐼| < 𝑛/2 together with the functions
(𝑒𝐼 + 𝑒𝐼𝑐)/2 for |𝐼| = 𝑛/2 constitute a basis of REVEN𝑛.

Proof. Given 𝑎 ∈ EVEN𝑛, let 1𝑎 ∈ REVEN𝑛 be the indicator function for 𝑎, i.e.,
1𝑎(𝑥) = 1 if 𝑥 = 𝑎 and 1𝑎(𝑥) = 0 otherwise. Clearly the family of functions
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{1𝑎}𝑎∈EVEN𝑛 forms a basis of REVEN𝑛 . Observe that 1𝑎 can be written as the fol-
lowing polynomial:

1𝑎(𝑥) =
1

2𝑛
(1 + 𝑎1𝑥1) . . . (1 + 𝑎𝑛𝑥𝑛) ∀𝑥 ∈ EVEN𝑛.

Furthermore, the following identities are true on EVEN𝑛: 𝑥2𝑖 = 1 and 𝑥𝐼 = 𝑥𝐼
𝑐 for any

𝑥 ∈ EVEN𝑛. If we expand the polynomial expression for 1𝑎 above using the previous
identities we see that, when 𝑛 is odd, 1𝑎 is a linear combination of the square-free
monomials 𝑥𝐼 for |𝐼| < 𝑛/2. When 𝑛 is even any monomial of the form 𝑥𝐼 where
|𝐼| = 𝑛/2 can be rewritten as (𝑥𝐼+𝑥𝐼𝑐)/2. Thus this shows that the functions given in
the statement of the proposition form a generating set for REVEN𝑛 . Since the number
of such functions is 2𝑛−1 = dimREVEN𝑛 , they form a basis of REVEN𝑛 .

Given 0 ≤ 𝑘 < 𝑛/2, let Pol𝑘(EVEN𝑛) be the subspace of REVEN𝑛 of homogeneous
polynomials of degree 𝑘, i.e.,

Pol𝑘(EVEN𝑛) = span{𝑒𝐼 : |𝐼| = 𝑘}.

If 𝑘 = 𝑛/2 let Pol𝑘(EVEN𝑛) be the subspace of REVEN𝑛 spanned by the (𝑒𝐼 + 𝑒𝐼𝑐)/2
with |𝐼| = 𝑛/2. So we have:

dimPol𝑘(EVEN𝑛) =

{︃(︀
𝑛
𝑘

)︀
if 𝑘 < 𝑛/2

1
2

(︀
𝑛

𝑛/2

)︀
if 𝑘 = 𝑛/2.

Proposition 5 shows that the space REVEN𝑛 decomposes as:

REVEN𝑛 = Pol0(EVEN𝑛)⊕ · · · ⊕ Pol⌊𝑛/2⌋(EVEN𝑛).

For future reference we let Pol≤𝑘(EVEN𝑛) be the space of polynomials on EVEN𝑛 of
degree at most 𝑘:

Pol≤𝑘(EVEN𝑛) =
𝑘⨁︁

𝑖=0

Pol𝑖(EVEN𝑛).

Irreducible subspaces We are interested in subspaces of REVEN𝑛 that are 𝐺parity-
invariant. Recall that 𝐺parity is the group of evenly signed permutations. Thus a
subspace 𝑉 of REVEN𝑛 is 𝐺parity-invariant if for any 𝑓 ∈ 𝑉 , and any 𝜖 ∈ {−1,+1}𝑛
such that

∏︀𝑛
𝑖=1 𝜖𝑖 = 1, and any 𝜎 ∈ S𝑛 the function:

𝑥 ↦→ 𝑓(𝜖1𝑥𝜎(1), . . . , 𝜖𝑛𝑥𝜎(𝑛))

is also in 𝑉 . Recall that an invariant subspace 𝑉 is called irreducible if it does not
contain any nontrivial invariant subspace, i.e., if 𝑊 is an invariant subspace of 𝑉 ,
then 𝑊 = {0} or 𝑊 = 𝑉 . It is clear that the subspaces Pol𝑘(EVEN𝑛) are 𝐺parity-
invariant. The next result shows that these subspaces are actually irreducible. For
the statement to follow we use the following notation (where 𝑛 and 𝑘 are two integers
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such that 𝑘 ≤ 𝑛/2):

𝐷𝑛,𝑘 :=

{︃(︀
𝑛
𝑘

)︀
if 𝑛 is odd

min
(︁(︀

𝑛
𝑘

)︀
, 1
2

(︀
𝑛

𝑛/2

)︀)︁
if 𝑛 is even.

(4.19)

Lemma 3. Under the action of 𝐺parity, REVEN𝑛 decomposes into irreducible invariant
subspaces as

REVEN𝑛 = Pol0(EVEN𝑛)⊕ · · · ⊕ Pol⌊𝑛/2⌋(EVEN𝑛).

Hence if 𝑉 is a 𝐺parity-invariant subspace of REVEN𝑛 with dim(𝑉 ) < 𝐷𝑛,𝑘 then 𝑉 ⊆
Pol≤𝑘−1(EVEN𝑛).

Proof. See Section 4.8.3.

4.4.3 Lower bound on equivariant SDP lifts

In this section we prove our main theorem concerning equivariant SDP lifts of the
parity polytope. Lemma 3 tells us that low-dimensional invariant subspaces of REVEN𝑛

correspond to low-degree polynomials. This allows us to show that if the parity
polytope admits a small equivariant SDP lift, then a few levels of the Lasserre/theta-
body hierarchy are enough to be exact. This is the object of the next theorem.

Theorem 14. Assume PAR𝑛 has a 𝐺parity equivariant SDP lift of size 𝑑 where 𝑑
satisfies 𝑑 < 𝐷𝑛,𝑘 for some 𝑘 ≤ 𝑛/2. Then the (𝑘−1)’st Lasserre/theta-body relaxation
is exact, i.e., TH𝑘−1(EVEN𝑛) = PAR𝑛.

Proof. This is a direct consequence of the structure theorem and of Lemma 3. Assume
we have a 𝐺parity-equivariant SDP lift of PAR𝑛 of size 𝑑. We can apply Theorem 12
with 𝑃 = PAR𝑛 and 𝐺 = 𝐺parity = 𝑁parity o S𝑛. Since 𝑁parity

∼= Z𝑛−1
2 , all the real

irreducible representations of 𝑁parity are one-dimensional. Thus Theorem 12 says that
there exists a 𝐺parity-invariant subspace 𝑉 of REVEN𝑛 with dim𝑉 ≤ 𝑑 such that for
any linear form ℓ ∈ (R𝑛)* we have that

ℓmax − ℓ is 𝑉 -sos on EVEN𝑛 (4.20)

where ℓmax := max𝑥∈EVEN𝑛 ℓ(𝑥). In Lemma 3 we showed that such an invariant
subspace, when 𝑑 < 𝐷𝑛,𝑘, is composed entirely of polynomials of degree at most 𝑘−1,
i.e. 𝑉 is a subspace of Pol≤𝑘−1(EVEN𝑛). Thus this shows that TH𝑘−1(EVEN𝑛) =
PAR𝑛.

Theta-rank To obtain a lower bound on equivariant SDP lifts of the parity polytope
we need a lower bound on its theta-rank, i.e., the number of levels required by the
Lasserre/theta-body hierarchy for exactness (cf. Section 2.3.2). Such a lower bound
was already obtained in [48, Corollary 5.7] where it was shown that the theta-rank of
the parity polytope is exactly ⌈𝑛/4⌉.
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Proposition 6 (Collorary 5.7 in [48]). The theta-rank of the parity polytope PAR𝑛

is exactly ⌈𝑛/4⌉.

Proof. We include a self-contained proof for the lower bound in Section 4.8.4 for
completeness.

Exponential lower bounds We are now ready to prove Theorem 13 giving an
exponential lower bound on the size of equivariant SDP lifts of the parity polytope.

Theorem 13. Any 𝐺parity-equivariant SDP lift of PAR𝑛 for 𝑛 ≥ 8 must have size
≥
(︀

𝑛
⌈𝑛/4⌉

)︀
.

Proof. We apply Theorem 14 with 𝑘 = ⌈𝑛/4⌉. By Proposition 6, we know that the
theta-body relaxation of order ⌈𝑛/4⌉ − 1 is not exact. Thus this means that any
𝐺parity-equivariant SDP lift of PAR𝑛 must have size 𝑑 ≥ 𝐷𝑛,⌈𝑛/4⌉. One can then easily
check from the definition of 𝐷𝑛,𝑘 that when 𝑛 ≥ 8 we have 𝐷𝑛,⌈𝑛/4⌉ ≥

(︀
𝑛

⌈𝑛/4⌉
)︀
.

Approximate lifts Note that, using Remark 7 from the previous section, one can
actually state a more general theorem relating approximate equivariant SDP lifts and
the sum-of-squares hierarchy. Indeed one can prove the following:

Theorem 15. Assume ̂︀𝑃 ⊆ R𝑛 is an outer-approximation of PAR𝑛 (i.e., PAR𝑛 ⊆ ̂︀𝑃 )
and assume ̂︀𝑃 has a 𝐺parity-equivariant SDP lift of size 𝑑. If 𝑑 < 𝐷𝑛,𝑘 for some
𝑘 ≤ 𝑛/2 then necessarily

PAR𝑛 ⊆ TH𝑘−1(EVEN𝑛) ⊆ ̂︀𝑃

where TH𝑘−1(EVEN𝑛) is the (𝑘 − 1)’st Lasserre/theta-body relaxation for the parity
polytope.

Proof. The proof is very similar to the proof of Theorem 14 above. Given a linear
form ℓ ∈ (R𝑛)* let ℓmax and ̂︂ℓmax be respectively the maximum of ℓ on PAR𝑛 and ̂︀𝑃 .
Note that ℓmax ≤ ̂︂ℓmax since PAR𝑛 ⊆ ̂︀𝑃 , and hence the linear function ̂︂ℓmax − ℓ(𝑥)

is nonnegative on EVEN𝑛. Since ̂︀𝑃 has a 𝐺parity-equivariant SDP lift of size 𝑑, and
since EVEN𝑛 ⊆ ̂︀𝑃 one can show (using a simple generalization of Theorem 11) that
we have an equivariant certificate of nonnegativity of ̂︂ℓmax− ℓ on EVEN𝑛 of the form:

̂︂ℓmax − ℓ(𝑥) = ⟨𝐴(𝑥), 𝐵⟩ ∀𝑥 ∈ EVEN𝑛

where 𝐴 satisfies the equivariance relation 𝐴(𝑔 · 𝑥) = 𝜌(𝑔)𝐴(𝑥)𝜌(𝑔)𝑇 for all 𝑥 ∈
EVEN𝑛, 𝑔 ∈ 𝐺parity. Thus by Remark 7, we know that ̂︂ℓmax−ℓ(𝑥) is a sum-of-squares
of functions in a 𝐺parity-invariant subspace 𝑉 of dimension ≤ 𝑑. Thus using Lemma
3 below it holds that ̂︂ℓmax − ℓ(𝑥) is a sum-of-squares of functions of degree ≤ 𝑘 − 1
on EVEN𝑛.

This is true for any facet-defining linear form ℓ of ̂︀𝑃 thus, by the definition of the
theta-body relaxation (cf. Equation (2.21)) we have TH𝑘−1(EVEN𝑛) ⊆ ̂︀𝑃 .
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4.5 Application 2: the cut polytope
In this section we use the structure theorem to derive lower bounds on equivariant
SDP lifts of the cut polytope.

4.5.1 Definitions and symmetry group

The maximum cut problem on a graph 𝐺 = (𝑉,𝐸) with 𝑉 = {1, . . . , 𝑛} and weights
𝑤𝑖𝑗 for 𝑖𝑗 ∈ 𝐸 is the problem of labeling each vertex 𝑖 ∈ 𝑉 with a label 𝑥𝑖 = +1 or
𝑥𝑖 = −1 in such a way that the total weight of edges connecting two vertices with a
different label is maximized. This problem can be written as follows:

maximize
∑︀

𝑖𝑗∈𝐸 𝑤𝑖𝑗(1− 𝑥𝑖𝑥𝑗)/2

subject to 𝑥 ∈ {−1, 1}𝑛. (4.21)

Note that for a given labeling 𝑥𝑖 = ±1 of vertices, the quantity (1− 𝑥𝑖𝑥𝑗)/2 is equal
to 1 if 𝑖 and 𝑗 have different labels, and 0 otherwise. The formulation (4.21) shows
that the maximum cut problem is the problem of maximizing a quadratic form on the
hypercube {−1, 1}𝑛. Using standard techniques (e.g., as outlined in Chapter 1), one
can convert this problem into a linear program, by working in a lifted space. Indeed
it is not hard to see that the problem (4.21) is equivalent to the problem below:

maximize
∑︀

𝑖𝑗∈𝐸 𝑤𝑖𝑗(1−𝑋𝑖𝑗)/2

subject to 𝑋 = 𝑥𝑥𝑇 for some 𝑥 ∈ {−1, 1}𝑛. (4.22)

Note that the objective is now linear in the variable 𝑋. Define the cut polytope
CUT𝑛 as the convex hull of all outer products 𝑥𝑥𝑇 for 𝑥 ∈ {−1, 1}𝑛:

CUT𝑛 = conv
{︀
𝑥𝑥𝑇 : 𝑥 ∈ {−1, 1}𝑛

}︀
. (4.23)

The formulation (4.22) shows that the maximum cut problem is a linear program
over the cut polytope CUT𝑛. Note that the cut polytope is a 𝑛(𝑛− 1)/2-dimensional
polytope in the space S𝑛 of 𝑛× 𝑛 symmetric matrices.

Symmetries of the hypercube and the cut polytope Let

𝐶𝑛 = {−1, 1}𝑛

be the vertices of the hypercube in R𝑛. The symmetry group of 𝐶𝑛 consists of signed
permutation matrices, i.e., permutation matrices where each nonzero entry is ±1.
Note each signed permutation matrix 𝑔 can be written in a unique way as 𝑔 = 𝜖ℎ
where 𝜖 is a ±1-diagonal matrix and ℎ is a permutation matrix. In fact we saw in
Example 10 that this symmetry group has the product structure described in Section
4.3.3.

The group 𝐺cube acts on the space of 𝑛 × 𝑛 symmetric matrices by congruence
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transformations as follows:

𝑔 ·𝑋 := 𝑔𝑋𝑔𝑇 ∀𝑔 ∈ 𝐺cube, ∀𝑋 ∈ S𝑛. (4.24)

It is easy to verify that CUT𝑛 is invariant under this action of 𝐺cube.
In this section we prove that any 𝐺cube-equivariant SDP lift of CUT𝑛 must have

exponential size.

Theorem 16. Any 𝐺cube-equivariant SDP lift of CUT𝑛 must have size ≥
(︀

𝑛
⌊𝑛/4⌋

)︀
.

4.5.2 Sum-of-squares relaxations

In this section we review the sum-of-squares relaxations of the cut polytope as de-
scribed for example in [72]. The construction we describe here actually applies to
general polytopes 𝑃 of the form:

𝑃 = conv
{︀
𝑥𝑥𝑇 : 𝑥 ∈ 𝑋

}︀
⊂ S𝑛 (4.25)

where 𝑋 is a finite set in R𝑛. The construction of the relaxation is very similar to
the one described in Section 2.2.5 of Chapter 2, except that we work with quadratic
forms instead of linear forms. Note that a polytope 𝑃 of the form (4.25) can be seen
as the set of second-order moments of probability distributions on 𝑋:

𝑃 =

{︃
(𝐸(𝑒𝑖𝑗))𝑖𝑗 : 𝐸 ∈ (R𝑋)* where

𝐸(𝑓) =

∫︁

𝑋

𝑓(𝑥)𝑑𝜇(𝑥) for some prob. measure 𝜇 on 𝑋

}︃

(4.26)
where 𝑒𝑖𝑗 is the element of R𝑋 defined by 𝑒𝑖𝑗(𝑥) = 𝑥𝑖𝑥𝑗. Given a subspace 𝑉 of R𝑋

we can thus define the following relaxation of 𝑃 in the same way we did in Section
2.2.5:

TH
(2)
𝑉 (𝑋) :=

{︃
(𝐸(𝑒𝑖𝑗))𝑖𝑗 : 𝐸 ∈ (R𝑋)* where 𝐸(1) = 1, 𝐸(𝑓 2) ≥ 0 ∀𝑓 ∈ 𝑉

}︁
.

(4.27)
By comparing (4.26) and (4.27) it is clear that 𝑃 ⊆ TH

(2)
𝑉 (𝑋). One can show, like in

Theorem 5 that the relaxation is tight TH
(2)
𝑉 (𝑋) = 𝑃 if for any quadratic form 𝑞 on

R𝑛, 𝑞max − 𝑞 is 𝑉 -sos, where 𝑞max = max𝑥∈𝑋 𝑞(𝑥).
When 𝑋 = {−1, 1}𝑛, the convex set TH

(2)
𝑉 ({−1, 1}𝑛) is a relaxation of the cut

polytope. When 𝑉 = Pol≤𝑘({−1, 1}𝑛) is the space of polynomials of degree at most
𝑘, we will denote the relaxation by 𝑄𝑘(CUT𝑛):

𝑄𝑘(CUT𝑛) = TH
(2)
𝑉 ({−1, 1}𝑛) where 𝑉 = Pol≤𝑘({−1, 1}𝑛). (4.28)

The relaxation 𝑄𝑘(CUT𝑛) is known as the “node-based” relaxation of the cut polytope
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and is usually described in the literature in terms of explicit moment matrices, see e.g.,
[73]. In fact if we use the basis of Pol≤𝑘({−1, 1}𝑛) formed by square-free monomials
of degree up to 𝑘, we get that 𝑄𝑘(CUT𝑛) can be written as:

𝑄𝑘(CUT𝑛) =

⎧
⎨
⎩𝑧 ∈ R(

𝑛
2) : ∃(𝑦𝐼)|𝐼|≤2𝑘 such that

𝑦∅ = 1
𝑦𝑖𝑗 = 𝑧𝑖𝑗, ∀𝑖 < 𝑗
ℳ𝑘(𝑦) ⪰ 0

⎫
⎬
⎭ (4.29)

where (𝑦𝐼)|𝐼|≤2𝑘 is a vector indexed by subsets 𝐼 ⊆ [𝑛] of cardinality ≤ 2𝑘 and where
ℳ𝑘(𝑦) is the moment matrix associated to 𝑦 defined by:

ℳ𝑘(𝑦)𝐼,𝐽 = 𝑦𝐼△𝐽 ∀𝐼, 𝐽 ⊆ [𝑛], |𝐼|, |𝐽 | ≤ 𝑘

where 𝐼△𝐽 denotes symmetric difference. Laurent showed in [72] that when 𝑘 ≤
⌊𝑛/2⌋ we have 𝑄𝑘(CUT𝑛) ̸= CUT𝑛.

Theorem 17 (Laurent, [72]). For 𝑘 ≤ ⌈𝑛/2⌉ − 1, the inclusion CUT𝑛 ⊂ 𝑄𝑘(CUT𝑛)
is strict.

Laurent conjectured in [72] that the relaxation is actually tight for 𝑘 = ⌈𝑛/2⌉. We
will prove this conjecture in the next chapter (see Theorem 26).

4.5.3 Invariant subspaces of functions on the hypercube

In order to understand equivariant SDP lifts of CUT𝑛, we need to understand 𝐺cube-
invariant subspaces of R𝐶𝑛 where 𝐶𝑛 = {−1, 1}𝑛. It is known that any function 𝑓 ∈
R𝐶𝑛 can be seen as a square-free polynomial of degree at most 𝑛. Let Pol𝑘(𝐶𝑛) be the
space of homogeneous square-free polynomials of degree 𝑘. Note that dimPol𝑘(𝐶𝑛) =(︀
𝑛
𝑘

)︀
and that:

R𝐶𝑛 = Pol0(𝐶𝑛)⊕ · · · ⊕ Pol𝑛(𝐶𝑛).

We are interested in subspaces of R𝐶𝑛 that are 𝐺cube-invariant. Recall that 𝐺cube is the
group of signed permutation matrices. Thus a subspace 𝑉 of R𝐶𝑛 is 𝐺cube-invariant
if for any 𝑓 ∈ 𝑉, 𝜖 ∈ {−1,+1}𝑛, 𝜎 ∈ S𝑛 the function:

𝑥 ↦→ 𝑓(𝜖1𝑥𝜎(1), . . . , 𝜖𝑛𝑥𝜎(𝑛))

is also in 𝑉 .
It is clear that the subspaces Pol𝑘(𝐶𝑛) are 𝐺cube-invariant. The next result shows

that these subspaces are actually irreducible under the action of 𝐺cube.

Lemma 4. Under the action of 𝐺cube, R𝐶𝑛 decomposes into irreducible invariant
subspaces as

R𝐶𝑛 = Pol0(𝐶𝑛)⊕ · · · ⊕ Pol𝑛(𝐶𝑛).

Furthermore, suppose 𝑘 < 𝑛/2. Then Pol𝑛−𝑘(𝐶𝑛) ∼= 𝑒𝑛(𝑥) Pol𝑘(𝐶𝑛) where 𝑒𝑛(𝑥) =
𝑥1 · · ·𝑥𝑛 is the 𝑛’th elementary symmetric polynomial. Hence if 𝑉 is a 𝐺cube-invariant
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subspace with dim(𝑉 ) <
(︀
𝑛
𝑘

)︀
then every 𝑓 ∈ 𝑉 has the form

𝑓(𝑥) = 𝑔(𝑥) + 𝑒𝑛(𝑥)ℎ(𝑥) (4.30)

where 𝑔(𝑥) and ℎ(𝑥) have degree ≤ 𝑘 − 1.

Proof. See Section 4.8.5.

4.5.4 Lower bound on equivariant SDP lifts

In this section we prove our main theorem concerning equivariant SDP lifts of the cut
polytope.

We begin by a theorem relating equivariant SDP lifts of CUT𝑛 and the sum-of-
squares hierarchy of CUT𝑛. Lemma 4 tells us that low-dimensional invariant sub-
spaces of R𝐶𝑛 correspond, essentially, to low-degree polynomials. This allows us to
show that if the cut polytope admits a small equivariant SDP lift, then a few levels
of the Lasserre/theta-body hierarchy for the cut polytope are enough to be exact.
The next result makes this claim formal. Note that its proof requires an additional
argument (compared to the proof of Theorem 14 for the parity polytope) in order to
take care of the term 𝑒𝑛(𝑥)ℎ(𝑥) in Equation (4.30).

Theorem 18. Assume CUT𝑛 has a 𝐺cube-equivariant SDP lift of size 𝑑 where 𝑑 <
(︀
𝑛
𝑘

)︀

for some 𝑘 ≤ 𝑛/2. Then the (𝑘−1)’st sum-of-squares relaxation of CUT⌊𝑛/2⌋ is exact,
i.e., 𝑄𝑘−1(CUT⌊𝑛/2⌋) = CUT⌊𝑛/2⌋.

Proof. Assume we have a 𝐺cube-equivariant SDP lift of CUT𝑛 of size 𝑑. Using argu-
ments very similar to Theorem 12 (where linear forms are replaced by quadratic forms)
we can show that there exists a 𝐺cube-invariant subspace 𝑉 of R𝐶𝑛 with dim𝑉 ≤ 𝑑
such that for any quadratic form 𝑞 on 𝑛 variables with 𝑞max := max𝑥∈𝐶𝑛 𝑞(𝑥) we have:

𝑞max − 𝑞(𝑥) =
∑︁

𝑖

𝑓𝑖(𝑥)
2 ∀𝑥 ∈ 𝐶𝑛 (4.31)

where each 𝑓𝑖 ∈ 𝑉 . In Lemma 4 (cf. below) we show that such an invariant subspace
of dimension 𝑑 <

(︀
𝑛
𝑘

)︀
, is composed entirely of polynomials of the form 𝑔(𝑥)+𝑒𝑛(𝑥)ℎ(𝑥)

where 𝑔 and ℎ are polynomials of degree at most 𝑘 − 1 and 𝑒𝑛(𝑥) = 𝑥1 · · ·𝑥𝑛 is the
𝑛’th elementary symmetric polynomial.

We can use this to show that the (𝑘 − 1)’st sos relaxation of CUT⌊𝑛/2⌋ is exact.
Assume for simplicity that 𝑛 is even, 𝑛 = 2𝑚 (the argument for 𝑛 odd is very similar).
Let 𝑞 be an arbitrary quadratic form on 𝑚 variables. We will show that 𝑞max− 𝑞(𝑥) is
a sum-of-squares of polynomials of degree at most 𝑘 on 𝐶𝑚 (i.e., it is Pol≤𝑘(𝐶𝑚)-sos).
Define ̂︀𝑞 a quadratic form in 𝑛 = 2𝑚 variables by:

̂︀𝑞(𝑥1, . . . , 𝑥𝑛) = 𝑞(𝑥1, . . . , 𝑥𝑚).

Note that the polynomial ̂︀𝑞 does not depend on 𝑥𝑚+1, . . . , 𝑥𝑛 and note also that
max𝑥∈𝐶𝑛 ̂︀𝑞(𝑥) = max𝑥∈𝐶𝑚 𝑞(𝑥), i.e., ̂︀𝑞max = 𝑞max. From Equation (4.31) we know that

78



̂︀𝑞max − ̂︀𝑞(𝑥) admits a sum-of-squares decomposition where each sos term lives in the
subspace 𝑉 , i.e., we have:

̂︀𝑞max − ̂︀𝑞(𝑥) =
∑︁

𝑗

(̂︀𝑔𝑗(𝑥) + 𝑒𝑛(𝑥)̂︀ℎ𝑗(𝑥))2 ∀𝑥 ∈ 𝐶𝑛 (4.32)

where ̂︀𝑔𝑗 ∈ Pol≤𝑘−1(𝐶𝑛) and ̂︀ℎ𝑗 ∈ Pol≤𝑘−1(𝐶𝑛) and 𝑒𝑛(𝑥) is the 𝑛’th elementary
symmetric polynomial 𝑒𝑛(𝑥) = 𝑥1 · · ·𝑥𝑛. If we plug 𝑥𝑚+1 = 𝑥1, 𝑥𝑚+2 = 𝑥2, . . . , 𝑥2𝑚 =
𝑥𝑚 in Equation (4.32) we get:

𝑞max − 𝑞(𝑥) =
∑︁

𝑗

(𝑔𝑗(𝑥) + ℎ𝑗(𝑥))
2 ∀𝑥 ∈ 𝐶𝑚 (4.33)

where we used the fact that 𝑒𝑛(𝑥1, . . . , 𝑥𝑚, 𝑥1, . . . , 𝑥𝑚) = 1 for all 𝑥 ∈ 𝐶𝑚 and where
we let

𝑔𝑗(𝑥1, . . . , 𝑥𝑚) = ̂︀𝑔𝑗(𝑥1, . . . , 𝑥𝑚, 𝑥1, . . . , 𝑥𝑚)
ℎ𝑗(𝑥1, . . . , 𝑥𝑚) = ̂︀ℎ𝑗(𝑥1, . . . , 𝑥𝑚, 𝑥1, . . . , 𝑥𝑚)

∀(𝑥1, . . . , 𝑥𝑚) ∈ 𝐶𝑚.

Since 𝑔𝑗, ℎ𝑗 ∈ Pol≤𝑘−1(𝐶𝑛) it is easy to see that ̂︀𝑔𝑗,̂︀ℎ𝑗 ∈ Pol≤𝑘−1(𝐶𝑚). Equation
(4.33) thus shows that 𝑞max − 𝑞 is Pol≤𝑘−1(𝐶𝑚)-sos on 𝐶𝑚. Since 𝑞 was an arbitrary
quadratic form on 𝑚 = 𝑛/2 variables, this shows that the (𝑘 − 1)’st level of the SOS
hierarchy of CUT𝑛/2 is exact.

Exponential lower bound If we combine Theorem 18 with Laurent’s lower bound
on the sum-of-squares hierarchy for the cut polytope (Theorem 17) we obtain the
following exponential lower bound for 𝐺cube-equivariant SDP lifts of CUT𝑛.

Theorem 16. Any 𝐺cube-equivariant SDP lift of CUT𝑛 must have size ≥
(︀

𝑛
⌊𝑛/4⌋

)︀
.

Proof. Let 𝑚 = ⌊𝑛/2⌋. We apply Theorem 18 with 𝑘 = ⌈𝑚/2⌉. Laurent [72] proved
that 𝑄𝑘−1(CUT𝑚) ̸= CUT𝑚 and thus this means that any 𝐺cube-equivariant psd of
lift of CUT𝑛 must have size greater than or equal

(︀
𝑛
𝑘

)︀
≥
(︀

𝑛
⌊𝑛/4⌋

)︀
.

Approximate lifts Like for the parity polytope one can also state a result relating
approximate equivariant lifts of the cut polytope and the sum-of-squares hierarchy. To
state the result it is convenient to introduce the notion of a (𝑐, 𝑠)-approximation from
the paper [21]. Given two real numbers 𝑐 ≤ 𝑠 we say that an outer-approximation
̂︀𝑃 of CUT𝑛 achieves a (𝑐, 𝑠)-approximation of CUT𝑛 if for any linear form 𝐿 on S𝑛

such that 𝐿max ≤ 𝑐 it holds that 𝐿max ≤ 𝑠, where 𝐿max and 𝐿max are respectively the
maximum of 𝐿 on CUT𝑛 and ̂︀𝑃 . We can now state the following theorem (we omit
the proof since it is very similar to the arguments from the previous proofs):

Theorem 19. Assume ̂︀𝑃 is an outer-approximation of CUT𝑛 which achieves a (𝑐, 𝑠)-
approximation and which admits a 𝐺cube-equivariant SDP lift of size 𝑑. If 𝑑 <

(︀
𝑛
𝑘

)︀

for some 𝑘 ≤ 𝑛/2 then the (𝑘− 1)’st sum-of-squares relaxation of CUT⌊𝑛/2⌋ is a valid
(𝑐, 𝑠)-approximation of CUT⌊𝑛/2⌋.
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4.6 Application 3: regular polygons
In this section we study the regular 𝑁 -gon in the plane and we derive a lower bound
on equivariant SDP lifts.

4.6.1 Definitions and symmetry group

The regular 𝑁 -gon is defined as the convex hull of the 𝑁 ’th roots of unity:

𝒳𝑁 = {(cos 𝜃𝑘, sin 𝜃𝑘) : 𝑘 = 0, . . . , 𝑁 − 1} where 𝜃𝑘 =
2𝑘𝜋

𝑁
.

Figure 4-2 shows a picture for 𝑁 = 7. The symmetry group of the regular 𝑁 -gon is
the dihedral group of order 2𝑁 which consists of 𝑁 rotations and 𝑁 reflections. We
denote by Rot𝑁 the subgroup of rotations, isomorphic to Z𝑁 .

cos(π/N)x+ sin(π/N)y = cos(π/N)

Figure 4-2: The regular 7-gon.

For convenience we will work in this section with Hermitian SDP lifts and complex-
valued functions (instead of real-valued). More precisely, a Hermitian SDP lift of a
polytope 𝑃 takes the form 𝑃 = 𝜋(H𝑑

+ ∩ 𝐿) where H𝑑
+ is the cone of 𝑑× 𝑑 Hermitian

positive semidefinite matrices. Also given a nonnegative function 𝑓 on 𝑋 a Hermitian
sum of squares certificate of 𝑓 is a certificate

𝑓(𝑥) =
𝐽∑︁

𝑗=1

|ℎ𝑗(𝑥)|2

where ℎ𝑗 are complex-valued functions on 𝑋.
Our main result in this section is the following.

Theorem 20. Any Rot𝑁 -equivariant Hermitian SDP lift of the regular 𝑁-gon has
size at least ln(𝑁/2).

4.6.2 Invariant subspaces of functions on 𝒳𝑁

In order to study Rot𝑁 -equivariant SDP lifts of the regular 𝑁 -gon, we need to under-
stand the Rot𝑁 -invariant subspaces of C𝒳𝑁 . As we saw in Example 9, we can think of
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C𝒳𝑁 as simply the space CZ𝑁 where the action of Rot𝑁 ∼= Z𝑁 shifts the components
(since rotating the regular 𝑁 -gon corresponding to shifting its vertices). We will use
this identification in this section.

For 𝑘 ∈ Z𝑁 consider the element 𝑒𝑘 ∈ CZ𝑁 defined by:

𝑒𝑘(𝑡) = 𝑒2𝑖𝑘𝜋𝑡/𝑁 ∀𝑡 ∈ Z𝑁 . (4.34)

It is well-known that the functions (𝑒𝑘)𝑘∈Z𝑁
form a basis of CZ𝑁 which is nothing

but the Fourier basis. If ℎ ∈ CZ𝑁 , then the decomposition of ℎ in the basis (𝑒𝑘)𝑘∈Z𝑁

corresponds to the discrete Fourier transform of ℎ. The Z𝑁 -invariant subspaces of
CZ𝑁 can be easily expressed in terms of the Fourier basis. This is the object of the
next proposition.

Proposition 7. Any subspace of CZ𝑁 that is Z𝑁 -invariant (with respect to the action
by shifting) has the form

𝑉 =
⨁︁

𝑘∈𝐾
C𝑒𝑘 (4.35)

where 𝐾 ⊆ Z𝑁 .

Proof. This is a standard result in Fourier analysis, see e.g., [95, Section 5.1]. We give
a short proof for completeness. First note that for any 𝑘 ∈ Z𝑁 the one-dimensional
space spanned by 𝑒𝑘 is Z𝑁 -invariant since 𝑒𝑘(𝑡+1) = 𝑒2𝑖𝑘𝜋/𝑁𝑒𝑘(𝑡) and so 𝑡 ↦→ 𝑒𝑘(𝑡+1)
is in C𝑒𝑘. It thus follows that any subspace of the form (4.35) is Z𝑁 -invariant. We
now show the converse. Assume 𝑉 is a Z𝑁 -invariant subspace of CZ𝑁 . We will prove
that if 𝑓 ∈ 𝑉 with Fourier decomposition 𝑓 =

∑︀
𝑘∈Z𝑁

̂︀𝑓(𝑘)𝑒𝑘 then 𝑒𝑘0 ⊆ 𝑉 whenever
̂︀𝑓(𝑘0) ̸= 0. Since 𝑉 is shift-invariant we have that for any 𝑗 ∈ Z𝑁 , 𝑡 ↦→ 𝑓(𝑡+ 𝑗) is also
in 𝑉 . Thus if 𝑘0 ∈ Z𝑁 the function 𝑔𝑘0(𝑡) =

∑︀
𝑗∈Z𝑁

𝑓(𝑡 + 𝑗)𝑒−2𝑖𝜋𝑗𝑘0/𝑁 is in 𝑉 . But
note that

𝑔𝑘0(𝑡) =
∑︁

𝑗∈Z𝑁

𝑓(𝑡+ 𝑗)𝑒−2𝑖𝜋𝑗𝑘0/𝑁 =
∑︁

𝑗∈Z𝑁

∑︁

𝑘∈Z𝑁

̂︀𝑓(𝑘)𝑒2𝑖𝜋𝑘𝑡/𝑁𝑒2𝑖𝜋𝑘𝑗/𝑁𝑒−2𝑖𝜋𝑗𝑘0/𝑁

=
∑︁

𝑘∈Z𝑁

̂︀𝑓(𝑘)𝑒2𝑖𝜋𝑘𝑡/𝑁
∑︁

𝑗∈Z𝑁

𝑒2𝑖𝜋𝑗(𝑘−𝑘0)/𝑁

= 𝑁 ̂︀𝑓(𝑘0)𝑒𝑘0(𝑡).

Thus for ̂︀𝑓(𝑘0) ̸= 0 we get that 𝑒𝑘0 ∈ 𝑉 .

Facet inequality The “first” facet of the regular 𝑁 -gon (as shown in Figure 4-2)
is defined by the linear inequality

cos(𝜋/𝑁)− cos(𝜋/𝑁)𝑥− sin(𝜋/𝑁)𝑦 ≥ 0.

Throughout this section, we denote by ℓ the restriction of this facet on the vertices
of the 𝑁 -gon (which, again, we identify with Z𝑁):

ℓ(𝑡) = cos(𝜋/𝑁)− cos(𝜋/𝑁) cos(2𝜋𝑡/𝑁)− sin(𝜋/𝑁) sin(2𝜋𝑡/𝑁), 𝑡 ∈ Z𝑁 . (4.36)
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The function ℓ has the following expression in the Fourier basis:

ℓ = cos(𝜋/𝑁)𝑒0 −
1

2
𝑒−𝑖𝜋/𝑁𝑒1 −

1

2
𝑒𝑖𝜋/𝑁𝑒−1. (4.37)

In order to prove a lower bound on equivariant SDP lifts of the regular 𝑁 -gon we need
to show that ℓ does not admit a sum-of-squares certificate from a low-dimensional
invariant subspace. This is made precise in the next theorem, which is just the
specialization of the structure theorem (Theorem 12) to the case of the regular 𝑁 -
gon.

Theorem 21 (Structure theorem specialized to regular 𝑁 -gons). Assume that the
regular 𝑁-gon has a Hermitian SDP lift of size 𝑑 that is equivariant with respect to
Rot𝑁 . Then there exists a set 𝐾 ⊆ Z𝑁 with |𝐾| ≤ 𝑑 and functions ℎ𝑖 ∈

⨁︀
𝑘∈𝐾 C𝑒𝑘

such that
ℓ =

∑︁

𝑖

|ℎ𝑖|2.

Proof. We apply Theorem 12 where 𝐺 = Rot𝑁 and 𝑥0 = (1, 0) (here the subgroup
𝐻 that stabilizes 𝑥0 is the trivial one 𝐻 = 1𝐺). Since 𝐺 is an abelian group, all the
irreducible representations of 𝐺 have dimension 1, and thus 𝛼𝐺(𝑑) = 1 for any 𝑑.
Thus the theorem says that if conv(𝒳𝑁) has a Rot𝑁 -equivariant SDP lift of size 𝑑,
then ℓ has a sum-of-squares certificate from an invariant subspace 𝑉 of CZ𝑁 of size
𝑑. The theorem then follows from Proposition 7 which states that any such subspace
has the form 𝑉 =

⨁︀
𝑘∈𝐾 C𝑒𝑘 where 𝐾 ⊆ Z𝑁 , |𝐾| ≤ 𝑑.

4.6.3 Lower bound on equivariant SDP lifts

This section is dedicated to proving the following theorem:

Theorem 22. Let ℓ ∈ CZ𝑁 be as defined in (4.37) and assume that we can write

ℓ =
∑︁

𝑖

|ℎ𝑖|2 where ℎ𝑖 ∈
⨁︁

𝑘∈𝐾
C𝑒𝑘 ∀𝑖 (4.38)

for some set 𝐾 ⊆ Z𝑁 . Then necessarily |𝐾| ≥ ln(𝑁/2).

This theorem, when combined with Theorem 21, yields the desired lower bound
on equivariant SDP lifts of the regular 𝑁 -gon.

We introduce some notations which will be used throughout the section.

Definition 11. Given ℎ ∈ CZ𝑁 and 𝐾 ⊆ Z𝑁 , we say that ℎ is supported on 𝐾 and
we write suppℎ ⊆ 𝐾 if ℎ ∈⨁︀𝑘∈𝐾 C𝑒𝑘.

Definition 12. A set 𝐾 ⊆ Z𝑁 is called sos-valid if ℓ admits a sum-of-squares certifi-
cate ℓ =

∑︀
𝑖 |ℎ𝑖|2 where suppℎ𝑖 ⊆ 𝐾 for all 𝑖.

Our proof of Theorem 22 proceeds in two steps. In the first step, we give necessary
conditions in terms of the “geometry” for a set 𝐾 to be sos-valid: we show that if
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the elements in 𝐾 can be clustered in a certain way then 𝐾 is not sos-valid. In the
second step we propose an algorithm to cluster any given set 𝐾, and we prove that our
algorithm finds a valid clustering whenever the set 𝐾 is small enough, i.e., whenever
|𝐾| < ln(𝑁/2).

Necessary conditions for a set to be sos-valid

In this section we give a necessary condition on the “geometry” of a set 𝐾 to be
sos-valid. Before stating the theorem, we make some observations and definitions:

First, observe that if 𝐾 is a set that is sos-valid, then any translation 𝐾 ′ = 𝐾+𝑡 of
𝐾 is also sos-valid, where 𝑡 ∈ Z𝑁 . This is because if ℓ =

∑︀
𝑖 |ℎ𝑖|2 where suppℎ𝑖 ⊆ 𝐾,

then we also have ℓ =
∑︀

𝑖 |ℎ′𝑖|2 where ℎ′𝑖 = 𝑒𝑡ℎ𝑖 are supported on𝐾 ′ (since 𝑒𝑡𝑒𝑘 = 𝑒𝑡+𝑘).
Second, it is useful to think of Z𝑁 as the nodes of a cycle graph of length 𝑁 , and

of a set of frequencies 𝐾 ⊆ Z𝑁 as a subset of the nodes of this graph. For example
Figure 4-3 shows a set 𝐾 with |𝐾| = 7 for the 𝑁 = 12-gon (the elements of 𝐾 are
the black dots). Note that since the property of being sos-valid is invariant under
translation, the cycle graph need not be labeled. The only information that matters
are the relative distances of the elements of 𝐾 with respect to each other.

Figure 4-3: A set of frequencies 𝐾 for the regular 12-gon.

We endow Z𝑁 with the natural distance 𝑑 on the cycle graph. The distance
between two frequencies 𝑘, 𝑘′ ∈ Z𝑁 is denoted by 𝑑(𝑘, 𝑘′); also if 𝐶,𝐶 ′ are two subsets
of Z𝑁 we let

𝑑(𝐶,𝐶 ′) = min
𝑘∈𝐶,𝑘′∈𝐶′

𝑑(𝑘, 𝑘′).

If 𝑥 ∈ Z𝑁 and 𝑟 is a positive integer, we can define the ball 𝐵(𝑥, 𝑟) centered at 𝑥 and
with radius 𝑟 to be the set 𝐵(𝑥, 𝑟) := {𝑦 ∈ Z𝑁 : 𝑑(𝑥, 𝑦) ≤ 𝑟}. We also let [𝑥, 𝑥 + 𝑟]
be the interval {𝑥, 𝑥+ 1, . . . , 𝑥+ 𝑟} ⊆ Z𝑁 . Note that the ball centered at 𝑥 of radius
𝑟 is simply the interval [𝑥− 𝑟, 𝑥+ 𝑟].

To state the main theorem, it will be more convenient to work with diameters
instead of radii of balls (mainly to avoid the issue of dividing by two). We introduce
the notion of in-diameter of a set 𝐾 which is essentially twice the radius of the
smallest ball containing 𝐾. More formally we have:

Definition 13. Let 𝐾 ⊆ Z𝑁 . We define the in-diameter of 𝐾, denoted diamin(𝐾)
to be the smallest positive integer 𝑟 such that 𝐾 is included in an interval of the form
[𝑥, 𝑥+ 𝑟] where 𝑥 ∈ Z𝑁 .
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Remark 9. Note that the in-diameter of a set 𝐾 is in general different from the usual
notion of diameter (largest distance between two elements in 𝐾). Note for example
that diamin(Z𝑁) = 𝑁 whereas the diameter of Z𝑁 is equal to ⌊𝑁/2⌋.

We are now ready to state the main result of this section:

Theorem 23. Let 𝑁 be an integer and let 𝐾 ⊆ Z𝑁 be a set of frequencies. Assume
that 𝐾 can be decomposed into disjoint clusters (𝐶𝛼)𝛼∈𝐴:

𝐾 =
⋃︁

𝛼∈𝐴
𝐶𝛼,

such that the following holds for some 1 ≤ 𝛾 < 𝑁/2:

(i) For any 𝛼 ∈ 𝐴, 𝐶𝛼 has in-diameter ≤ 𝛾.

(ii) For any 𝛼 ̸= 𝛼′, 𝑑(𝐶𝛼, 𝐶𝛼′) > 𝛾.

Then the set 𝐾 is not sos-valid (i.e., it is not possible to write the linear function ℓ
as a sum of squares of functions supported on 𝐾).

Proof. To prove this theorem, we will construct a linear functional ℒ on CZ𝑁 such
that:

(a) ℒ(ℓ) < 0, and;

(b) for any ℎ supported on 𝐾 we have ℒ(|ℎ|2) ≥ 0.

Clearly this will show that we cannot have ℓ =
∑︀

𝑖 |ℎ𝑖|2 where suppℎ𝑖 ⊆ 𝐾.
We first introduce a piece of notation that will be needed for the definition of ℒ:

Given 𝑘 ∈ Z𝑁 , we let 𝑘 mod 𝑁 be the unique element in
{︁
−⌈𝑁/2⌉+ 1, . . . , ⌊𝑁/2⌋

}︁

that is equal to 𝑘 modulo𝑁 . The main property that will be used about this operation
is the following, which can be verified easily: If 𝑘, 𝑘′ ∈ [0, 𝛾] where 𝛾 < 𝑁/2 then:

(𝑘′ − 𝑘) mod 𝑁 = (𝑘′ mod 𝑁)− (𝑘 mod 𝑁). (4.39)

Let 𝑝 = 𝑒𝑖𝜋/𝑁 and note that 𝑝 does not belong to our regular 𝑁 -gon. We now define
the linear functional ℒ : CZ𝑁 → C as follows, for all 𝑘 ∈ Z𝑁 :

ℒ(𝑒𝑘) =
{︃
𝑝𝑘 mod 𝑁 if 𝑑(0, 𝑘) ≤ 𝛾

0 else.
(4.40)

Note that the map ℒ can be interpreted as the composition of two maps:

ℒ = Eval𝑝 ∘ℰ
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where ℰ is a map that extrapolates a function ℎ ∈ CZ𝑁 defined on the vertices of the
𝑁 -gon to a function on the unit circle, and Eval𝑝 is a map that evaluates a function
on the unit circle to the point 𝑝. The extrapolation map ℰ is defined on the Fourier
basis as follows: ℰ(𝑒𝑘)(𝑧) = 𝑧𝑘 mod 𝑁 if 𝑑(0, 𝑘) ≤ 𝛾 and 0 otherwise, for 𝑧 in the unit
circle.

We now prove that ℒ satisfies properties (a) and (b) above.

(a) It is easy to see that ℒ(ℓ) < 0. Indeed since 𝛾 ≥ 1 we have ℒ(𝑒1) = 𝑒𝑖𝜋/𝑁 and
ℒ(𝑒−1) = 𝑒−𝑖𝜋/𝑁 which implies that:

ℒ(ℓ) = ℒ
(︁
cos(𝜋/𝑁)𝑒0 − (𝑒−𝑖𝜋/𝑁𝑒1 + 𝑒𝑖𝜋/𝑁𝑒−1)/2

)︁
= cos(𝜋/𝑁)− 1 < 0.

(b) We now show that if ℎ is a function supported on 𝐾, then ℒ(|ℎ|2) ≥ 0. Since
𝐾 = ∪𝛼∈𝐴𝐶𝛼, we can write

ℎ =
∑︁

𝑘∈𝐾
ℎ𝑘𝑒𝑘 =

∑︁

𝛼∈𝐴

∑︁

𝑘∈𝐶𝛼

ℎ𝑘𝑒𝑘.

Thus

|ℎ|2 = ℎ*ℎ =
∑︁

𝛼∈𝐴

⃒⃒
⃒⃒
⃒
∑︁

𝑘∈𝐶𝛼

ℎ𝑘𝑒𝑘

⃒⃒
⃒⃒
⃒

2

⏟  ⏞  
𝑃

+
∑︁

𝛼 ̸=𝛼′

∑︁

𝑘∈𝐶𝛼,𝑘′∈𝐶𝛼′

ℎ*𝑘ℎ𝑘′𝑒
*
𝑘𝑒𝑘′

⏟  ⏞  
𝑄

. (4.41)

Let 𝑃 and 𝑄 be the first and second terms in the equation above. We will show
that ℒ(𝑄) = 0 and that ℒ(𝑃 ) ≥ 0. Observe that if 𝑘 ∈ 𝐶𝛼 and 𝑘′ ∈ 𝐶𝛼′ where
𝛼 ̸= 𝛼′ then we have:

ℒ(𝑒*𝑘𝑒𝑘′) = ℒ(𝑒𝑘′−𝑘) = 0

where the last equality follows since 𝑑(𝑘′ − 𝑘, 0) = 𝑑(𝑘′, 𝑘) > 𝛾 (cf. assumption
(ii) on the clustering). Thus this shows that ℒ(𝑄) = 0.

We will now show that ℒ(𝑃 ) ≥ 0, by showing that for any 𝛼 ∈ 𝐴 we have

ℒ

⎛
⎝
⃒⃒
⃒⃒
⃒
∑︁

𝑘∈𝐶𝛼

ℎ𝑘𝑒𝑘

⃒⃒
⃒⃒
⃒

2
⎞
⎠ ≥ 0.

Let 𝛼 ∈ 𝐴. By assumption (i) on the clustering, we know that the in-diameter
of 𝐶𝛼 is ≤ 𝛾, i.e., that 𝐶𝛼 is included in an interval [𝑥, 𝑥+ 𝛾]. Note that since

⃒⃒
⃒⃒
⃒
∑︁

𝑘∈𝐶𝛼

ℎ𝑘𝑒𝑘

⃒⃒
⃒⃒
⃒

2

=

⃒⃒
⃒⃒
⃒𝑒−𝑥

∑︁

𝑘∈𝐶𝛼

ℎ𝑘𝑒𝑘

⃒⃒
⃒⃒
⃒

2

=

⃒⃒
⃒⃒
⃒
∑︁

𝑘∈𝐶𝛼

ℎ𝑘𝑒𝑘−𝑥

⃒⃒
⃒⃒
⃒

2

we can assume without loss of generality that 𝑥 = 0. Now since 𝐶𝛼 ⊆ [0, 𝛾], we
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have from (4.39) that for any 𝑘, 𝑘′ ∈ 𝐶𝛼:

(𝑘′ − 𝑘) mod 𝑁 = (𝑘′ mod 𝑁)− (𝑘 mod 𝑁) (4.42)

Using this we have:

ℒ

⎛
⎝
⃒⃒
⃒⃒
⃒
∑︁

𝑘∈𝐶𝛼

ℎ𝑘𝑒𝑘

⃒⃒
⃒⃒
⃒

2
⎞
⎠ =

∑︁

𝑘,𝑘′∈𝐶𝛼

ℎ*𝑘ℎ𝑘′ℒ(𝑒𝑘′−𝑘)
(𝑎)
=

∑︁

𝑘,𝑘′∈𝐶𝛼

ℎ*𝑘ℎ𝑘′𝑝
(𝑘′−𝑘) mod 𝑁

(𝑏)
=

∑︁

𝑘,𝑘′∈𝐶𝛼

ℎ*𝑘ℎ𝑘′𝑝
𝑘′ mod 𝑁𝑝−(𝑘 mod 𝑁)

=

⃒⃒
⃒⃒
⃒
∑︁

𝑘∈𝐶𝛼

ℎ𝑘𝑝
𝑘 mod 𝑁

⃒⃒
⃒⃒
⃒

2

≥ 0

where in (𝑎) we used the fact that 𝑑(0, 𝑘′− 𝑘) = 𝑑(𝑘′, 𝑘) ≤ 𝛾 and in (𝑏) we used
identity (4.42). Thus this shows that ℒ(|ℎ|2) ≥ 0 for all ℎ supported on 𝐶𝛼,
which implies that ℒ(𝑃 ) ≥ 0 (since 𝑃 =

∑︀
𝛼∈𝐴

⃒⃒∑︀
𝑘∈𝐶𝛼

ℎ𝑘𝑒𝑘
⃒⃒2) which is what

we wanted.

Remark 10. To illustrate the previous theorem consider the following two simple
applications:

∙ It is not hard to prove that the theta-rank of the regular 𝑁 -gon is at least
𝑁/4 (see e.g., [36]). This lower bound can be obtained as a direct corollary of
Theorem 23. Indeed if 𝐾 is contained in the open interval (−⌈𝑁/4⌉, ⌈𝑁/4⌉),
then the in-diameter of𝐾 is< 𝑁/2 which means that if we consider𝐾 as a single
cluster, it satisfies conditions (i) and (ii) of the theorem with 𝛾 = diamin(𝐾).
Thus such a 𝐾 is not sos-valid.

∙ We can also give another simple application of the previous theorem: Assume
𝐾 is a set of frequencies that has no two consecutive frequencies, i.e., for any
𝑘, 𝑘′ ∈ 𝐾 where 𝑘 ̸= 𝑘′ we have 𝑑(𝑘, 𝑘′) ≥ 2. It is not hard to see that such a
set 𝐾 cannot be sos-valid: indeed if ℎ is a function supported on 𝐾, then the
expansion of |ℎ|2 does not have any term involving the frequencies 𝑒1 or 𝑒−1.
Thus it is not possible to write ℓ as a sum-of-squares of elements supported on
such 𝐾. This simple fact can be obtained as a consequence of Theorem 23 if we
consider each frequency of 𝐾 as its own cluster (i.e., we write 𝐾 = ∪𝑘∈𝐾{𝑘})
and conditions (i) and (ii) of the theorem are satisfied with 𝛾 = 1.

An algorithm to find valid clusterings and a logarithmic lower bound

We now study sets 𝐾 which admit a clustering that satisfies points (i) and (ii) of
Theorem 23. The main purpose of this section is to show that any set 𝐾 with
|𝐾| < ln(𝑁/2) admits such a clustering, which implies that it cannot be sos-valid.
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This would thus show that any Rot𝑁 -equivariant Hermitian SDP lift of the regular
𝑁 -gon has to have size at least ln(𝑁/2).

For convenience we call a valid clustering of a set 𝐾, any clustering that satisfies
points (i) and (ii) of Theorem 23. We state this in the following definition for future
reference:

Definition 14. Let 𝐾 ⊆ Z𝑁 . We say that 𝐾 has a valid clustering if 𝐾 can be
decomposed into disjoint clusters (𝐶𝛼)𝛼∈𝐴:

𝐾 =
⋃︁

𝛼∈𝐴
𝐶𝛼,

such that the following holds for some 1 ≤ 𝛾 < 𝑁/2:

(i) For any 𝛼 ∈ 𝐴, 𝐶𝛼 has in-diameter ≤ 𝛾.

(ii) For any 𝛼 ̸= 𝛼′, 𝑑(𝐶𝛼, 𝐶𝛼′) > 𝛾.

We propose a simple greedy algorithm to search for a valid clustering for any set
𝐾 ⊆ Z𝑁 : We start with each point of 𝐾 in its own cluster and at each iteration
we merge the two closest clusters. We keep doing this until we get a clustering that
satisfies the required condition, or until all the points are in the same cluster. We show
in this section that if the number of points of 𝐾 is small enough, if |𝐾| < ln(𝑁/2),
then this algorithm terminates by producing a valid clustering of 𝐾. For reference
we describe the algorithm more formally in Algorithm 1.

Algorithm 1 Algorithm to produce a clustering of a set 𝐾
Input: A set 𝐾 ⊆ Z𝑁

Output: A valid clustering of 𝐾 (in the sense of Definition 14) or “0” if no valid
clustering found.
∙ Consider initial clustering where each element of 𝐾 is in its own cluster. If this
clustering is already valid (which is equivalent to say that for any distinct elements
𝑘, 𝑘′ ∈ 𝐾 we have 𝑑(𝑘, 𝑘′) ≥ 2) then output this clustering as a valid clustering
with parameter 𝛾 = 1.
∙ Precompute the pairwise distances between points in 𝐾 and sort these distances
in increasing order 𝑑1 ≤ 𝑑2 ≤ 𝑑3 ≤ . . . (cf. Figure 4-4; note that two distances 𝑑𝑖
and 𝑑𝑗 could be equal).
for 𝑖 = 1, 2, . . . , |𝐾| − 1 do

Let 𝑥, 𝑦 ∈ 𝐾 be the 𝑖’th closest points in 𝐾 so that 𝑑(𝑥, 𝑦) = 𝑑𝑖. If 𝑥 and 𝑦 are
in different clusters, then merge these two clusters.
If the current clustering satisfies points (i) and (ii) of Definition 14 (with 𝛾
equal to the largest in-diameter in all the clusters) stop and output the current
clustering.

end for
If no valid clustering was found, output “0”

In the next theorem, we show that any set 𝐾 ⊆ Z𝑁 with |𝐾| < ln(𝑁/2) has a
valid clustering.
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Theorem 24. If a set 𝐾 ⊆ Z𝑁 satisfies |𝐾| < ln(𝑁/2), then a valid clustering of 𝐾
exists and Algorithm 1 will produce one.

Proof. Observe that at the end of iteration 𝑖 of the algorithm, the distance between
any pair of clusters is greater than or equal 𝑑𝑖+1: Assume for contradiction that there
are two clusters 𝐶,𝐶 ′ at iteration 𝑖 where 𝑑(𝐶,𝐶 ′) < 𝑑𝑖+1. This means that there
exist 𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ′ such that 𝑑(𝑥, 𝑦) < 𝑑𝑖+1. But this is impossible because the
algorithm processes distances in increasing order, and so 𝑥 and 𝑦 must have merged
in the same cluster at some iteration ≤ 𝑖.

Now, to prove that the algorithm terminates and produces a valid clustering, we
need to show that at some iteration 𝑖, each cluster has in-diameter smaller than
min(𝑑𝑖+1, 𝑁/2). Note that one can get a simple upper bound on the in-diameter of
the clusters at iteration 𝑖: indeed, it is not hard to show that at iteration 𝑖 any cluster
has in-diameter at most 𝑆𝑖, where 𝑆𝑖 is defined as:

𝑆𝑖 := 𝑑1 + 𝑑2 + · · ·+ 𝑑𝑖 =
𝑖∑︁

𝑗=1

𝑑𝑗.

Figure 4-4 shows a simple illustration of this bound.

𝑑1

𝑑2

𝑑3

Figure 4-4: A set of frequencies 𝐾. At iteration 0 of the algorithm each frequency is
in its own cluster. At iteration 1 of the algorithm, the two nodes at distance 𝑑1 from
each other are merged in a single cluster. At iteration 2, the two nodes at distance
𝑑2 are merged and we get one cluster having 3 nodes with in-diameter 𝑑1 + 𝑑2. In
general, at iteration 𝑖 the clusters cannot have in-diameter larger than 𝑑1 + · · ·+ 𝑑𝑖.

Let 𝑎 be the largest index 𝑖 where 𝑑𝑖 = 1, and let 𝑏 the largest index 𝑖 where
𝑆𝑖 < 𝑁/2.2 If 𝑖 ∈ [𝑎, 𝑏], then at the end of the 𝑖’th iteration, the distance between
any two clusters is greater than 1 (since 𝑑𝑖+1 > 1) and the in-diameter of any cluster
is smaller than 𝑁/2. To prove that the algorithm terminates and produces a valid
clustering, it suffices to show that there exists 𝑖 ∈ [𝑎, 𝑏] such that 𝑑𝑖+1 > 𝑆𝑖.

2Note that we can assume diamin(𝐾) ≥ 𝑁/2 which implies that 𝑆|𝐾|−1 ≥ 𝑁/2. Indeed, if the
in-diameter of 𝐾 is smaller than 𝑁/2, then we have a valid clustering of 𝐾 by considering 𝐾 as a
single cluster.

88



Assume for contradiction that this is not the case. Then this means that we have:

𝑑𝑎+1 ≤ 𝑑1 + · · ·+ 𝑑𝑎

𝑑𝑎+2 ≤ 𝑑1 + · · ·+ 𝑑𝑎+1

...
𝑑𝑏+1 ≤ 𝑑1 + · · ·+ 𝑑𝑏

We will now show that this implies that |𝐾| ≥ ln(𝑁/2) which contradicts the as-
sumption of the theorem. Define the function 𝑓(𝑥) = 1/𝑥 and note that, on the one
hand we have:

𝑏∑︁

𝑖=𝑎

𝑑𝑖+1𝑓(𝑆𝑖) =
𝑏∑︁

𝑖=𝑎

𝑑𝑖+1
1

𝑑1 + · · ·+ 𝑑𝑖
≤

𝑏∑︁

𝑖=𝑎

1 = 𝑏− 𝑎+ 1.

On the other hand, since 𝑓 is a decreasing function we have (cf. Figure 4-5):

𝑏∑︁

𝑖=𝑎

𝑑𝑖+1𝑓(𝑆𝑖) ≥
∫︁ 𝑆𝑏+1

𝑆𝑎

𝑓(𝑥)𝑑𝑥 = [ln(𝑥)]
𝑆𝑏+1

𝑆𝑎
= ln(𝑆𝑏+1)− ln(𝑆𝑎).

Thus we get that:
𝑏− 𝑎+ 1 ≥ ln(𝑆𝑏+1)− ln(𝑆𝑎).

Now note that 𝑆𝑎 = 𝑎 since 𝑑𝑖 = 1 for all 1 ≤ 𝑖 ≤ 𝑎. Thus we have:

𝑏 ≥ ln(𝑆𝑏+1)− ln(𝑆𝑎) + 𝑎− 1 ≥ ln(𝑆𝑏+1)

since 𝑎 − ln(𝑆𝑎) ≥ 1 (we assume here that 𝑎 ≥ 1 because otherwise the distance
between any two elements in 𝐾 is at least 2 in which case 𝐾 is clearly not sos-valid).
Now since |𝐾| ≥ 𝑏 and 𝑆𝑏+1 ≥ 𝑁/2 we get

|𝐾| ≥ ln(𝑁/2)

as desired.

da+1 da+2 · · · db+1

Sa Sa+1 SbSa+2

da+3

Sb+1Sa+3

Figure 4-5:

89



4.7 Summary of chapter

∙ Given a polytope 𝑃 = conv(𝑋) we saw in Theorem 5 (Chapter 2) that a
small SDP lift of 𝑃 can be obtained by finding a low-dimensional subspace
𝑉 of R𝑋 such that any facet inequality of 𝑃 can be written as a sum of
squares of functions from 𝑉 .

∙ If 𝑃 has symmetries and is invariant under the action of a group 𝐺, then
a sufficient condition to get an SDP lift that “respects” this symmetry is
to require the subspace 𝑉 to be 𝐺-invariant (see Theorem 9). Under some
additional mild conditions this is also necessary (see Theorem 10). The
necessity part is what we called the “structure theorem” for equivariant
SDP lifts.

∙ To prove lower bounds on equivariant SDP lifts of 𝑃 = conv(𝑋) one has to
understand the structure of 𝐺-invariant subspaces of R𝑋 . Theorems 13 and
16 establish exponential lower bounds on equivariant SDP lift of the parity
polytope and the cut polytope. Theorem 20 shows that any equivariant
SDP lift of the regular 𝑁 -gon must have size Ω(log𝑁).

4.8 Proofs

4.8.1 Proof of Theorem 9: equivariance of sum of squares lifts
when subspace 𝑉 is 𝐺-invariant

Let 𝑋 be a finite set in R𝑛 and assume 𝑋 is invariant under the action of a group
𝐺 ⊆ 𝐺𝐿𝑛(R). We also assume that conv(𝑋) is full-dimensional. In this appendix,
we show that the SDP lift (2.20) is 𝐺-equivariant when the subspace 𝑉 is chosen to
be 𝐺-invariant.

Assume 𝑉 is a subspace of R𝑋 such that any valid linear inequality on conv(𝑋)
has a sum-of-squares certificate from 𝑉 . Then we saw in Section 2.2.5 (cf. Equation
(2.20)) that we have the following description of conv(𝑋):

conv(𝑋) =

{︃
(𝐸(𝑒1), . . . , 𝐸(𝑒𝑛)) : 𝐸 ∈ (R𝑋)* where

𝐸(1) = 1, 𝐸(𝑓 2) ≥ 0 ∀𝑓 ∈ 𝑉
}︁
.

(4.43)

where for each 𝑖, 𝑒𝑖 ∈ R𝑋 is the function defined by 𝑒𝑖(𝑥) = 𝑥𝑖. Equation (4.43)
expresses conv(𝑋) as a SDP lift of size 𝑑 = dim𝑉 . Indeed the last constraint on 𝐸
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in (4.43) is equivalent to saying that the bilinear form 𝐻𝐸 on 𝑉 defined by

𝐻𝐸 : 𝑉 × 𝑉 → R, 𝐻𝐸(𝑓1, 𝑓2) = 𝐸(𝑓1𝑓2)

is positive semidefinite. Thus if we identify S𝑑 with bilinear forms on 𝑉 (by fixing a
basis) then Equation (4.43) can be rewritten as:

conv(𝑋) = 𝜋(S𝑑
+ ∩ 𝐿) (4.44)

where

∙ 𝐿 ⊂ S𝑑 is the affine subspace

𝐿 := {𝐻𝐸 : 𝐸 ∈ (R𝑋)*, 𝐸(1) = 1},

i.e., 𝐿 the image of the affine space {𝐸 ∈ (R𝑋)*, 𝐸(1) = 1} under the linear
map 𝐸 ↦→ 𝐻𝐸;

∙ and 𝜋 is the linear map, which given a bilinear form of the form 𝐻𝐸 for some
𝐸 ∈ (R𝑋)*, returns the 𝑛-tuple (𝐸(𝑒1), . . . , 𝐸(𝑒𝑛)) ∈ R𝑛 (this linear map 𝜋 is
well-defined when 𝑃 is full-dimensional, since one can show in this case that the
functions 𝑒𝑖 are all in span{𝑓 2 : 𝑓 ∈ 𝑉 }).

We now proceed to show that the SDP lift (4.44) satisfies the definition of 𝐺-
equivariance, where 𝐺 is the automorphism group of 𝑋.

Since 𝐺 acts on R𝑋 , it also acts on the dual space (R𝑋)* as follows: If 𝐸 ∈ (R𝑋)*

then we let
(𝑔 · 𝐸)(𝑓) := 𝐸(𝑔−1 · 𝑓) ∀𝑓 ∈ R𝑋 .

Equivariance of the lift (4.44) now follows from the following main lemma:

Lemma 5. Given 𝐸 ∈ (R𝑋)* we have for any 𝑔 ∈ 𝐺 and any 𝑓, ℎ ∈ 𝑉 :

𝐻𝑔·𝐸(𝑓1, 𝑓2) = 𝐻𝐸(𝑔
−1 · 𝑓1, 𝑔−1 · 𝑓2). (4.45)

Remark 11. One can interpret the identity (4.45) in matrix terms as follows: Given
𝑔 ∈ 𝐺, let 𝜃(𝑔) be the 𝑑×𝑑 matrix which corresponds to the linear map 𝑓 ∈ 𝑉 ↦→ 𝑔 ·𝑓 .
Define 𝜌(𝑔) = 𝜃(𝑔−1)𝑇 . Then identity (4.45) is the same as:

𝐻𝑔·𝐸 = 𝜌(𝑔)𝐻𝐸𝜌(𝑔)
𝑇 (4.46)

where 𝐻𝑔·𝐸 and 𝐻𝐸 are interpreted as symmetric matrices of size 𝑑.

Proof. The following sequence of equalities proves the claim:

𝐻𝑔·𝐸(𝑓1, 𝑓2) = (𝑔 · 𝐸)(𝑓1𝑓2) = 𝐸(𝑔−1 · (𝑓1𝑓2))
(*)
= 𝐸((𝑔−1 · 𝑓1)(𝑔−1 · 𝑓2)) = 𝐻𝐸(𝑔

−1 · 𝑓1, 𝑔−1 · 𝑓2).
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In Equality (*) we used the fact that the action of 𝐺 on R𝑋 satisfies:

𝑔 · (𝑓1𝑓2) = (𝑔 · 𝑓1)(𝑔 · 𝑓2)

which can be easily seen since for any 𝑥 ∈ 𝑋 we have:

𝑔 · (𝑓1𝑓2)(𝑥) = (𝑓1𝑓2)(𝑔
−1 · 𝑥) = 𝑓1(𝑔

−1 · 𝑥)𝑓2(𝑔−1 · 𝑥) = (𝑔 · 𝑓1)(𝑥)(𝑔 · 𝑓2)(𝑥).

Using this lemma it is easy to check that the lift (4.44) satisfies the definition of
𝐺-equivariance.

4.8.2 Proof of Theorem 11: factorization theorem for equiv-
ariant SDP lifts

Proof of Theorem 11. We first treat the case where the stabilizer of 𝑥0 is {1𝐺}. In
this case the proof is almost trivial: Let 𝐴(𝑥0) be any point in S𝑑

+ ∩ 𝐿 such that
𝜋(𝐴(𝑥0)) = 𝑥0. Define, for any 𝑔 ∈ 𝐺, 𝐴(𝑔 · 𝑥0) := 𝜌(𝑔)𝐴(𝑥0)𝜌(𝑔)

𝑇 . Note that
𝐴(𝑔 · 𝑥0) ∈ S𝑑

+ ∩ 𝐿 by the definition of an equivariant SDP lift (Definition 9). Also
note that

𝜋(𝐴(𝑔 · 𝑥0)) = 𝜋(𝜌(𝑔)𝐴(𝑥0)𝜌(𝑔)
𝑇 )

(𝑎)
= 𝑔 · 𝜋(𝐴(𝑥0))

(𝑏)
= 𝑔 · 𝑥0 (4.47)

where in (𝑎) we used the definition of equivariant SDP lift, and in (𝑏) we used the
fact that 𝜋(𝐴(𝑥0)) = 𝑥0. Since 𝑋 = 𝐺 · 𝑥0, Equation (4.47) shows that 𝜋(𝐴(𝑥)) = 𝑥
for all 𝑥 ∈ 𝑋. Thus we can use Theorem 3 (cf. Remark 4) with our choice of map
𝐴 to show that Property (i) of the statement holds. Note that Property (ii) holds by
construction of the map 𝐴.

We now treat the general case. Let 𝐻 be the stabilizer of 𝑥0. Let 𝐴0 be any point
in S𝑑

+ ∩ 𝐿 such that 𝜋(𝐴0) = 𝑥0 and define:

𝐴(𝑥0) =
1

|𝐻|
∑︁

ℎ∈𝐻
𝜌(ℎ)𝐴0𝜌(ℎ)

𝑇 .

Now we extend the map 𝐴 to the whole 𝑋 by letting 𝐴(𝑥) = 𝜌(𝑔)𝐴(𝑥0)𝜌(𝑔)
𝑇 where 𝑔

is any element of 𝐺 such that 𝑔 ·𝑥0. Note that this is well-defined since if 𝑔 ·𝑥0 = 𝑔′ ·𝑥0,
we have, with ℎ = 𝑔−1𝑔′ ∈ 𝐻:

𝜌(𝑔′)𝐴(𝑥0)𝜌(𝑔
′)𝑇 = 𝜌(𝑔ℎ)𝐴(𝑥0)𝜌(𝑔ℎ)

𝑇

= 𝜌(𝑔)𝜌(ℎ)𝐴(𝑥0)𝜌(ℎ)
𝑇𝜌(𝑔)𝑇 = 𝜌(𝑔)𝐴(𝑥0)𝜌(𝑔)

𝑇 .

It is easy to verify, like in the previous case, that the map we just defined satisfies
𝜋(𝐴(𝑥)) = 𝑥 for all 𝑥 ∈ 𝑋. Thus by applying Theorem 3 with our choice of map 𝐴 we
get that Property (i) of the statement holds. Also Property (ii) holds by construction
of the map 𝐴.
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Note that we can assume 𝜌(𝑔) to be orthogonal for any 𝑔 ∈ 𝐺, by a simple
change of basis: By Proposition 4 let 𝑄 be an invertible matrix such that 𝑄𝜌(𝑔)𝑄−1

is orthogonal. By letting ̂︀𝜌(𝑔) = 𝑄𝜌(𝑔)𝑄−1, ̂︀𝐴(𝑥) = 𝑄𝐴(𝑥)𝑄𝑇 , ̂︀𝐵 = 𝑄−𝑇𝐵𝑄−1 we
have ⟨ ̂︀𝐴(𝑥), ̂︀𝐵⟩ = ⟨𝐴(𝑥), 𝐵⟩, ̂︀𝐴(𝑔 · 𝑥) = ̂︀𝜌(𝑔) ̂︀𝐴(𝑥)̂︀𝜌(𝑔)𝑇 and ̂︀𝜌(𝑔)̂︀𝜌(𝑔)𝑇 = 𝐼𝑑 which is
what we need.

4.8.3 Proof of Lemma 3: irreducible subspaces of REVEN𝑛

Proof of Lemma 3. It is easy to see that Pol𝑘(EVEN𝑛) is invariant for each 𝑘 =
0, 1, . . . , ⌊𝑛/2⌋. It remains to show that each of these is irreducible. For any 𝑘 ̸= ℓ ∈
[𝑛], let 𝜖𝑘,ℓ ∈ 𝐺parity be defined by 𝜖𝑘,ℓ = diag(1, . . . ,−1, . . . ,−1, . . . , 1) where all the
entries are equal to 1 except the entries in position 𝑘 and ℓ which are equal to −1.
Given an element 𝑝 ∈ REVEN𝑛 we denote by (id+𝜖𝑘ℓ) · 𝑝 the polynomial 𝑝 + 𝜖𝑘ℓ · 𝑝.
Observe that whenever 𝐼 ⊂ [𝑛], then

(id+𝜖𝑘ℓ) · 𝑥𝐼 = 𝑥𝐼 + 𝜖𝑘ℓ · 𝑥𝐼 =
{︃
2𝑥𝐼 if (𝑘 ∈ 𝐼 and ℓ ∈ 𝐼) or (𝑘 /∈ 𝐼 and ℓ /∈ 𝐼)
0 if either exactly one of 𝑘 ∈ 𝐼 and ℓ ∈ 𝐼 occur.

Now fix some arbitrary 𝑘 < 𝑛/2 (we deal with the case 𝑛 = 2𝑘 separately) and let
𝑉 be a (non-zero) invariant subspace of Pol𝑘(EVEN𝑛). Let 𝑝 be a non-zero element
of 𝑉 . By the invariance of 𝑉 under the permutation action, we can assume that
the coefficient of the monomial 𝑥1𝑥2 · · · 𝑥𝑘 in 𝑝 is non-zero, and so 𝑝 is of the form:
𝑝(𝑥) = 𝑐𝑥1 · · ·𝑥𝑘 +

∑︀
|𝐼|=𝑘,𝐼 ̸={1,2,...,𝑘} 𝑐𝐼𝑥

𝐼 where 𝑐 ̸= 0. We will show that necessarily
𝑉 = Pol𝑘(EVEN𝑛). We first show that

[︃
𝑛∏︁

𝑖=𝑘+2

(id+𝜖𝑘+1,𝑖)

]︃
· 𝑝(𝑥) = 2𝑛−𝑘−1𝑥1𝑥2 · · ·𝑥𝑘. (4.48)

Once this is established we will know, by the S𝑛-invariance of 𝑉 , that 𝑉 is equal to
Pol𝑘(EVEN𝑛).

To establish (4.48), first note that if 𝑖 ∈ {𝑘 + 2, 𝑘 + 3, . . . , 𝑛} then

(id+𝜖𝑘+1,𝑖)(𝑥1𝑥2 · · ·𝑥𝑘) = 2𝑥1𝑥2 · · ·𝑥𝑘

because neither of 𝑥𝑖 and 𝑥𝑘+1 appear in 𝑥1𝑥2 · · ·𝑥𝑘. It remains to check that every
other monomial of degree 𝑘 is in the kernel of

[︀∏︀𝑛
𝑖=𝑘+2(id+𝜖𝑘+1,𝑖)

]︀
. Consider any

other monomial 𝑥𝐼 , i.e. 𝐼 ⊂ {1, 2, . . . , 𝑛} with |𝐼| = 𝑘 and for which there is some
ℓ ∈ 𝐼 with ℓ ≥ 𝑘 + 1. Consider two cases, first the case where 𝑘 + 1 /∈ 𝐼. Then there
is some ℓ ≥ 𝑘 + 2 such that ℓ ∈ 𝐼. But then (id+𝜖𝑘+1,ℓ) · 𝑥𝐼 = 0 and so since the 𝜖𝑖,𝑗
commute,

[︀∏︀𝑛
𝑖=𝑘+2(id+𝜖𝑘+1,𝑖)

]︀
· 𝑥𝐼 = 0. Now suppose 𝑘 + 1 ∈ 𝐼. Then there is some

ℓ ≥ 𝑘 + 2 such that ℓ /∈ 𝐼. This is because if there were no such ℓ then we must have
𝐼 ⊇ {𝑘 + 1, 𝑘 + 2, . . . , 𝑛} which cannot have cardinality 𝑘 since we assumed 𝑘 < 𝑛/2.
It then follows that (id+𝜖𝑘+1,ℓ) · 𝑥𝐼 = 0 and so that

[︀∏︀𝑛
𝑖=𝑘+2(id+𝜖𝑘+1,𝑖)

]︀
· 𝑥𝐼 = 0.

Finally consider the case when 𝑛 = 2𝑘. In this situation since 𝑉 is invariant under

93



the permutation action we can assume

𝑝(𝑥) = 𝑐(𝑥1 · · ·𝑥𝑛/2 + 𝑥𝑛/2+1 · · ·𝑥𝑛) +
∑︁

|𝐼|=𝑛/2,𝐼 ̸={1,2,...,𝑛/2}
𝐼 ̸={𝑛/2,𝑛/2+1,...,𝑛}

𝑐𝐼(𝑥
𝐼 + 𝑥𝐼

𝑐

).

Applying the same argument as above, we see that
[︃

𝑛∏︁

𝑖=𝑘+2

(id+𝜖𝑘+1,𝑖)

]︃
· 𝑝(𝑥) = 2𝑛−𝑛/2−1

(︀
𝑥1𝑥2 · · ·𝑥𝑛/2 + 𝑥𝑛/2+1𝑥𝑛/2+2 · · ·𝑥𝑛

)︀
.

Since the action of S𝑛 on

𝑥1𝑥2 · · ·𝑥𝑛/2 + 𝑥𝑛/2+1𝑥𝑛/2+2 · · ·𝑥𝑛

generates a basis for Pol𝑛/2(EVEN𝑛) we can conclude that 𝑉 = Pol𝑛/2(EVEN𝑛).
The second part of the theorem is a direct consequence of Proposition 3 on low-

dimensional invariant subspaces. When 𝑛 is odd note that dimPol0(EVEN𝑛) <
dimPol1(EVEN𝑛) < · · · < dimPol⌊𝑛/2⌋(EVEN𝑛) with dimPol𝑘(EVEN𝑛) =

(︀
𝑛
𝑘

)︀
. Thus

any invariant subspace 𝑉 of REVEN𝑛 with dim𝑉 < dimPol𝑘(EVEN𝑛) =
(︀
𝑛
𝑘

)︀
= 𝐷𝑛,𝑘

must be contained in 𝑉𝑘−1 = Pol0(EVEN𝑛) ⊕ · · · ⊕ Pol𝑘−1(EVEN𝑛) and thus con-
sists of polynomials of degree at most 𝑘 − 1. In the case where 𝑛 is even we
have dimPol𝑛/2(EVEN𝑛) = 1

2

(︀
𝑛

𝑛/2

)︀
. Thus any invariant subspace 𝑉 with dim𝑉 <

min
(︁(︀

𝑛
𝑘

)︀
, 1
2

(︀
𝑛

𝑛/2

)︀)︁
= 𝐷𝑛,𝑘 must be contained in Pol≤𝑘−1(EVEN𝑛) = Pol0(EVEN𝑛) ⊕

· · · ⊕ Pol𝑘−1(EVEN𝑛).

4.8.4 Proof of Proposition 6: lower bound on theta rank of
parity polytope

Before proving the lower bound on the theta rank, we need the following simple
lemma which expresses the pointwise product of the functions 𝑒𝐼 and 𝑒𝐽 in terms
of our basis for REVEN𝑛 . (Here, and subsequently, if 𝐼, 𝐽 ⊆ [𝑛] then 𝐼△𝐽 is the
symmetric difference of 𝐼 and 𝐽 .)

Lemma 6. If 𝐼, 𝐽 ⊆ [𝑛] then

𝑒𝐼𝑒𝐽 =

⎧
⎪⎨
⎪⎩

𝑒𝐼△𝐽 if |𝐼△𝐽 | < 𝑛/2

𝑒(𝐼△𝐽)𝑐 if |𝐼△𝐽 | > 𝑛/2

(𝑒𝐼△𝐽 + 𝑒(𝐼△𝐽)𝑐)/2 if |𝐼△𝐽 | = 𝑛/2.

Proof. For any 𝑥 ∈ EVEN𝑛 we have that 𝑥2𝑖 = 1 for all 𝑖 ∈ [𝑛] and
∏︀

𝑖∈[𝑛] 𝑥𝑖 = 1.
Hence for any 𝐼, 𝐽 ⊆ [𝑛], 𝑥𝐼𝑥𝐽 = 𝑥𝐼△𝐽 = 𝑥(𝐼△𝐽)𝑐 = (𝑥𝐼△𝐽 + 𝑥(𝐼△𝐽)𝑐)/2. The result
then follows by recognizing that at least one of these can be written in terms of the
given basis from Proposition 5.
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Proof of Proposition 6. We first sketch the outline of the proof before filling in the
details. We choose a function ℓmax − ℓ ∈ Pol≤1(EVEN𝑛) that is nonnegative on
EVEN𝑛 but when viewed as a polynomial on R𝑛 takes a negative value on some point
𝑝 ∈ {−1, 1}𝑛 ∖ EVEN𝑛. (One can think of this as a facet inequality for PAR𝑛 that is
not valid for the hypercube.) We use this point 𝑝 to construct a linear functional ℒ𝑝 ∈
(REVEN𝑛)* (defined to mimic evaulation of the function at 𝑝) such that ℒ𝑝(ℓmax−ℓ) < 0
and yet whenever 𝑘 < 𝑛/4 and 𝑓 ∈ Pol≤𝑘(EVEN𝑛) we have that ℒ𝑝(𝑓

2) ≥ 0. This
would imply that if 𝑘 < 𝑛/4 then ℒ𝑝 separates the linear function ℓmax − ℓ (that is
nonnegative on EVEN𝑛) from the cone of functions that are Pol≤𝑘(EVEN𝑛)-sos on
EVEN𝑛, which would complete the proof.

We now fill in the details. Let ℓmax − ℓ(𝑥) = (𝑛− 2)𝑒∅(𝑥) + 𝑒{𝑛}(𝑥)−
∑︀𝑛−1

𝑖=1 𝑒{𝑖}(𝑥)
and observe that this is a nonnegative function on EVEN𝑛 (since it defines a facet of
PAR𝑛). Let 𝑝 = (1, 1, . . . , 1,−1) ∈ R𝑛, and note that 𝑝 has an odd number of −1s.
Define a linear functional ℒ𝑝 ∈ (REVEN𝑛)* by defining it on our basis for REVEN𝑛 by

ℒ𝑝(𝑒𝐼) =
∏︁

𝑖∈𝐼
𝑝𝑖 if |𝐼| < 𝑛/2 and

ℒ𝑝((𝑒𝐼 + 𝑒𝐼𝑐)/2) =

(︃∏︁

𝑖∈𝐼
𝑝𝑖 +

∏︁

𝑖∈𝐼𝑐
𝑝𝑖

)︃
/2 = 0 if |𝐼| = 𝑛/2.

Observe that ℒ𝑝(ℓmax−ℓ) = (𝑛−2)+ℒ𝑝(𝑒{𝑛})−
∑︀𝑛−1

𝑖=1 ℒ𝑝(𝑒{𝑖}) = (𝑛−2)−1−(𝑛−1) =
−2.

We now show that if 𝑘 < 𝑛/4 and 𝑓 ∈ Pol≤𝑘(EVEN𝑛) then ℒ𝑝(𝑓
2) ≥ 0. Observe

that if |𝐼△𝐽 | < 𝑛/2 and |𝐼|, |𝐽 | < 𝑛/2 then

ℒ𝑝(𝑒𝐼𝑒𝐽) = ℒ𝑝(𝑒𝐼△𝐽) =
∏︁

𝑖∈𝐼△𝐽

𝑝𝑖 =
(︀∏︀

𝑖∈𝐼 𝑝𝑖
)︀ (︁∏︀

𝑗∈𝐽 𝑝𝑗
)︁
= ℒ𝑝(𝑒𝐼)ℒ𝑝(𝑒𝐽). (4.49)

If 𝑓 ∈ Pol≤𝑘(EVEN𝑛) where 𝑘 < 𝑛/4 then there are constants 𝑐𝐼 ∈ R such that
𝑓 =

∑︀𝑘
𝑚=0

∑︀
|𝐼|=𝑘 𝑐𝐼𝑒𝐼 . Hence by (4.49), and the observation that if |𝐼|, |𝐽 | < 𝑛/4

then |𝐼△𝐽 | < 𝑛/2, we can see that any 𝑓 ∈ Pol≤𝑘(EVEN𝑛) satisfies

ℒ𝑝(𝑓
2) =

𝑘∑︁

𝑚,𝑚′=0

∑︁

|𝐼|=𝑚

∑︁

|𝐽 |=𝑚′

𝑐𝐼𝑐𝐽ℒ𝑝(𝑒𝐼𝑒𝐽)

=
𝑘∑︁

𝑚,𝑚′=0

∑︁

|𝐼|=𝑚

∑︁

|𝐽 |=𝑚′

𝑐𝐼𝑐𝐽ℒ𝑝(𝑒𝐼)ℓ𝑝(𝑒𝐽) = ℒ𝑝(𝑓)
2 ≥ 0.

(4.50)

This completes the proof.

4.8.5 Proof of Lemma 4: irreducible subspaces of R𝐶𝑛

Proof of Lemma 4. It is easy to see that Pol𝑘(𝐶𝑛) is 𝐺cube-invariant for each 𝑘. It
remains to show that each of these is irreducible. For any 𝑘 ∈ [𝑛], let 𝜖𝑘 ∈ 𝐺cube be

95



defined by 𝜖𝑘 = diag(1, . . . ,−1, . . . , 1) where the −1 is in the 𝑘’th position. If 𝐼 ⊆ [𝑛]
we denote by 𝑥𝐼 the monomial

∏︀
𝑖∈𝐼 𝑥𝑖. Observe that for a given 𝑘 ∈ [𝑛] and 𝐼 ⊆ [𝑛]

we have:

(id+𝜖𝑘) · 𝑥𝐼 =
{︃
2𝑥𝐼 if 𝑘 /∈ 𝐼

0 otherwise.

In other words the action of (id+𝜖𝑘) on R𝐶𝑛 annihilates all monomials involving
𝑥𝑘. Similarly the action of

∏︀
𝑘∈𝐾(id+𝜖𝑘) on R𝐶𝑛 annihilates all monomials involving

any 𝑥𝑘, 𝑘 ∈ 𝐾 since the (id+𝜖𝑘) commute. Now fix some arbitrary 𝑘 and let 𝑉
be a (non-zero) invariant subspace of Pol𝑘(𝐶𝑛). We will show that necessarily 𝑉 =
Pol𝑘(𝐶𝑛). Since 𝑉 ̸= {0}, 𝑉 contains a nonzero square-free polynomial 𝑝(𝑥). By the
invariance of 𝑉 under the permutation action, we can assume that the coefficient of
the monomial 𝑥1𝑥2 · · ·𝑥𝑘 in 𝑝 is non-zero, and so 𝑝 is of the form: 𝑝(𝑥) = 𝑐𝑥1 · · ·𝑥𝑘 +∑︀

|𝐼|=𝑘,𝐼 ̸={1,2,...,𝑘} 𝑐𝐼𝑥
𝐼 with 𝑐 ̸= 0. Now note that by the previous observation we have:

[︃
𝑛∏︁

𝑖=𝑘+1

(id+𝜖𝑖)

]︃
· 𝑝(𝑥) = 2𝑛−𝑘𝑥1𝑥2 · · ·𝑥𝑘.

Hence 𝑉 is a subspace containing 𝑥1𝑥2 · · ·𝑥𝑘 and hence, since 𝑉 is invariant under
the permutation action, it contains every square-free monomial of degree 𝑘. It follows
that 𝑉 = Pol𝑘(𝐶𝑛) and so Pol𝑘(𝐶𝑛) is irreducible.

To show the second part of the theorem, we use Proposition 3 from the introduc-
tion. Indeed note that dimPol𝑘(𝐶𝑛) =

(︀
𝑛
𝑘

)︀
. Thus Proposition 3 says that if 𝑉 is an

invariant subspace and dim𝑉 <
(︀
𝑛
𝑘

)︀
with 𝑘 ≤ 𝑛/2 then necessarily 𝑉 is contained in

the direct sum
𝑘−1⨁︁

𝑖=0

(Pol𝑖(𝐶𝑛)⊕ Pol𝑛−𝑖(𝐶𝑛)).

Thus this means that any 𝑓 ∈ 𝑉 can be decomposed as:

𝑓 =
𝑘−1∑︁

𝑖=0

𝑔𝑖 + 𝑔𝑛−𝑖

where 𝑔𝑖 ∈ Pol𝑖(𝐶𝑛) and 𝑔𝑛−𝑖 ∈ Pol𝑛−𝑖(𝐶𝑛). Now note that for 𝑖 < 𝑛/2, Pol𝑛−𝑖(𝐶𝑛) ∼=
𝑒𝑛(𝑥) Pol𝑖(𝐶𝑛) because multiplication by 𝑒𝑛(𝑥) is an involution of R𝐶𝑛 that sends
square-free polynomials of degree 𝑖 to square-free polynomials of degree 𝑛− 𝑖. Thus
we can write 𝑔𝑛−𝑖(𝑥) = 𝑒𝑛(𝑥)ℎ𝑖(𝑥) for some ℎ𝑖 ∈ Pol𝑖(𝐶𝑛). Thus we get that

𝑓(𝑥) =
𝑘−1∑︁

𝑖=0

𝑔𝑖(𝑥) + 𝑒𝑛(𝑥)ℎ𝑖(𝑥) = 𝑔(𝑥) + 𝑒𝑛(𝑥)ℎ(𝑥)

where deg 𝑔 ≤ 𝑘 − 1 and deg ℎ ≤ 𝑘 − 1.
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Chapter 5

Sparse sums of squares and improved
semidefinite lifts

In this chapter we show how one can construct improved semidefinite lifts by exhibit-
ing sparse sum-of-squares certificates for facet inequalities. We start by showing that
the regular 𝑁 -gon admits an (equivariant) SDP lift of size 𝑂(log𝑁) which matches
the lower bound from the previous chapter. In constrast the Lasserre/theta-body
hierarchy can be shown to produce a lift of size linear in 𝑁 .

Motivated by this construction we develop a general framework to produce sparse
sum of squares certificates for functions defined on a finite abelian group. We show
using this framework that there is an explicit sequence of polytopes in increasing
dimensions (so-called trigonometric cyclic polytopes) that admit SDP lifts that are
vanishingly smaller than any LP lift. The tools we develop also allow us to prove a
conjecture of Laurent from 2003 on the Lasserre hierarchy for maximum cut. This
chapter is mostly based on the paper [38], except the first section which is based on
part of [36].
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5.1 Motivating example: regular polygons
To motivate the study of sparse sum-of-squares certificates we first look at the case
of regular polygons in R2 which we considered in the previous chapter. We adopt
the same notations considered there and outlined in Section 4.6.2. Recall the facet
equation of the regular 𝑁 -gon (cf. Figure 4-2) expressed in the Fourier basis:

ℓ = cos(𝜋/𝑁)𝑒0 −
1

2
𝑒−𝑖𝜋/𝑁𝑒1 −

1

2
𝑒𝑖𝜋/𝑁𝑒−1.

We saw in Theorem 21 that constructing a Rot𝑁 -equivariant SDP lift of the regular
𝑁 -gon is equivalent to finding a sum-of-squares certificate of ℓ of the form:

ℓ =
𝐽∑︁

𝑗=1

|ℎ𝑗|2 where ℎ𝑗 ∈
⨁︁

𝑘∈𝐾
C𝑒𝑘 ∀𝑗 = 1, . . . , 𝐽. (5.1)

for some 𝐾 ⊆ Z𝑁 . The size of the SDP lift is given exactly by |𝐾|. In Theorem 22 we
proved that any such 𝐾 must have size at least ln(𝑁/2). One may wonder whether
this bound is tight, i.e., whether there exists a set 𝐾 of size at most 𝑂(log𝑁) such
that (5.1) holds? In this chapter we will show that such a set does indeed exist. In fact
the goal of this chapter is to give a combinatorial method to guarantee the existence
of sparse sum-of-squares certificates of the form (5.1) in a more general setting.

To give a flavor of how such a sparse certificate may look like we consider the
case where 𝑁 is a power of two, i.e., 𝑁 = 2𝑛 and consider the problem of finding a
set 𝐾 of logarithmic size in 𝑁 such that (5.1) holds. In this case one can come up
with an explicit such representation which we present in Proposition 8 below. For
convenience, define for 𝑘 ∈ Z𝑁 , 𝑐𝑘 and 𝑠𝑘 to be the functions in CZ𝑁 that play the
role of cos(2𝜋𝑘𝑡/𝑁) and sin(2𝜋𝑘𝑡/𝑁):

𝑐𝑘 =
𝑒𝑘 + 𝑒−𝑘

2
, 𝑠𝑘 =

𝑒𝑘 − 𝑒−𝑘

2𝑖
.

Using these notations the facet equation ℓ can be written as: ℓ = cos(𝜋/𝑁)𝑐0 −
cos(𝜋/𝑁)𝑐1 − sin(𝜋/𝑁)𝑠1.

Proposition 8. Let ℓ be the facet equation for the regular 2𝑛-gon, i.e.,

ℓ = cos(𝜋/2𝑛)𝑐0 − cos(𝜋/2𝑛)𝑐1 − sin(𝜋/2𝑛)𝑠1,
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Then we have the following sum-of-squares certificate for ℓ:

ℓ =
𝑛−2∑︁

𝑖=0

sin
(︀

𝜋
2𝑛

)︀

2𝑖 sin
(︀
2𝑖+1 · 𝜋

2𝑛

)︀
(︁
cos
(︁ 𝜋

2𝑛−𝑖

)︁
𝑐0 − cos

(︁ 𝜋

2𝑛−𝑖

)︁
𝑐2𝑖 − sin

(︁ 𝜋

2𝑛−𝑖

)︁
𝑠2𝑖
)︁2
. (5.2)

Proof. The identity (5.2) can be proved using induction. We will omit the proof since
later we will give a more general result concerning general 𝑁 -gons (and not just the
case where 𝑁 is a power of two).

What is important to note in (5.2) is that only the elements 𝑐0, 𝑐2𝑖 and 𝑠2𝑖 for
𝑖 = 0, . . . , 𝑛−2 are used in the sum-of-squares certificate. In other words the sparsity
pattern of the certificate is 𝐾 = {0} ∪ {±2𝑖, 𝑖 = 0, . . . , 𝑛 − 2} which has size |𝐾| =
2𝑛 − 1. Also that the certificate (5.2) has high-degree (it uses monomials of degree
𝑁/4 = 2𝑛−2) despite being very sparse. We have actually shown in the previous
chapter (see Remark 10) that any certificate of the form (5.1) for the regular 𝑁 -gon
must have degree at least 𝑁/4.

Lifts Before concluding this example we give the explicit SDP lift obtained from
the sum-of-squares certificate (5.2). Recall from Chapter 2, Section 2.2.5 how the
SDP lift is constructed from the sum-of-squares certificates via the notion of pseudo-
expectation (Equation (2.20)). If we let 𝑉𝑖 = C𝑒0 ⊕C𝑒2𝑖 ⊕C𝑒−2𝑖 then our lift has the
following abstract form:

conv(𝒳2𝑛) =
{︀
( ̃︀𝐸(𝑐1), ̃︀𝐸(𝑠1)) : ̃︀𝐸 ∈ C2𝑛 with ̃︀𝐸(𝑒0) = 1,

̃︀𝐸(𝑓 2) ≥ 0 ∀𝑓 ∈ 𝑉𝑖, 𝑖 = 0, . . . , 𝑛− 2
}︀
.

(5.3)

The vector ̃︀𝐸 is indexed by the elements (𝑒𝑘)𝑘∈Z2𝑛
, and one should think of ̃︀𝐸(𝑒𝑘)

as the (pseudo)-expectation of the function 𝑒𝑘(𝑡) on 𝑡 ∈ Z2𝑛 . From (5.3) the vector
̃︀𝐸 has size 2𝑛, however as we will see only a small number of components (linear in
𝑛) will actually be needed to express the final lift. To make the notations lighter we
will denote 𝑚𝑘 := ̃︀𝐸(𝑒𝑘) ∈ C for any 𝑘 ∈ Z𝑁 . Note that 𝑚−𝑘 = 𝑚𝑘. We now need
to express the constraint that ̃︀𝐸(𝑓 2) ≥ 0 ∀𝑓 ∈ 𝑉𝑖 using the (𝑚𝑘). Using the basis
(𝑒0, 𝑒2𝑖 , 𝑒−2𝑖) of 𝑉𝑖 we see that the matrix of the quadratic form 𝑓 ∈ 𝑉𝑖 ↦→ ̃︀𝐸(𝑓 2) is
given by: ⎡

⎣
𝑚0 𝑚2𝑖 𝑚2𝑖

𝑚2𝑖 𝑚0 𝑚2𝑖+1

𝑚2𝑖 𝑚2𝑖+1 𝑚0

⎤
⎦ .

To see how this matrix is constructed note for example that the (2, 3) entry is given
by ̃︀𝐸(𝑒2𝑖𝑒−2𝑖) = ̃︀𝐸(𝑒−2𝑖+1) = ̃︀𝐸(𝑒2𝑖+1) = 𝑚2𝑖+1 . The lift (5.3) of the regular 2𝑛-gon
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thus can be written as (where 𝑦𝑖 plays the role of 𝑚2𝑖):

conv(𝒳2𝑛) =

{︃
(Re[𝑦0], Im[𝑦0]) : ∃𝑦1, . . . , 𝑦𝑛−2 ∈ C, 𝑦𝑛−1 ∈ R such that

⎡
⎣

1 𝑦𝑖−1 𝑦𝑖−1

𝑦𝑖−1 1 𝑦𝑖
𝑦𝑖−1 𝑦𝑖 1

⎤
⎦ ∈ H3

+ for 𝑖 = 1, 2, . . . , 𝑛− 2

and

⎡
⎣

1 𝑦𝑛−2 𝑦𝑛−2

𝑦𝑛−2 1 𝑦𝑛−1

𝑦𝑛−2 𝑦𝑛−1 1

⎤
⎦ ∈ H3

+

}︃
.

(5.4)

Remark 12 (Real equivariant SDP lift). Observe that Proposition 8 actually gives
a real sum-of-squares certificate of ℓ, i.e., the functions ℎ𝑗 in ℓ =

∑︀
𝑗 |ℎ𝑗|2 are real-

valued. This sum-of-squares certificate can be used to get a SDP lift of the regular 2𝑛-
gon using the cone of real symmetric psd matrices (instead of Hermitian psd matrices).
The real SDP lift can be shown to take the form (S3

+ denotes the cone of 3 × 3 real
symmetric positive semidefinite matrices):

conv(𝒳2𝑛) =

{︃
(𝑥0, 𝑦0) : ∃(𝑥𝑖, 𝑦𝑖)𝑛−2

𝑖=1 , 𝑥𝑛−1 ∈ R,
⎡
⎣

1 𝑥𝑖−1 𝑦𝑖−1

𝑥𝑖−1
1+𝑥𝑖

2
𝑦𝑖
2

𝑦𝑖−1
𝑦𝑖
2

1−𝑥𝑖

2

⎤
⎦ ∈ S3

+ for 𝑖 = 1, 2, . . . , 𝑛− 2

and

⎡
⎣

1 𝑥𝑛−2 𝑦𝑛−2

𝑥𝑛−2
1+𝑥𝑛−1

2
0

𝑦𝑛−2 0 1+𝑥𝑛−1

2

⎤
⎦ ∈ S3

+

}︃
. (5.5)

Remark 13. One can also get from Proposition 8 a slightly different SDP lift of the
regular 2𝑛-gon that involves only a single LMI of size 2𝑛−1, rather than 𝑛−1 LMIs of
size 3 each. If we let 𝐾 = {0} ∪ {±2𝑖, 𝑖 = 0, . . . , 𝑛− 2} (which is the sparsity pattern
of the sum-of-squares certificate of Proposition 8) then this lift takes the form:

conv(𝒳2𝑛) =
{︀
(Re[𝑚1], Im[𝑚1]) : 𝑚0 = 1 and [𝑚𝑘′−𝑘]𝑘,𝑘′∈𝐾 ∈ H2𝑛−1

+

}︀
.

For example for 𝑁 = 16 we get that conv(𝒳16) is the set of (Re[𝑚1], Im[𝑚1]) ∈ R2
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such that the following 7× 7 Hermitian matrix is positive semidefinite:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 𝑚1 𝑚1 𝑚2 𝑚2 𝑚4 𝑚4

𝑚1 1 𝑚2 𝑚1 𝑚3 𝑚3 𝑚5

𝑚1 𝑚2 1 𝑚3 𝑚1 𝑚5 𝑚3

𝑚2 𝑚1 𝑚3 1 𝑚4 𝑚2 𝑚6

𝑚2 𝑚3 𝑚1 𝑚4 1 𝑚6 𝑚2

𝑚4 𝑚3 𝑚5 𝑚2 𝑚6 1 𝑚8

𝑚4 𝑚5 𝑚3 𝑚6 𝑚2 𝑚8 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that the auxiliary variables are 𝑚2,𝑚3,𝑚4,𝑚5,𝑚6,𝑚8 and that 𝑚8 is a real
variable whereas the others are complex.

5.2 The setting of finite abelian groups
We now consider a general setting where one is interested in finding sparse sum-
of-squares certificates for sparse nonnegative functions, and we describe a graph-
theoretic method to find such certificates. This will allow us to construct small
(equivariant) SDP lifts for certain classes of moment polytopes that we describe in
detail later.

Let 𝐺 be a finite abelian group. It is well-known that any function 𝑓 : 𝐺 → C
admits a Fourier decomposition where the Fourier basis consists of the characters of
𝐺. Such a decomposition takes the form

𝑓(𝑥) =
∑︁

𝜒∈ ̂︀𝐺
̂︀𝑓(𝜒)𝜒(𝑥) ∀𝑥 ∈ 𝐺

where ̂︀𝐺 is the set of characters of 𝐺 (known as the dual group of 𝐺) and ̂︀𝑓(𝜒) are
the Fourier coefficients of 𝑓 . The function 𝑓 : 𝐺→ C is called Fourier-sparse if only
a few of its Fourier coefficients are nonzero. More precisely we say that 𝑓 has Fourier
support 𝒮 ⊆ ̂︀𝐺 if ̂︀𝑓(𝜒) = 0 whenever 𝜒 /∈ 𝒮.

In this chapter we are concerned with functions 𝑓 : 𝐺→ C that are Fourier-sparse
and nonnegative, i.e., 𝑓(𝑥) ≥ 0 for all 𝑥 ∈ 𝐺. If 𝑓 is a nonnegative function on 𝐺, a
sum-of-squares certificate for the nonnegativity of 𝑓 has the form

𝑓(𝑥) =
𝐽∑︁

𝑗=1

|𝑓𝑗(𝑥)|2 ∀𝑥 ∈ 𝐺 (5.6)

where 𝑓𝑗 : 𝐺→ C. When the function 𝑓 is Fourier-sparse, it is natural to ask whether
𝑓 admits a sum-of-squares certificate that is also Fourier-sparse, i.e., where all the
functions 𝑓𝑗 have Fourier support on a common “small” set 𝒯 ⊆ ̂︀𝐺. This leads us to
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the main problem of interest in this chapter.

Given 𝒮 ⊆ ̂︀𝐺, find a subset 𝒯 ⊆ ̂︀𝐺 such that any nonnegative
function 𝐺 → R+ with Fourier support 𝒮 admits a sum-of-squares
certificate with Fourier support 𝒯 .

(P)

Our main result is to give a sufficient condition for a set 𝒯 to satisfy the requirement
above for a given 𝒮. The condition is expressed in terms of chordal covers of the
Cayley graph Cay( ̂︀𝐺,𝒮). Recall that the Cayley graph Cay( ̂︀𝐺,𝒮) is the graph where
nodes correspond to elements of ̂︀𝐺 and where 𝜒, 𝜒′ are connected by an edge if 𝜒−1𝜒′ ∈
𝒮. The following is our main result.

Theorem 25. Let 𝒮 ⊆ ̂︀𝐺, let Γ be a chordal cover of Cay( ̂︀𝐺,𝒮), and for each maximal
clique 𝒞 of Γ, let 𝜒𝒞 be an element of ̂︀𝐺. Define

𝒯 := 𝒯 (Γ, {𝜒𝒞}) =
⋃︁

𝒞
𝜒𝒞𝒞 (5.7)

where the union is over all the maximal cliques of Γ and where 𝜒𝒞𝒞 := {𝜒𝒞𝜒 : 𝜒 ∈ 𝒞}
is the translation of 𝒞 by 𝜒𝒞. Then any nonnegative function with Fourier support 𝒮
admits a sum-of-squares certificate with Fourier support 𝒯 .

Theorem 25 gives a way to construct a set 𝒯 that satisfies the condition in (P)
for a given 𝒮 ⊆ ̂︀𝐺. Such a construction proceeds in two steps: first choose a chordal
cover Γ of the graph Cay( ̂︀𝐺,𝒮), and then choose elements 𝜒𝒞 ∈ ̂︀𝐺 for each maximal
clique 𝒞 of ̂︀𝐺. Different choices of Γ and {𝜒𝒞} will in general lead to different sets
𝒯 (Γ, {𝜒𝒞}). When using Theorem 25, one wants to find a good choice of Γ and {𝜒𝒞}
such that the resulting set 𝒯 (Γ, {𝜒𝒞}) is as small as possible (or has other desirable
properties).

One of the main strengths of Theorem 25 is in the ability to choose the elements
{𝜒𝒞}. In fact the conclusion of Theorem 25 is almost trivial if 𝜒𝒞 = 1 ̂︀𝐺 for all 𝒞,
since in this case it simply says that any nonnegative function has a sum-of-squares
certificate supported on ̂︀𝐺, which is easy to see since 𝐺 is finite. As we will see in the
applications, it is the ability to translate the cliques 𝒞 of Γ via the choice of 𝜒𝒞 that
is key in Theorem 25 and allows us to obtain interesting results. Equation (5.7) gives
us the intuition behind a good choice of {𝜒𝒞}: in order to minimize the cardinality of
𝒯 (Γ, {𝜒𝒞}) one would like to find the translations 𝜒𝒞 that maximize the total overlap
of the cliques (i.e., minimize the cardinality of their union).

Before describing the main idea behind Theorem 25 and its proof, we illustrate
how one can use Theorem 25 in two important special cases, namely 𝐺 = Z𝑛

2 (the
boolean hypercube) and 𝐺 = Z𝑁 .

∙ Boolean hypercube: Consider the case 𝐺 = {−1, 1}𝑛 ∼= Z𝑛
2 . The Fourier

expansion of functions on {−1, 1}𝑛 takes the form

𝑓(𝑥) =
∑︁

𝑆⊆[𝑛]

̂︀𝑓(𝑆)
∏︁

𝑖∈𝑆
𝑥𝑖. (5.8)
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A function 𝑓 is said to have degree 𝑑 if ̂︀𝑓(𝑆) = 0 for all 𝑆 such that |𝑆| > 𝑑.
Many combinatorial optimization problems correspond to optimizing a certain
function 𝑓 over {−1, 1}𝑛. For example the maximum cut problem in graph
theory consists in optimizing a quadratic function over {−1, 1}𝑛. In [72] Laurent
conjectured that any nonnegative quadratic function on the hypercube is a sum
of squares of functions of degree at most ⌈𝑛/2⌉. Using our notations, this
corresponds to asking whether for 𝒮 = {𝑆 ⊆ [𝑛] : |𝑆| = 0 or 2} one can find
𝒯 ⊆ {𝑆 ⊆ [𝑛] : |𝑆| ≤ ⌈𝑛/2⌉} such that the conclusion of Theorem 25 holds. By
studying chordal covers of the Cayley graph Cay( ̂︀𝐺,𝒮) we are able to answer
this question positively.

Theorem 26. Any nonnegative quadratic function on {−1, 1}𝑛 is a sum-of-
squares of polynomials of degree at most ⌈𝑛/2⌉.

Note that Blekherman et al. [9] previously showed a weaker version of the
conjecture that allows for multipliers: They showed that for any nonnegative
quadratic function 𝑓 on the hypercube, there exists ℎ sum-of-squares such that
ℎ(𝑥)𝑓(𝑥) is a sum of squares of polynomials of degree at most ⌈𝑛/2⌉.

∙ Trigonometric polynomials: Another important application that we con-
sider is the case where 𝐺 = Z𝑁 , the (additive) group of integers modulo 𝑁 .
The Fourier decomposition of a function 𝑓 : Z𝑁 → C is the usual discrete
Fourier transform and takes the form

𝑓(𝑥) =
∑︁

𝑘∈Z𝑁

̂︀𝑓(𝑘)𝑒2𝑖𝜋𝑘𝑥/𝑁 (5.9)

where ̂︀𝑓(𝑘) are the Fourier coefficients of 𝑓 . Nonnegative trigonometric poly-
nomials play an important role in many areas such as in signal processing [31],
but also in convex geometry [102, 3], in their relation to (trigonometric) cyclic
polytopes. We are interested in nonnegative functions on 𝐺 = Z𝑁 of degree at
most 𝑑, i.e., functions with Fourier support 𝒮 = {−𝑑,−(𝑑 − 1), . . . , 𝑑 − 1, 𝑑}.
By studying chordal covers of Cay( ̂︀𝐺,𝒮) (which is nothing but the 𝑑th power
of the cycle graph) and using Theorem 25 we are able to establish the following
result.

Theorem 27. Let 𝑁 and 𝑑 be two integers and assume that 𝑑 divides 𝑁 . Then
there exists 𝒯 ⊆ Z𝑁 with |𝒯 | ≤ 3𝑑 log(𝑁/𝑑) such that any nonnegative function
on Z𝑁 of degree at most 𝑑 has a sum-of-squares certificate with Fourier support
𝒯 .

As will be clear later when we describe the dual point of view, the case of the
regular 𝑁 -gon corresponds to the choice 𝑑 = 1.

Remark 14. Note that if one is interested in functions of degree at most 𝑑 on Z𝑁

and 𝑑 does not divide 𝑁 , then one can still apply Theorem 27 with 𝑑′ instead
of 𝑑, where 𝑑′ is the smallest divisor of 𝑁 that is greater than 𝑑.
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Dual point of view and moment polytopes Theorem 25 can be interpreted from
the dual point of view as giving a semidefinite programming description of certain
moment polytopes. If 𝒮 ⊆ ̂︀𝐺, define the moment polytope ℳ(𝐺,𝒮) to be the set of
𝒮-moments of probability distributions on 𝐺, i.e.,

ℳ(𝐺,𝒮) =
{︁(︀

E𝑥∼𝜇

[︀
𝜒(𝑥)

]︀)︀
𝜒∈𝒮 ∈ C𝒮 : 𝜇 a probability measure supported on 𝐺

}︁
.

Note that ℳ(𝐺,𝒮) is a polytope since it can be equivalently expressed as

ℳ(𝐺,𝒮) = conv
{︁
(𝜒(𝑥))𝜒∈𝒮 ∈ C𝒮 : 𝑥 ∈ 𝐺

}︁
. (5.10)

For example if 𝐺 = Z𝑁 and 𝒮 = {−1, 1}, then the moment polytope ℳ(𝐺,𝒮) is
nothing but the regular 𝑁 -gon (up to a linear transformation). From a geometric
point of view, nonnegative functions 𝑓 : 𝐺→ R+ with Fourier support 𝒮 correspond
to valid linear inequalities for the polytope ℳ(𝐺,𝒮). By giving a sum-of-squares
characterization for all valid inequalities of ℳ(𝐺,𝒮) Theorem 25 allows us to obtain
a semidefinite programming description of ℳ(𝐺,𝒮). The following statement can
be obtained from Theorem 25 by duality. (We call this result “Theorem 25D” to
reflect that it is a dual version of “Theorem 25” and adopt this numbering convention
throughout the chapter.)

Theorem 25D. Let 𝒮 ⊆ ̂︀𝐺 and let 𝒯 = 𝒯 (Γ, {𝜒𝒞}) be as defined in Theorem 25.
Then we have the following semidefinite programming description of the moment poly-
tope ℳ(𝐺,𝒮):

ℳ(𝐺,𝒮) =
{︁
(ℓ𝜒)𝜒∈𝒮 : ∃(𝑦𝜒)𝜒∈𝒯 −1𝒯 such that 𝑦𝜒 = ℓ𝜒 for all 𝜒 ∈ 𝒮 , and

𝑦1 ̂︀𝐺 = 1, and
[︀
𝑦𝜒𝜒′

]︀
𝜒,𝜒′∈𝒯 ⪰ 0

}︁
.

(5.11)

In terms of positive semidefinite lifts, Equation (5.11) shows that ℳ(𝐺,𝒮) has a
Hermitian positive semidefinite lift of size |𝒯 |. We now illustrate this dual point of
view for the two applications mentioned above, 𝐺 = {−1, 1}𝑛 and 𝐺 = Z𝑁 .

∙ For the case of the boolean hypercube 𝐺 = {−1, 1}𝑛, if 𝒮 = {𝑆 ⊆ [𝑛] : |𝑆| =
0 or 2}, the moment polytope ℳ({−1, 1}𝑛,𝒮 ∖ {∅}) is nothing but the cut
polytope for the complete graph on 𝑛 vertices. We use the notation CUT𝑛 for
this polytope, i.e.,

CUT𝑛 = conv
{︁
(𝑥𝑖𝑥𝑗)𝑖<𝑗 ∈ R(

𝑛
2) : 𝑥 ∈ {−1, 1}𝑛

}︁
.

From the dual point of view, Theorem 26 shows that the ⌈𝑛/2⌉ level of the
Lasserre hierarchy for the cut polytope is exact. This bound is tight since
Laurent showed in [72] that at least ⌈𝑛/2⌉ levels are needed.

Theorem 26D. The ⌈𝑛/2⌉ level of the Lasserre hierarchy for the cut polytope
CUT𝑛 is exact.
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∙ Consider now the case 𝐺 = Z𝑁 and 𝒮 = {−𝑑,−(𝑑− 1), . . . , 𝑑− 1, 𝑑}. Here the
moment polytope ℳ(𝐺,𝒮) is the trigonometric cyclic polytope of degree 𝑑. We
use the notation 𝑇𝐶(𝑁, 2𝑑) for this polytope, i.e.,

𝑇𝐶(𝑁, 2𝑑) = conv
{︁
𝑇𝑀(2𝜋𝑥/𝑁) : 𝑥 = 0, 1, . . . , 𝑁 − 1

}︁
⊂ R2𝑑, (5.12)

where 𝑇𝑀(𝜃) is the degree 𝑑 trigonometric moment curve

𝑇𝑀(𝜃) =
(︁
cos(𝜃), sin(𝜃), cos(2𝜃), sin(2𝜃), . . . , cos(𝑑𝜃), sin(𝑑𝜃)

)︁
.

When interpreted from the dual point of view, Theorem 27 shows that 𝑇𝐶(𝑁, 2𝑑)
has a Hermitian positive semidefinite lift of size at most 3𝑑 log(𝑁/𝑑).

Theorem 27D. Let 𝑁 and 𝑑 be two integers and assume that 𝑑 divides 𝑁 .
The trigonometric cyclic polytope 𝑇𝐶(𝑁, 2𝑑) defined in (5.12) has a Hermitian
positive semidefinite lift of size at most 3𝑑 log(𝑁/𝑑).

Note that in the case 𝑑 = 1 the polytope 𝑇𝐶(𝑁, 2𝑑) is nothing but the regular
𝑁 -gon in the plane. Theorem 27D thus recovers, and extends to the case where
𝑁 is not a power of two, the result from Section 5.1 giving a SDP lift of the
regular 𝑁 -gon of size 𝑂(log𝑁) for 𝑁 = 2𝑛.

For 𝑑 > 1 our result is, as far as we are aware, the first nontrivial semidefinite
programming lift of a cyclic polytope. Furthermore, in the regime where 𝑁 = 𝑑2

our lift is provably smaller than any linear programming lift. Indeed, since
𝑇𝐶(𝑑2, 2𝑑) is 𝑑-neighborly [45], a lower bound from [40] concerning neighborly
polytopes shows that any linear programming lift of 𝑇𝐶(𝑑2, 2𝑑) must have size
at least Ω(𝑑2), whereas our semidefinite programming lift in this case has size
𝑂(𝑑 log 𝑑) = 𝑜(𝑑2). To the best of our knowledge this gives the first example
of a family of polytopes (𝑃𝑑)𝑑∈N in increasing dimensions where xcSDP(𝑃𝑑) =
𝑜(xcLP(𝑃𝑑)) where xcSDP and xcLP are respectively the SDP and LP extension
complexity.

Corollary 1. There exists an explicit family (𝑃𝑑)𝑑∈N of polytopes where 𝑃𝑑 ⊂
R2𝑑 such that

xcSDP(𝑃𝑑)

xcLP(𝑃𝑑)
= 𝑂

(︂
log 𝑑

𝑑

)︂
.

The only nontrivial linear programming lift for cyclic polytopes that we are
aware of is a construction by Bogomolov et al. [12] for the polytope

conv{(𝑖, 𝑖2, . . . , 𝑖𝑑) : 𝑖 = 1, . . . , 𝑁}

which has size (log𝑁)⌊𝑑/2⌋.

Main ideas We now briefly describe the main ideas behind Theorem 25, which can
be summarized in three steps.
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1. A sum-of-squares certificate with a sparse Gram matrix : Given a nonnegative
function 𝑓 : 𝐺 → R+ it is easy to see, since 𝐺 is finite, that 𝑓 can be written
as a sum-of-squares. When the function 𝑓 has Fourier support 𝒮, one can show
that 𝑓 admits a specific sum-of-squares representation where the Gram matrix
𝑄, in the basis of characters, is sparse according to the graph Cay( ̂︀𝐺,𝒮).

2. Chordal completion: Let Γ be a chordal cover of the graph Cay( ̂︀𝐺,𝒮). Using
well-known results concerning positive semidefinite matrices that are sparse
according to a chordal graph [55, 56] (see Section 5.3.2 for more details) one
can decompose the Gram matrix 𝑄 into a sum of positive-semidefinite matrices,
where each matrix is supported on a maximal clique of Γ. In terms of sum-of-
squares representation, this means that the function 𝑓 can be written as

𝑓 =
∑︁

𝑗

|𝑓𝑗|2 (5.13)

where each 𝑓𝑗 has Fourier support on a maximal clique 𝒞𝑗 ⊂ ̂︀𝐺 of Γ.

3. Translation of cliques : The problem with the decomposition (5.13) is that even
though each maximal clique 𝒞𝑗 might be small, the union of the 𝒞𝑗’s might be
large, and thus the total Fourier support of (5.13) might be large (in fact the
union of the 𝒞𝑗’s is the whole ̂︀𝐺). In order to reduce the total Fourier support
of the sum-of-squares certificate (5.13), we use the following simple but crucial
observation: if ℎ is a function with Fourier support 𝒞 and if 𝜒 ∈ ̂︀𝐺 then 𝜒ℎ has
Fourier support 𝜒𝒞 and we have |𝜒ℎ|2 = |ℎ|2. Thus if for each maximal clique
𝒞𝑗 of Γ we choose a certain 𝜒𝑗 ∈ ̂︀𝐺 then, by translating each term in (5.13)
by 𝜒𝑗 we obtain a sum-of-squares representation of 𝑓 of the form 𝑓 =

∑︀
𝑗 |̃︀ℎ𝑗|2

where ̃︀ℎ𝑗 has Fourier support 𝜒𝑗𝒞𝑗. Having chosen the 𝜒𝑗 such that 𝜒𝑗𝒞𝑗 ⊆ 𝒯
for all maximal cliques 𝒞𝑗 (cf. Equation (5.7)), we get a representation of 𝑓 as
a sum-of-squares of functions with Fourier support 𝒯 .

Organization The rest of the chapter is organized as follows. Section 5.3 starts by
giving a brief review of Fourier analysis of finite abelian groups, as well as a review of
chordal graphs, chordal covers and the main results concerning decomposition/matrix
completion with chordal sparsity structure [55, 56]. In Section 5.4 we prove our
main result, Theorem 25. In Section 5.5 we look at the case of the hypercube 𝐺 =
{−1, 1}𝑛 mentioned earlier, and we look in particular at quadratic functions on the
hypercube. We give an explicit chordal cover for the corresponding Cayley graph and
we show how it leads to a proof of Laurent’s conjecture. In Section 5.6 we look at
the special case 𝐺 = Z𝑁 and functions of degree 𝑑. We give an explicit chordal cover
for the corresponding graphs, and we discuss the consequences concerning positive
semidefinite lifts of the trigonometric cyclic polytope.
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5.3 Background: Fourier analysis and chordal com-
pletion

In this section we present some background material needed for this chapter: we first
recall some of the basic results and terminology concerning Fourier analysis on finite
abelian groups [90, 97], then we review the definition of chordal graph and the main
results concerning sparse positive semidefinite matrices and matrix completion.

5.3.1 Fourier analysis on finite abelian groups

Let 𝐺 be a finite abelian group which we denote multiplicatively, and let C𝐺 be
the vector space of complex-valued functions on 𝐺. A character 𝜒 of 𝐺 is a group
homomorphism 𝜒 : 𝐺→ (C*,×), i.e., it is an element of C𝐺 which satisfies:

𝜒(𝑥𝑦) = 𝜒(𝑥)𝜒(𝑦) ∀𝑥, 𝑦 ∈ 𝐺.

Since 𝐺 is abelian, one can easily show that the (pointwise) product of two characters
is a character and that the (pointwise) inverse of a character is again a character.
Thus if we denote by ̂︀𝐺 the set of characters of 𝐺, then ̂︀𝐺 forms an abelian group,
where the group operation corresponds to pointwise multiplication. The group ̂︀𝐺 is
known as the dual group of 𝐺. Observe that since 𝐺 is finite, if 𝜒 is a character then
for any 𝑥 ∈ 𝐺 we have 𝜒(𝑥)|𝐺| = 𝜒(𝑥|𝐺|) = 𝜒(1𝐺) = 1, which implies that |𝜒(𝑥)| = 1.
It follows that the inverse of a character 𝜒 is simply its (pointwise) complex conjugate
𝜒.

Consider the standard inner product on C𝐺 defined by

⟨𝑓, 𝑔⟩ = 1

|𝐺|
∑︁

𝑥∈𝐺
𝑓(𝑥)𝑔(𝑥) ∀𝑓, 𝑔 ∈ C𝐺. (5.14)

A crucial property of the set of characters ̂︀𝐺 is that they form an orthonormal basis
of C𝐺, which is called the Fourier basis of 𝐺. Note that this implies in particular
that | ̂︀𝐺| = |𝐺|. We summarize this in the following theorem.

Theorem 28. Let 𝐺 be a finite abelian group and let ̂︀𝐺 be the set of characters of
𝐺. Then ̂︀𝐺 is an abelian group with pointwise multiplication. Furthermore | ̂︀𝐺| = |𝐺|
and ̂︀𝐺 forms an orthonormal basis of C𝐺 for the standard inner product (5.14).

We now illustrate the previous theorem in the two examples 𝐺 = {−1, 1}𝑛 (the
hypercube) and 𝐺 = Z𝑁 presented in the introduction.

Example 11 (Fourier analysis on the hypercube). Let 𝐺 = {−1, 1}𝑛 be the hypercube
in dimension 𝑛 which forms a group of size 2𝑛 under componentwise multiplication,
isomorphic to Z𝑛

2 . Observe that if 𝑆 is a subset of [𝑛] then the function 𝜒𝑆 defined by

𝜒𝑆 : {−1, 1}𝑛 → C*, 𝜒𝑆(𝑥) =
∏︁

𝑖∈𝑆
𝑥𝑖

107



satisfies 𝜒𝑆(𝑥𝑦) = 𝜒𝑆(𝑥)𝜒𝑆(𝑦), and thus is a character of 𝐺. For example 𝜒∅ is the
constant function equal to 1, and 𝜒[𝑛] is the function 𝜒[𝑛](𝑥) = 𝑥1 . . . 𝑥𝑛. One can show
that these are all the characters of 𝐺, i.e., ̂︀𝐺 = {𝜒𝑆, 𝑆 ⊆ [𝑛]}. Thus the decomposition
of a function 𝑓 : {−1, 1}𝑛 → C in the basis of characters takes the form

𝑓(𝑥) =
∑︁

𝑆⊆[𝑛]

̂︀𝑓(𝑆)
∏︁

𝑖∈𝑆
𝑥𝑖,

where ̂︀𝑓(𝑆) are the Fourier coefficients of 𝑓 . ♦
Example 12 (Fourier analysis on Z𝑁). Let 𝑁 be an integer and consider the (additive)
group 𝐺 = Z𝑁 of integers modulo 𝑁 . For 𝑘 ∈ Z𝑁 , define 𝜒𝑘 by

𝜒𝑘 : Z𝑁 → C*, 𝜒𝑘(𝑥) = 𝑒2𝑖𝜋𝑘𝑥/𝑁 .

Note that 𝜒𝑘 satisfies 𝜒𝑘(𝑥 + 𝑦) = 𝜒𝑘(𝑥)𝜒𝑘(𝑦) and thus 𝜒𝑘 is a character of Z𝑁 . It
is not hard to show that any character 𝜒 of Z𝑁 actually must have the form 𝜒 = 𝜒𝑘

for some 𝑘 ∈ Z𝑁 . Thus the dual group ̂︁Z𝑁 of Z𝑁 is ̂︁Z𝑁 = {𝜒𝑘, 𝑘 ∈ Z𝑁}. Note that
𝜒𝑘𝜒𝑘′ = 𝜒𝑘+𝑘′ and (𝜒𝑘)

−1 = 𝜒𝑘 = 𝜒−𝑘, and thus ̂︁Z𝑁 is isomorphic to Z𝑁 . According
to Theorem 28, any function 𝑓 : Z𝑁 → C can be decomposed in the basis of characters

𝑓(𝑥) =
∑︁

𝑘∈Z𝑁

̂︀𝑓(𝑘)𝑒2𝑖𝜋𝑘𝑥/𝑁 ∀𝑥 ∈ Z𝑁 .

This decomposition is nothing but the well-known Fourier decomposition of discrete
signals of length 𝑁 . ♦

For a general finite abelian group 𝐺, the Fourier decomposition of a function
𝑓 : 𝐺→ C, in the orthonormal basis of characters takes the form

𝑓(𝑥) =
∑︁

𝜒∈ ̂︀𝐺
̂︀𝑓(𝜒)𝜒(𝑥).

The coefficients ̂︀𝑓(𝜒) are the Fourier coefficients of 𝑓 . By orthonormality of the basis
of characters, we have for any 𝜒 ∈ ̂︀𝐺,

̂︀𝑓(𝜒) = ⟨𝑓, 𝜒⟩ = 1

|𝐺|
∑︁

𝑥∈𝐺
𝑓(𝑥)𝜒(𝑥).

The Fourier support of a function 𝑓 , denoted supp ̂︀𝑓 is the set of characters 𝜒 for
which ̂︀𝑓(𝜒) ̸= 0, i.e.,

supp ̂︀𝑓 = {𝜒 ∈ ̂︀𝐺 : ̂︀𝑓(𝜒) ̸= 0}.

5.3.2 Chordal graphs and matrix completion

In this section we recall some of the main results concerning sparse matrix decompo-
sition and matrix completion with a chordal sparsity structure. For more details, we
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refer the reader to [56, 55] and [1].

Chordal graphs Let 𝒢 = (𝑉,𝐸) be a graph. The graph 𝒢 is called chordal if any
cycle of length at least four has a chord. A chordal cover (also called triangulation)
of 𝒢 is a graph 𝒢 ′ = (𝑉,𝐸 ′) where 𝐸 ⊂ 𝐸 ′ and where 𝒢 ′ is chordal. Figure 5-1 shows
a non-chordal graph 𝒢 on four vertices and a chordal cover 𝒢 ′ of 𝒢.

1 2

34
G

1 2

34

G′

Figure 5-1: A non-chordal graph 𝒢 and a chordal cover 𝒢 ′ of 𝒢.

A subset 𝒞 ⊆ 𝑉 is a clique in 𝒢 if {𝑖, 𝑗} ∈ 𝐸 for all 𝑖, 𝑗 ∈ 𝒞, 𝑖 ̸= 𝑗. The clique 𝒞 is
called maximal if it is not a strict subset of another clique 𝒞 ′ of 𝒢. For example the
maximal cliques of the graph 𝒢 ′ shown in Figure 5-1 are {1, 2, 4} and {2, 3, 4}.

Sparse matrices Let 𝑄 ∈ H𝑉
+ be a Hermitian positive semidefinite matrix where

rows and columns are indexed by some set 𝑉 . Assume furthermore that 𝑄 is sparse
according to some graph 𝒢 = (𝑉,𝐸), i.e.,

𝑄𝑖𝑗 ̸= 0, 𝑖 ̸= 𝑗 ⇒ {𝑖, 𝑗} ∈ 𝐸.

One of the main tools that we use in the proof of our main theorem is a result from
[55, 56] which allows us to decompose sparse positive semidefinite matrices as a sum
of positive semidefinite matrices supported on a small subset of rows/columns. We
say that a Hermitian matrix 𝐴 is supported on 𝒞 ⊆ 𝑉 if 𝐴𝑖𝑗 = 0 whenever 𝑖 /∈ 𝒞 or
𝑗 /∈ 𝒞. The result can be stated as follows.

Theorem 29. ([55, 56]) Let 𝑄 be a Hermitian positive semidefinite matrix, and
assume that 𝑄 is sparse according to some graph 𝒢. Assume furthermore that 𝒢
is chordal. Then for every maximal clique 𝒞 of 𝒢 there exists a Hermitian positive
semidefinite matrix 𝑄𝒞 supported on 𝒞 such that

𝑄 =
∑︁

𝒞
𝑄𝒞. (5.15)

Remark 15. If the sparsity pattern 𝒢 of 𝑄 is not chordal, one can still apply the previ-
ous theorem by considering a chordal cover 𝒢 ′ of 𝒢. Indeed if 𝑄 is sparse according to
𝒢 then it also clearly sparse according to 𝒢 ′, since 𝒢 ⊆ 𝒢 ′. In this case the summation
(5.15) is over the maximal cliques of 𝒢 ′.
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Example 13. We can illustrate the previous theorem with a simple 4× 4 matrix. Let
𝑄 be the 4× 4 Hermitian positive semidefinite matrix given by

𝑄 =

⎡
⎢⎢⎣

2 1− 𝑖 0 1 + 𝑖
1 + 𝑖 2 1− 𝑖 0
0 1 + 𝑖 2 1− 𝑖

1− 𝑖 0 1 + 𝑖 2

⎤
⎥⎥⎦ .

Note that 𝑄 is sparse according to the “square graph” 𝒢 shown in Figure 5-1(left).
Since 𝒢 is not chordal we cannot directly apply Theorem 29 with 𝒢, but we can apply
it with 𝒢 ′ shown in Figure 5-1(right) which is a chordal cover of 𝒢. In this case
Theorem 29 asserts that one can decompose 𝑄 as a sum of two positive semidefinite
matrices supported respectively on the maximal cliques, {1, 2, 4} and {2, 3, 4}. For
this example, it is not hard to find an explicit decomposition, for example we can
verify that

𝑄 =

⎡
⎢⎢⎣

2 1− 𝑖 0 1 + 𝑖
1 + 𝑖 1 0 𝑖
0 0 0 0

1− 𝑖 −𝑖 0 1

⎤
⎥⎥⎦

⏟  ⏞  
⪰0

+

⎡
⎢⎢⎣

0 0 0 0
0 1 1− 𝑖 −𝑖
0 1 + 𝑖 2 1− 𝑖
0 𝑖 1 + 𝑖 1

⎤
⎥⎥⎦

⏟  ⏞  
⪰0

.

♦

Matrix completion One can also state Theorem 29 in its dual form, in terms of
the matrix completion problem. Given a graph 𝒢 = (𝑉,𝐸), a 𝒢-partial matrix 𝑋 is a
matrix where only the diagonal entries, as well as the entries 𝑋𝑖𝑗 for {𝑖, 𝑗} ∈ 𝐸 are
specified. Given a 𝒢-partial matrix 𝑋, the positive semidefinite matrix completion
problem asks whether 𝑋 can be completed into a full |𝑉 |×|𝑉 | Hermitian matrix that
is positive semidefinite. Clearly a necessary condition for such a completion to exist
is that 𝑋[𝒞, 𝒞] ⪰ 0 for all cliques 𝒞 of 𝒢 (note that if 𝒞 is a clique of 𝒢, then all the
entries of 𝑋[𝒞, 𝒞] are specified). When 𝒢 is chordal, it turns out that this condition
is also sufficient. The following theorem can actually be obtained from Theorem 29
via duality.

Theorem 30. ([56]) Let 𝒢 = (𝑉,𝐸) be a graph and let 𝑋 be a 𝒢-partial matrix.
Assume that 𝒢 is chordal. Then 𝑋 can be completed into a full |𝑉 | × |𝑉 | Hermitian
positive semidefinite matrix if, and only if, 𝑋[𝒞, 𝒞] ⪰ 0 for all maximal cliques 𝒞 of
𝒢.

5.4 Main theorem
Let 𝐺 be a finite abelian group and let C𝐺 be the space of complex-valued functions
on 𝐺. Given a nonnegative function 𝑓 : 𝐺 → R+, a sum-of-squares certificate for 𝑓
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takes the form

𝑓(𝑥) =
𝐾∑︁

𝑘=1

|𝑓𝑘(𝑥)|2 ∀𝑥 ∈ 𝐺, (5.16)

where 𝑓1, . . . , 𝑓𝐾 ∈ C𝐺.
It is well-known in the literature on polynomial optimization (see e.g., [85, 83, 68]),

and as we saw in the proof of Theorem 5 (Chapter 2), that the existence of sum-of-
squares certificates can be expressed in terms of the existence of a certain positive
semidefinite matrix called a Gram matrix for 𝑓 . This connection between sum-of-
squares certificates and positive semidefinite matrices will be important, and so we
recall this connection more formally in the next proposition.

Proposition 9. Let 𝑛 = |𝐺| and let 𝑏1, . . . , 𝑏𝑛 be a basis for C𝐺. Let 𝑓 : 𝐺 → R be
a real-valued function on 𝐺. Then 𝑓 has a sum-of-squares representation (5.16), if,
and only if, there exists a 𝑛× 𝑛 Hermitian positive semidefinite matrix 𝑄 such that

𝑓(𝑥) = [𝑏(𝑥)]*𝑄[𝑏(𝑥)] =
∑︁

1≤𝑖,𝑗≤𝑛

𝑄𝑖𝑗𝑏𝑖(𝑥)𝑏𝑗(𝑥) ∀𝑥 ∈ 𝐺 (5.17)

where [𝑏(𝑥)] := [𝑏𝑖(𝑥)]𝑖=1,...,𝑛 ∈ C𝑛. If (5.17) holds where 𝑄 is Hermitian positive
semidefinite, we say that 𝑄 is a Gram matrix for 𝑓 in the basis 𝑏1, . . . , 𝑏𝑛.

Proof. Assume first that 𝑓 is a sum of squares, i.e., 𝑓(𝑥) =
∑︀𝐾

𝑘=1 |𝑓𝑘(𝑥)|2. Since
(𝑏1, . . . , 𝑏𝑛) forms a basis of C𝐺 we can write 𝑓𝑘(𝑥) =

∑︀𝑛
𝑖=1 𝑎𝑘𝑖𝑏𝑖(𝑥) for some coef-

ficients 𝑎𝑘𝑖 ∈ C. Note that |𝑓𝑘(𝑥)|2 =
∑︀

1≤𝑖,𝑗≤𝑛 𝑎𝑘𝑖𝑎𝑘𝑗𝑏𝑖(𝑥)𝑏𝑗(𝑥) and thus 𝑓(𝑥) =∑︀
𝑘 |𝑓𝑘(𝑥)|2 =

∑︀
1≤𝑖,𝑗≤𝑛𝑄𝑖,𝑗𝑏𝑖(𝑥)𝑏𝑗(𝑥) where 𝑄 is the Hermitian matrix defined by:

𝑄𝑖,𝑗 =
∑︀

𝑘 𝑎𝑘𝑖𝑎𝑘𝑗. Note that 𝑄 is positive semidefinite since it has the form 𝑄 =∑︀
𝑘 𝑎𝑘𝑎

*
𝑘 where 𝑎𝑘 is the vector (𝑎𝑘)𝑖 = 𝑎𝑘𝑖.

We now show the converse. Assume 𝑓 can be written as (5.17). Since 𝑄 is positive
semidefinite, we can find vectors 𝑎𝑘 such that 𝑄 =

∑︀𝐾
𝑘=1 𝑎𝑘𝑎

*
𝑘. If we define 𝑓𝑘 to be

the function 𝑓𝑘(𝑥) =
∑︀𝑛

𝑖=1 𝑎𝑘𝑖𝑏𝑖(𝑥) then we can verify that 𝑓 =
∑︀𝐾

𝑘=1 |𝑓𝑘|2.

Given 𝑦 ∈ 𝐺 define the Dirac function 𝛿𝑦 at 𝑦 by

𝛿𝑦(𝑥) =

{︃
1 if 𝑥 = 𝑦

0 else.

Then it is easy to see that every nonnegative function on 𝐺 is a sum of squares.

Proposition 10. Any nonnegative function 𝑓 on 𝐺 has a sum-of-squares certificate
as

𝑓(𝑥) =
∑︁

𝑦∈𝐺
|
√︀
𝑓(𝑦)𝛿𝑦(𝑥)|2 ∀𝑥 ∈ 𝐺. (5.18)

Said differently, a nonnegative function 𝑓 is a sum-of-squares because if we pick
𝑏1, . . . , 𝑏𝑛 to be the basis of Dirac functions, then 𝑓 satisfies Equation (5.17) where 𝑄
is the diagonal matrix consisting of the values taken by 𝑓 on 𝐺.
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Since we are working with functions on a finite abelian group 𝐺, it is more natural
(and more beneficial, as we see later) to look at sum-of-squares representation in the
basis of characters. One reason for this is that typically the functions 𝑓 we are
interested in have a small support in the basis of characters and in this case one can
hope to find a sum-of-squares decomposition which also only involves a small number
of characters. The next proposition is simply a change-of-basis in the formula (5.18).

Proposition 11. Let 𝑓 : 𝐺 → R and assume that 𝑓 is nonnegative, i.e., 𝑓(𝑥) ≥ 0

for all 𝑥 ∈ 𝐺. Define the Hermitian matrix 𝑄 ∈ H
̂︀𝐺 (indexed by characters 𝜒 ∈ ̂︀𝐺)

by
𝑄𝜒,𝜒′ = ̂︀𝑓(𝜒𝜒′). (5.19)

Then 𝑄 is positive semidefinite and we have, for any 𝑥 ∈ 𝐺,

𝑓(𝑥) =
1

|𝐺| [𝜒(𝑥)]
*𝑄[𝜒(𝑥)] =

1

|𝐺|
∑︁

𝜒,𝜒′∈ ̂︀𝐺
𝑄𝜒,𝜒′𝜒(𝑥)𝜒′(𝑥) (5.20)

where [𝜒(𝑥)] := [𝜒(𝑥)]𝜒∈ ̂︀𝐺 ∈ C ̂︀𝐺.

Proof. Consider the matrix 𝑋 = [𝜒(𝑥)]𝑥∈𝐺,𝜒∈ ̂︀𝐺 where rows are indexed by elements
𝑥 ∈ 𝐺 and columns are indexed by characters 𝜒 ∈ ̂︀𝐺. Since the characters form an
orthonormal basis of C𝐺 for the inner product (5.14), this means that the matrix

1√
|𝐺|
𝑋 is a unitary matrix. Note that we can rewrite the definition (5.19) of 𝑄 in

matrix terms as
𝑄 =

1

|𝐺|𝑋
* diag([𝑓(𝑥)]𝑥∈𝐺)𝑋,

where diag([𝑓(𝑥)]𝑥∈𝐺) is the diagonal matrix with the values 𝑓(𝑥) on the diagonal.
This shows that the eigenvalues of 𝑄 are the values {𝑓(𝑥), 𝑥 ∈ 𝐺}, and thus 𝑄 is
positive semidefinite. Since 1√

|𝐺|
𝑋 is unitary we also get that

diag([𝑓(𝑥)]𝑥∈𝐺) =
1

|𝐺|𝑋𝑄𝑋
*.

which, when evaluated at the diagonal entries, is exactly Equation (5.20).

Example 14. We now include a simple example to illustrate the previous theorem.
Let 𝐺 = Z6 and consider the function

𝑓(𝑥) = 1− 1

2
(𝜒1(𝑥) + 𝜒−1(𝑥)) = 1− cos(2𝜋𝑥/6) ∀𝑥 ∈ Z6. (5.21)

Clearly 𝑓(𝑥) ≥ 0 for all 𝑥 ∈ Z6. Also note that ̂︀𝑓(0) = 1, ̂︀𝑓(1) = ̂︀𝑓(−1) = −1/2 and
̂︀𝑓(𝑘) = 0 for all 𝑘 /∈ {−1, 0, 1}. The matrix 𝑄 defined in (5.19) associated to this
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function 𝑓 takes the form

𝑄 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −1/2 0 0 0 −1/2
−1/2 1 −1/2 0 0 0
0 −1/2 1 −1/2 0 0
0 0 −1/2 1 −1/2 0
0 0 0 −1/2 1 −1/2

−1/2 0 0 0 −1/2 1

⎤
⎥⎥⎥⎥⎥⎥⎦
. (5.22)

♦
We are now interested in nonnegative functions 𝑓 : 𝐺 → R with Fourier support

on a subset 𝒮 ⊆ ̂︀𝐺, i.e., ̂︀𝑓(𝜒) = 0 for all 𝜒 /∈ 𝒮. For such functions we are interested
in finding Fourier-sparse sum-of-squares certificates for 𝑓 , i.e., we are interested in
finding a set 𝒯 ⊆ ̂︀𝐺 such that any nonnegative function 𝑓 with Fourier support 𝒮
has a sum-of-squares certificate of the form

𝑓 =
𝐾∑︁

𝑘=1

|𝑓𝑘|2 where supp ̂︀𝑓𝑘 ⊆ 𝒯 ∀𝑘 = 1, . . . , 𝐾. (5.23)

The main idea to obtain such a “sparse” sum-of-squares certificate of 𝑓 is to exploit
the sparsity of the Gram matrix 𝑄 from Proposition 11. Indeed, note that if supp ̂︀𝑓 =
𝒮, then the Gram matrix 𝑄 of Proposition 11 has sparsity pattern given by

𝑄𝜒,𝜒′ ̸= 0 ⇔ 𝜒𝜒′ ∈ 𝒮.

In other words, the sparsity structure of 𝑄 is given by the Cayley graph Cay( ̂︀𝐺,𝒮).
Recall the definition of a Cayley graph.

Definition 15. Let 𝐻 be a group and let 𝒮 ⊂ 𝐻 be a subset of 𝐻 that is symmetric,
i.e., 𝑥 ∈ 𝒮 ⇒ 𝑥−1 ∈ 𝒮. The Cayley graph Cay(𝐻,𝒮) is the graph where vertices are
the elements of the group 𝐻, and where two distinct vertices 𝑥, 𝑦 ∈ 𝐻 are connected
by an edge if 𝑥−1𝑦 ∈ 𝒮 (or 𝑦−1𝑥 ∈ 𝒮, which is the same since 𝒮 is symmetric).

Remark 16. We do not require the set 𝒮 to be a generator for the group 𝐻 and hence
the graph Cay(𝐻,𝒮) may be disconnected. Also observe that the set 𝒮 = supp ̂︀𝑓 in
our case is symmetric since 𝑓 is real-valued; indeed when 𝑓 is real-valued we have
̂︀𝑓(𝜒) = ̂︀𝑓(𝜒) for all 𝜒 ∈ ̂︀𝐺 and thus 𝜒 ∈ supp ̂︀𝑓 ⇒ 𝜒 ∈ supp ̂︀𝑓 .

To obtain a set 𝒯 ⊆ ̂︀𝐺 such that (5.23) holds for all functions 𝑓 with Fourier
support 𝒮 we will study chordal covers of the graph Cay( ̂︀𝐺,𝒮). We now introduce
the key definition of Fourier support for a graph with vertices ̂︀𝐺.

Definition 16. Let Γ be a graph with vertices ̂︀𝐺. We say that Γ has Fourier support
𝒯 ⊆ ̂︀𝐺 if for any maximal clique 𝒞 of Γ there exists 𝜒𝒞 ∈ ̂︀𝐺 such that 𝜒𝒞𝒞 ⊆ 𝒯
(where 𝜒𝒞𝒞 := {𝜒𝒞𝜒 : 𝜒 ∈ 𝒞} is the translation of 𝒞 by 𝜒𝒞).

Note that one can also state the definition of Fourier support of Γ in terms of
equivalence classes of cliques. Given a subset 𝒞 ⊆ ̂︀𝐺 define the equivalence class of
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𝒞 to be all the subsets of ̂︀𝐺 that can be obtained from 𝒞 by translation, i.e., it is the
set [𝒞] := {𝜒𝒞 : 𝜒 ∈ ̂︀𝐺}. Using this terminology, the graph Γ has Fourier support 𝒯
if for any maximal clique 𝒞 of Γ there is at least one representative from [𝒞] that is
contained in 𝒯 .

We are now ready to state and prove our main theorem (the theorem below was
stated as Theorem 25 in the introduction and we reuse the same numbering here since
it is just a restatement).

Theorem 25. Let 𝒮 be a symmetric subset of ̂︀𝐺 and assume that Cay( ̂︀𝐺,𝒮) has a
chordal cover Γ with Fourier support 𝒯 ⊆ ̂︀𝐺. Then any nonnegative function with
Fourier support 𝒮 admits a sum-of-squares certificate with Fourier support 𝒯 .

Proof. Let 𝑓 : 𝐺 → R be a nonnegative function with Fourier support 𝒮. Let 𝑄 be
the Gram matrix (5.19) associated to the sum-of-squares representation of 𝑓 in the
basis of characters. We saw that 𝑄 is sparse according to the Cayley graph Cay( ̂︀𝐺,𝒮).
Since Γ is a cover of Cay( ̂︀𝐺,𝒮), 𝑄 is also sparse according to Γ. Thus, since Γ is
chordal, using Theorem 29 we can find a decomposition of 𝑄 as

𝑄 =
∑︁

𝒞
𝑄𝒞 (5.24)

where the sum is over the maximal cliques 𝒞 of Γ and where each 𝑄𝒞 is a positive
semidefinite matrix supported on 𝒞. Note that Equation (5.24) implies that for all
𝑥 ∈ 𝐺,

[𝜒(𝑥)]*𝑄[𝜒(𝑥)] =
∑︁

𝒞
[𝜒(𝑥)]*𝑄𝒞[𝜒(𝑥)].

Since 𝑓(𝑥) = [𝜒(𝑥)]*𝑄[𝜒(𝑥)]/|𝐺| the above equation says that

𝑓(𝑥) =
∑︁

𝒞
𝑓𝒞(𝑥)

where we let 𝑓𝒞(𝑥) := [𝜒(𝑥)]*𝑄𝒞[𝜒(𝑥)]/|𝐺|. Since 𝑄𝒞 is positive semidefinite and
supported on 𝒞, this means that each 𝑓𝒞(𝑥) is a sum-of-squares of functions with
Fourier support 𝒞 ⊆ ̂︀𝐺, i.e.,

𝑓𝒞 =
∑︁

𝑘

|𝑓𝒞,𝑘|2

where supp̂︂𝑓𝒞,𝑘 ⊆ 𝒞.
According to Definition 16, we know that there exist 𝜒𝒞 ∈ ̂︀𝐺 for each maximal

clique 𝒞 of Γ such that 𝜒𝒞𝒞 ⊆ 𝒯 . Now, observe that

𝑓 =
∑︁

𝒞
𝑓𝒞 =

∑︁

𝒞

∑︁

𝑘

|𝑓𝒞,𝑘|2
(𝑖)
=
∑︁

𝒞

∑︁

𝑘

|𝜒𝒞𝑓𝒞,𝑘|2
(𝑖𝑖)
=
∑︁

𝒞

∑︁

𝑘

| ̃︀𝑓𝒞,𝑘|2

where in (𝑖) we used the fact that |𝜒𝒞|2 = 1 and in (𝑖𝑖) we let ̃︀𝑓𝒞,𝑘 = 𝜒𝒞𝑓𝒞,𝑘 which
has Fourier support 𝜒𝒞𝒞 ⊆ 𝒯 . Thus we have shown that 𝑓 is a sum-of-squares of
functions with Fourier support 𝒯 .
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Example 15. Let 𝐺 = Z6 and let 𝒮 = {−1, 0, 1} ⊂ ̂︁Z6. We will use the previous
theorem to show that any nonnegative function on Z6 with Fourier support 𝒮 =
{−1, 0, 1} is a sum-of-squares of functions with Fourier support 𝒯 = {−1, 0, 1, 3} ⊆
̂︁Z6. The Cayley graph Cay(̂︁Z6, {−1, 0, 1}) is the cycle graph on 6 nodes shown in
Figure 5-2(left). Clearly the graph is not chordal since the cycle 0, 1, . . . , 5 has no
chord. Figure 5-2(right) shows a chordal cover Γ of Cay(̂︁Z6, {−1, 0, 1}) where the
maximal cliques are

𝒞1 = {0, 1, 3}, 𝒞2 = {1, 2, 3}, 𝒞3 = {3, 4, 5}, 𝒞4 = {0, 3, 5}.

0

12

3

4 5

0

12

3

4 5

Cay(Ẑ6, {−1, 0, 1}) Γ

Figure 5-2: Left: The Cayley graph Cay(̂︁Z6, {−1, 0, 1}) is the cycle graph on 6 nodes.
Right: A chordal cover of the cycle graph, Γ.

Observe that if we translate the clique 𝒞2 = {1, 2, 3} by −2 we get {−1, 0, 1} and
similarly if we translate the clique {3, 4, 5} by −4 we also get {−1, 0, 1}. Thus by
choosing

𝜒𝒞1 = 0, 𝜒𝒞2 = −2, 𝜒𝒞3 = −4, 𝜒𝒞4 = 0

we get that 𝜒𝒞 + 𝒞 ⊆ {−1, 0, 1, 3} for all maximal cliques 𝒞 of Γ (we used the fact
that 5 = −1 in Z6). In other words we have shown that Γ is a chordal cover of
Cay(̂︁Z6, {−1, 0, 1}) with Fourier support {−1, 0, 1, 3}. Thus by Theorem 25, this
means that any nonnegative function on Z6 with Fourier support {−1, 0, 1} can be
written as a sum-of-squares of functions with Fourier support {−1, 0, 1, 3}. ♦

5.5 Application 1: cut polytope and Laurent’s con-
jecture

In this section we apply the results of Section 5.4 to the case of nonnegative quadratic
forms on the vertices of the hypercube in 𝑛 dimensions. Dually, the moment polytope
of interest in this section is the 𝑛th cut polytope CUT𝑛. Our main aim is to establish
Laurent’s conjecture [72, Conjecture 4] that any nonnegative quadratic form on the
vertices of the hypercube in 𝑛 dimension is a sum of squares of polynomials of degree
at most ⌈𝑛/2⌉.
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5.5.1 Quadratic forms on {−1, 1}𝑛 and the cut polytope

Let 𝐺 = {−1, 1}𝑛 be the vertices of the hypercube in dimension 𝑛. View 𝐺 as a group
(isomorphic to Z𝑛

2 ) under componentwise multiplication. Recall that the characters
of 𝐺 are indexed by subsets 𝑆 ∈ 2[𝑛] and are the square-free monomials

𝜒𝑆(𝑥) =
∏︁

𝑖∈𝑆
𝑥𝑖 for all 𝑥 ∈ 𝐺.

We focus on characterizing nonnegative quadratic functions on 𝐺. These are of
particular interest because the problem of maximizing a quadratic form over 𝐺 i.e.

max
𝑥∈𝐺

∑︁

1≤𝑖<𝑗≤𝑛

𝐴𝑖𝑗𝑥𝑖𝑥𝑗 (5.25)

includes, for example, the max-cut problem, which arises when the symmetric matrix
𝐴𝑖𝑗 is the Laplacian of a (weighted) graph on 𝑛 vertices. We can solve (5.25) by finding
the smallest upper bound on the objective:

min
𝛾

𝛾 s.t. 𝛾 −
∑︁

1≤𝑖<𝑗≤𝑛

𝐴𝑖𝑗𝑥𝑖𝑥𝑗 ≥ 0 for all 𝑥 ∈ 𝐺. (5.26)

If we have a characterization of nonnegative functions on 𝐺 with Fourier support
𝒮 = {𝑆 ∈ 2[𝑛] : |𝑆| = 0 of |𝑆| = 2} as sums of squares of functions with Fourier
support 𝒯 ⊆ ̂︀𝐺 then we can solve (5.26) by solving a semidefinite optimization
problem of size |𝒯 |.

The dual picture to (5.26) is to consider optimization over the moment polytope
ℳ({−1, 1}𝑛,𝒮 ∖ {∅}), known as the cut polytope

CUT𝑛 := ℳ({−1, 1}𝑛,𝒮 ∖ {∅}) = conv {(𝑥𝑖𝑥𝑗)1≤𝑖<𝑗≤𝑛 : (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ {−1, 1}𝑛}.

We can solve the binary quadratic optimization problem (5.25) by optimizing the
linear function defined by 𝐴 over CUT𝑛, i.e. by solving the linear program

max
(ℓ𝑖𝑗)1≤𝑖<𝑗≤𝑛

∑︁

𝑖<𝑗

ℓ𝑖𝑗𝐴𝑖𝑗 s.t. (ℓ𝑖𝑗)1≤𝑖<𝑗≤𝑛 ∈ CUT𝑛.

If we have a SDP lift of the cut polytope CUT𝑛 of size |𝒯 | then we can solve this
optimization problem by solving a semidefinite optimization problem of size |𝒯 |.

5.5.2 The associated Cayley graph

To apply the results of Section 5.4 we need to understand the graph Cay( ̂︀𝐺,𝒮). In the
case 𝑛 = 4 this graph is shown in Figure 5-3. Throughout this section we identify the
character 𝜒𝑆 ∈ ̂︀𝐺 with the subset 𝑆 ⊆ [𝑛] that indexes it and work exclusively in the
language of subsets. As such, the vertex set of Cay( ̂︀𝐺,𝒮) is 2[𝑛], the collection of all
subsets 𝑆 ⊆ [𝑛]. There is an edge between two subsets 𝑆, 𝑇 if and only if |𝑆△𝑇 | = 2.
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∅

{1, 2}
{1, 3} {1, 4}

{3, 4}
{2, 4}{2, 3}

{1, 2, 3, 4}

{1}

{2}
{3} {4}

{1, 3, 4}
{1, 2, 4}{1, 2, 3}

{2, 3, 4}

Figure 5-3: The Cayley graph Cay( ̂︀𝐺,𝒮) for 𝐺 = {−1, 1}4 and 𝒮 = {𝑆 : |𝑆| =
0 or |𝑆| = 2}. The two connected components are 𝒯even (left) and 𝒯odd (right).
The vertices of 𝒯odd are arranged to correspond to their images in 𝒯even under the
graph automorphism 𝜑(𝑆) = {1}△𝑆. We can obtain a chordal cover of Cay( ̂︀𝐺,𝒮)
by forming maximal cliques on the vertices of 𝒯even marked with filled circles, the
vertices of 𝒯even marked with open circles, and the images in 𝒯odd of these two cliques
under the map 𝜑.

This graph is often called the half-cube graph.
The group operation on characters is multiplication of functions, which corre-

sponds to taking the symmetric difference of the subsets that index the characters.
In other words, if 𝑆, 𝑇 ⊆ [𝑛] then

𝜒𝑆(𝑥)𝜒𝑇 (𝑥) = 𝜒𝑆△𝑇 (𝑥)

where 𝑆△𝑇 = (𝑆 ∖ 𝑇 ) ∪ (𝑇 ∖ 𝑆). As such, there is an action of ̂︀𝐺 on the vertices of
Cay( ̂︀𝐺,𝒮) by 𝑆 · 𝑇 = 𝑆△𝑇 . Furthermore if 𝒯 ⊆ 2[𝑛] is a subset of the vertices of
Cay( ̂︀𝐺,𝒮) we write 𝑆△𝒯 := {𝑆△𝑇 : 𝑇 ∈ 𝒯 }.

We now record some simple observations that follow directly from the adjacency
relation in Cay( ̂︀𝐺,𝒮). For convenience of notation, for 𝑘 = 0, 1, . . . , 𝑛 let

𝒯𝑘 = {𝑆 ⊆ [𝑛] : |𝑆| = 𝑘}.

Any edge of Cay( ̂︀𝐺,𝒮) either has both endpoints in 𝒯𝑘 for some 𝑘 or one endpoint
in 𝒯𝑘 and the other in 𝒯𝑘+2 for some 𝑘. Consequently, Cay( ̂︀𝐺,𝒮) has two connected
components

𝒯even = 𝒯0 ∪ 𝒯2 ∪ · · · ∪ 𝒯2⌊𝑛/2⌋ and 𝒯odd = 𝒯1 ∪ 𝒯3 ∪ · · · ∪ 𝒯2⌈𝑛/2⌉−1.

Define a map 𝜑 : 2[𝑛] → 2[𝑛] by 𝜑(𝑆) = {1}△𝑆. Since |𝜑(𝑆)△𝜑(𝑇 )| = |𝑆△𝑇 | for all
𝑆, 𝑇 ∈ 2[𝑛] it follows that 𝜑 extends to an automorphism of Cay( ̂︀𝐺,𝒮) that exchanges
𝒯even and 𝒯odd.
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5.5.3 Applying Theorem 25

To apply Theorem 25 from Section 5.4 we need to find a subset 𝒯 ⊆ 2[𝑛] of vertices
such that Cay( ̂︀𝐺,𝒮) has a chordal cover with Fourier support 𝒯 . The following result
explicitly describes such a collection of vertices.

Proposition 12. The graph Cay( ̂︀𝐺,𝒮) has a chordal cover with Fourier support

𝒯 =

{︃
𝒯0 ∪ 𝒯2 ∪ · · · ∪ 𝒯⌈𝑛/2⌉ if ⌈𝑛/2⌉ even
𝒯1 ∪ 𝒯3 ∪ · · · ∪ 𝒯⌈𝑛/2⌉ if ⌈𝑛/2⌉ odd.

(5.27)

Proof. We give a detailed proof in Section 5.8.2.

Example 16. To give the flavor of the proof, we discuss the case 𝑛 = 4. In this case
Cay( ̂︀𝐺,𝒮) is shown in Figure 5-3. Define Γ to be the graph with vertex set 2[4] and
with edges between 𝑆, 𝑇 ∈ 𝒯even if and only if ||𝑆| − |𝑇 || ≤ 2, and edges between
𝑆, 𝑇 ∈ 𝒯odd if and only if ||𝜑(𝑆)|− |𝜑(𝑇 )|| ≤ 2. The graph Γ is chordal, with maximal
cliques given by 𝒞0 = 𝒯0 ∪ 𝒯2, 𝒞2 = 𝒯2 ∪ 𝒯4, 𝜑(𝒞0), and 𝜑(𝒞2). The vertices in cliques
𝒞0 and 𝒞2 are indicated by open and filled circles respectively in Figure 5-3. (The
vertices in cliques 𝜑(𝒞0) and 𝜑(𝒞2) are similarly marked.) If 𝒯 = 𝒯0 ∪ 𝒯2 then we can
see that Γ is a chordal cover of Cay( ̂︀𝐺,𝒮) with Fourier support 𝒯 by observing that
∅△𝒞0 ⊆ 𝒯 , {1, 2, 3, 4}△𝒞2 ⊆ 𝒯 , 𝜑(∅)△𝜑(𝒞0) ⊆ 𝒯 and 𝜑({1, 2, 3, 4})△𝜑(𝒞2) ⊆ 𝒯 . ♦

Laurent’s conjecture follows directly from Proposition 12 and Theorem 25.

Theorem 26. Suppose 𝑓(𝑥) = 𝐴∅+
∑︀

1≤𝑖<𝑗≤𝑛𝐴𝑖𝑗𝑥𝑖𝑥𝑗 is nonnegative on 𝐺 = {−1, 1}𝑛.
Then there is a collection (ℎ𝑘)

|𝒯 |
𝑘=1 of functions ℎ𝑘 : 𝐺→ R each with Fourier support

𝒯 (defined in (5.27)) such that

𝑓(𝑥) =

|𝒯 |∑︁

𝑘=1

ℎ𝑘(𝑥)
2.

Consequently, any nonnegative quadratic form on 𝐺 is a sum of squares of functions
of degree at most ⌈𝑛/2⌉.

Proof. The first assertion follows directly from Proposition 12 and Theorem 25. The
second assertion holds simply because every function with Fourier support 𝒯 has
degree at most ⌈𝑛/2⌉.

The dual version of this result gives a SDP lift of the cut polytope of size |𝒯 |. It
follows directly from Proposition 12 and Theorem 25D, and the observation that in
this case all the characters are real-valued.

Corollary 2. The cut polytope CUT𝑛 has a real SDP lift of size |𝒯 | given by

CUT𝑛 =
{︁
ℓ ∈ R𝒮∖∅ : ∃𝑦 ∈ R𝒯 △𝒯 s.t. 𝑦∅ = 1, 𝑦{𝑖,𝑗} = ℓ{𝑖,𝑗} for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛

and [𝑦𝑆△𝑇 ]𝑆,𝑇∈𝒯 ⪰ 0
}︁
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where 𝒯 is defined in (5.27).

In the language used in [72], Corollary 2 simply expresses that 𝑄⌈𝑛/2⌉ = CUT𝑛

where 𝑄𝑘 is the 𝑘’th Lasserre semidefinite relaxation of CUT𝑛.

5.6 Application 2: trigonometric cyclic polytopes
In this section we apply the results of Section 5.4 to the case where 𝐺 = Z𝑁 is the
(additive) group of integers modulo 𝑁 . As we will see, this will allow us to obtain
a positive semidefinite lift of size 𝑂(𝑑 log(𝑁/𝑑)) for the regular trigonometric cyclic
polytope with 𝑁 vertices of degree 𝑑, when 𝑑 divides 𝑁 .

Recall from Section 5.3, that the characters of Z𝑁 are indexed by 𝑘 ∈ Z𝑁 and are
given by

𝜒𝑘(𝑥) = 𝑒2𝑖𝜋𝑘𝑥/𝑁 ∀𝑥 ∈ Z𝑁 .

Thus the Fourier decomposition of a function 𝑓 : Z𝑁 → C is given by

𝑓(𝑥) =
∑︁

𝑘∈Z𝑁

̂︀𝑓(𝑘)𝑒2𝑖𝜋𝑘𝑥/𝑁 .

Furthermore, we say that a function 𝑓 has degree 𝑑 if it has Fourier support {−𝑑,−(𝑑−
1), . . . , 𝑑− 1, 𝑑}.

5.6.1 The case 𝒮 = {−1, 0, 1}: the cycle graph

In this section we are interested in obtaining Fourier-sparse sum-of-squares certificates
for functions of degree 1 on Z𝑁 , i.e., functions with Fourier support 𝒮 = {−1, 0, 1}.
Note that the moment polytope in this case is nothing but the regular 𝑁 -gon (up to
a linear transformation). Indeed ℳ(Z𝑁 , {−1, 1}) is by definition

ℳ(Z𝑁 , {−1, 1}) = conv
{︀
(𝑒2𝑖𝜋𝑥/𝑁 , 𝑒−2𝑖𝜋𝑥/𝑁) : 𝑥 ∈ Z𝑁

}︀
.

Under the invertible R-linear map (𝑧, 𝑧) ↦→ (Re(𝑧), Im(𝑧)), we see that ℳ(Z𝑁 , {−1, 0, 1})
is linearly isomorphic to the regular 𝑁 -gon in R2.

To obtain Fourier-sparse sum-of-squares certificates for nonnegative functions of
degree 1 we are going to study the Cayley graph Cay(̂︁Z𝑁 , {−1, 0, 1}). Note that this
is simply the cycle graph on 𝑁 vertices, which we will denote by 𝐶𝑁 for simplicity.
The object of this section is to show that this graph admits a chordal cover with small
Fourier support.

Theorem 31. Let 𝑁 be a positive integer greater than 2. Then the cycle graph 𝐶𝑁 has
a chordal cover with Fourier support 𝒯 ⊆ ̂︁Z𝑁 where |𝒯 | ≤ 3 log2𝑁 . More precisely
the set 𝒯 can be described explicitly as follows: Let 𝑘1 < 𝑘2 < · · · < 𝑘𝑙 be the positions
of the nonzero digits in the binary expansion of 𝑁 so that 𝑁 =

∑︀𝑙
𝑗=1 2

𝑘𝑗 . Let 𝑘 be the
largest integer such that 2𝑘 < 𝑁 (i.e., 𝑘 = 𝑘𝑙 − 1 if 𝑁 is a power of two and 𝑘 = 𝑘𝑙

119



otherwise). Then the set 𝒯 is given by

𝒯 = {0} ∪ {−2𝑖, 2𝑖, 𝑖 = 0, . . . , 𝑘 − 1} ∪
{︃

𝑖∑︁

𝑗=1

2𝑘𝑗 , 𝑖 = 1, . . . , 𝑙 − 2

}︃
. (5.28)

Proof. The chordal cover is constructed by induction on 𝑁 , see Section 5.8.1 for the
details. Figure 5-4 shows the chordal cover for 𝑁 = 8 and 𝑁 = 16.
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Figure 5-4: Chordal cover of the 8-cycle with Fourier support 𝒯 = {−2,−1, 0, 1, 2}
and of the 16-cycle with Fourier support 𝒯 = {−4,−2,−1, 0, 1, 2, 4}.

If we combine the previous theorem with Theorem 25, we get that any nonnegative
degree-1 function on Z𝑁 has a sum-of-squares certificate with Fourier support 𝒯 where
|𝒯 | ≤ 3 log𝑁 . Note that this corresponds to Theorem 27 from the introduction for
the case 𝑑 = 1. Dually, this allows us to obtain a Hermitian positive semidefinite lift
of the regular 𝑁 -gon of size |𝒯 | ≤ 3 log𝑁 .

In Section 5.1 we showed that the 𝑁 = 2𝑛-gon admits a positive semidefinite lift
of size 2𝑛−1. In fact we showed in Proposition 8 that any linear function on Z𝑁 that
is nonnegative can be written as a sum-of-squares of functions with Fourier support
{0} ∪ {±2𝑖, 𝑖 = 0, . . . , 𝑛− 2}. Note that this is the same Fourier support that we get
if we plug 𝑁 = 2𝑛 in (5.28). Thus Theorem 31 generalizes the result of Section 5.1
to arbitrary 𝑁 .

5.6.2 Degree 𝑑 functions: powers of cycle graph

In this section we are interested in functions of degree 𝑑 on Z𝑁 where 𝑑 divides 𝑁 .
We show how to construct a chordal cover of the associated Cayley graph Cay(̂︁Z𝑁 ,𝒮)
using the chordal cover of the cycle graph constructed in the previous section. This
allows us to show that any nonnegative function on Z𝑁 of degree 𝑑 has a sum-of-
squares certificate with Fourier support of size most 3𝑑 log(𝑁/𝑑).

Constructing a chordal cover of the Cayley graph

We start by recalling the definition of the power of a graph.
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Definition 17. Let 𝒢 = (𝑉,𝐸) be a graph. Given 𝑑 ∈ N, the 𝑑’th power of 𝒢 is the
graph 𝒢𝑑 = (𝑉,𝐸𝑑) where two vertices 𝑢, 𝑣 ∈ 𝑉 are connected by an edge if there is
a path of length ≤ 𝑑 connecting 𝑢 and 𝑣 in 𝒢.

It is not difficult to see that the Cayley graph Cay(̂︁Z𝑁 ,𝒮) when 𝒮 = {−𝑑, . . . , 𝑑}
is the 𝑑’th power of the cycle graph Cay(̂︁Z𝑁 , {−1, 1}). Following this observation,
we will use the symbol 𝐶𝑑

𝑁 to denote the Cayley graph Cay(̂︁Z𝑁 , {−𝑑, . . . , 𝑑}). Figure
5-5(left) shows the graph 𝐶𝑑

𝑁 for 𝑁 = 8 and 𝑑 = 2.
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Figure 5-5: Left: The second power of the cycle graph on 8 nodes: two nodes are
connected by an edge if their distance in the cycle graph is at most 2. Right: The
graph 𝐶4 �𝐾2. Note that 𝐶2

8 ⊂ 𝐶4 �𝐾2. The edges in 𝐶4 �𝐾2 that are not in 𝐶2
8

are indicated with a heavier line.

To construct a chordal cover of 𝐶𝑑
𝑁 we will use the chordal cover of the cycle graph

𝐶𝑁 constructed in the previous section. For this, we need the following definition of
strong product of graphs.

Definition 18. Given graphs 𝒢 = (𝑉,𝐸) and 𝒢 ′ = (𝑉 ′, 𝐸 ′) define the strong product
of 𝒢 and 𝒢 ′, denoted 𝒢 � 𝒢 ′ to be the graph with vertex set 𝑉 × 𝑉 ′ and where two
vertices (𝑢, 𝑢′) ∈ 𝑉 × 𝑉 ′ and (𝑣, 𝑣′) ∈ 𝑉 × 𝑉 ′ are connected if

(𝑢 = 𝑣 and {𝑢′, 𝑣′} ∈ 𝐸 ′)

or ({𝑢, 𝑣} ∈ 𝐸 and 𝑢′ = 𝑣′)

or ({𝑢, 𝑣} ∈ 𝐸 and {𝑢′, 𝑣′} ∈ 𝐸 ′).

Remark 17. An important special case is when one of the graphs, say 𝒢 ′, is a complete
graph 𝒢 ′ = 𝐾𝑚. In this case two distinct vertices (𝑢, 𝑢′) and (𝑣, 𝑣′) in 𝒢 � 𝐾𝑚 are
connected if either 𝑢 = 𝑣 or {𝑢, 𝑣} ∈ 𝐸(𝒢).

Given two graphs 𝒢 = (𝑉,𝐸) and 𝒢 ′ = (𝑉,𝐸 ′) with the same vertex set 𝑉 we say
that 𝒢 ′ covers 𝒢 and we write 𝒢 ⊆ 𝒢 ′ if 𝐸 ⊆ 𝐸 ′. We use the following observation to
construct a chordal cover of 𝐶𝑑

𝑁 .

Proposition 13. Let 𝑁 and 𝑑 be two integers and assume that 𝑑 divides 𝑁 . Let 𝐶𝑑
𝑁

be the 𝑑’th power of the cycle graph 𝐶𝑁 and let 𝐶𝑁/𝑑 be the cycle graph on 𝑁/𝑑 nodes.
Then

𝐶𝑑
𝑁 ⊆ 𝐶𝑁/𝑑 �𝐾𝑑. (5.29)
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Proof. To show the inclusion (5.29) we first need to identify the vertices of 𝐶𝑑
𝑁 with

those of 𝐶𝑁/𝑑�𝐾𝑑. Note that the vertex set of 𝐶𝑑
𝑁 can be identified with Z𝑁 and the

vertex set of 𝐶𝑁/𝑑 can be identified with Z𝑁/𝑑. We also identify the vertices of 𝐾𝑑 with
{0, . . . , 𝑑−1}. By definition of �, the vertices of 𝐶𝑁/𝑑�𝐾𝑑 are Z𝑁/𝑑×{0, . . . , 𝑑−1}.
Consider the map

𝜑 : Z𝑁/𝑑 × {0, . . . , 𝑑− 1} → Z𝑁 , 𝜑(𝑞, 𝑟) = 𝑞𝑑+ 𝑟. (5.30)

This map is well-defined and gives a bijection between Z𝑁/𝑑 ×{0, . . . , 𝑑− 1} and Z𝑁 .
The map 𝜑 thus identifies vertices of 𝐶𝑑

𝑁 with those of 𝐶𝑁/𝑑 �𝐾𝑑.
We now show that, with this identification, inclusion (5.29) holds. We need to

show that if 𝑖, 𝑖′ ∈ Z𝑁 are connected in 𝐶𝑑
𝑁 (i.e., 𝑖− 𝑖′ ∈ {−𝑑, . . . , 𝑑}) then necessarily

(𝑞, 𝑟) and (𝑞′, 𝑟′) are connected in 𝐶𝑁/𝑑 � 𝐾𝑑 (i.e., 𝑞 − 𝑞′ ∈ {−1, 0, 1}), where (𝑞, 𝑟)
and (𝑞′, 𝑟′) are such that 𝑖 = 𝜑(𝑞, 𝑟) and 𝑖′ = 𝜑(𝑞′, 𝑟′). Consider for 𝑞 ∈ Z𝑁/𝑑 the set of
vertices of 𝐶𝑑

𝑁 given by 𝑉𝑞 = {𝜑(𝑞, 𝑟) : 𝑟 = 0, . . . , 𝑑− 1} ⊂ Z𝑁 . Note that (𝑉𝑞)𝑞∈Z𝑁/𝑑

forms a partition of the vertex set of 𝐶𝑑
𝑁 and that |𝑉𝑞| = 𝑑 for all 𝑞 (for example if

𝑁 = 8 and 𝑑 = 2 (Figure 5-5) 𝑉0 = {0, 1}, 𝑉1 = {2, 3}, 𝑉2 = {4, 5}, 𝑉4 = {6, 7}). It
is easy to see that if 𝑖 and 𝑖′ are two adjacent vertices of 𝐶𝑑

𝑁 , then 𝑖 and 𝑖′ must be
in the same group (i.e., 𝑖, 𝑖′ ∈ 𝑉𝑞) or in adjacent group (i.e., 𝑖 ∈ 𝑉𝑞 and 𝑖′ ∈ 𝑉𝑞+1

or vice-versa). In other words this means that 𝑞 − 𝑞′ ∈ {−1, 0, 1} which means that
(𝑞, 𝑟) and (𝑞′, 𝑟′) are connected in 𝐶𝑁/𝑑 �𝐾𝑑.

The previous proposition gives a natural way to construct a chordal cover of 𝐶𝑑
𝑁

from that of 𝐶𝑁/𝑑. Indeed if Γ is a chordal cover of 𝐶𝑁/𝑑 then one can show that
Γ�𝐾𝑑 is a chordal cover of 𝐶𝑑

𝑁 and one can also characterize the maximal cliques of
Γ�𝐾𝑑 in terms of those of Γ. This is the object of the next proposition.

Proposition 14. Let 𝒢 = (𝑉,𝐸) be a graph and 𝑑 be any integer.

1. If 𝒢 ′ is such that 𝒢 ⊆ 𝒢 ′ then 𝒢 �𝐾𝑑 ⊆ 𝒢 ′ �𝐾𝑑.

2. If 𝒢 is chordal then 𝒢 �𝐾𝑑 is chordal.

3. All the maximal cliques of 𝒢 �𝐾𝑑 have the form 𝒞 ×𝐾𝑑 where 𝒞 is a maximal
clique of 𝒢.

Proof. 1. The first point is clear from the definition of �.

2. Let (𝑢1, 𝑣1) . . . (𝑢𝑙, 𝑣𝑙) be a cycle in 𝒢 � 𝐾𝑑 of length 𝑙 ≥ 4 where (𝑢𝑙, 𝑣𝑙) =
(𝑢1, 𝑣1). If there exists 𝑖 ∈ {1, . . . , 𝑙 − 1} such that 𝑢𝑖 = 𝑢𝑖+1 then the edge
{(𝑢𝑖, 𝑣𝑖), (𝑢𝑖+2, 𝑣𝑖+2)} is a chord of the cycle. Otherwise note that 𝑢1 . . . 𝑢𝑙 is a
cycle in 𝒢 of length ≥ 4. Since 𝒢 is chordal there is 1 ≤ 𝑖, 𝑗 ≤ 𝑙−1 with 𝑗−𝑖 ≥ 2
such that {𝑢𝑖, 𝑢𝑗} ∈ 𝐸. In this case the edge {(𝑢𝑖, 𝑣𝑖), (𝑢𝑗, 𝑣𝑗)} is a chord of the
cycle.

3. The third property easily follows from the fact that if 𝒞 = {(𝑢𝑖, 𝑣𝑖), 𝑖 = 1, . . . , 𝑘}
is a clique in 𝒢 �𝐾𝑑 then {𝑢𝑖, 𝑖 = 1, . . . , 𝑘} ⊆ 𝑉 is a clique in 𝒢.
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We can now use the chordal cover of the cycle graph constructed in the previous
section to obtain a chordal cover of 𝐶𝑑

𝑁 .

Proposition 15. Let 𝑁 and 𝑑 be two integers and assume that 𝑑 divides 𝑁 . If 𝐶𝑁/𝑑

has a chordal cover with Fourier support 𝒯 ⊆ Z𝑁/𝑑, then 𝐶𝑑
𝑁 has a chordal cover with

Fourier support
𝒯 ′ = {𝑑𝑘 + 𝑟 : 𝑘 ∈ 𝒯 , 𝑟 ∈ {0, . . . , 𝑑− 1}} (5.31)

and |𝒯 ′| ≤ 𝑑 · |𝒯 |.
Proof. Let Γ be a chordal cover 𝐶𝑁/𝑑 with Fourier support 𝒯 . By definition, this
means that for any maximal clique 𝒞 of 𝐶𝑁/𝑑, there is 𝑘𝒞 ∈ Z𝑁/𝑑 such that 𝑘𝒞+𝒞 ⊆ 𝒯 .

By Proposition 14, we know that Γ � 𝐾𝑑 is a chordal cover of 𝐶𝑑
𝑁 . Let 𝒞 ′ be a

maximal clique of Γ�𝐾𝑑. By Proposition 14, we know that there exists 𝒞 maximal
clique of Γ such that 𝒞 ′ = 𝒞 × 𝐾𝑑 = {𝑑𝑞 + 𝑟 : 𝑞 ∈ 𝒞, 𝑟 ∈ {0, . . . , 𝑑 − 1}}. Define
𝑘𝒞′ = 𝑑𝑘𝒞 ∈ Z𝑁 and note that

𝑘𝒞′ + 𝒞 ′ = {𝑑𝑘𝒞 + 𝑑𝑞 + 𝑟 : 𝑞 ∈ 𝒞, 𝑟 ∈ {0, . . . , 𝑑− 1}}
= {(𝑘𝒞 + 𝑞)𝑑+ 𝑟 : 𝑞 ∈ 𝒞, 𝑟 ∈ {0, . . . , 𝑑− 1}} ⊆ 𝒯 ′,

where the last inclusion follows from the fact that 𝑘𝒞 + 𝑞 ∈ 𝒯 whenever 𝑞 ∈ 𝒞. We
have thus shown that for any maximal clique 𝒞 ′ of Γ � 𝐾𝑑, there is 𝑘𝒞′ ∈ Z𝑁 such
that 𝑘𝒞′ +𝒞 ′ ⊆ 𝒯 ′. Thus this shows that Γ�𝐾𝑑 is a chordal cover of 𝐶𝑑

𝑁 with Fourier
support 𝒯 ′.

Combining Proposition 15 and the chordal cover of the cycle graph from Theorem
31 we get the following corollary.

Corollary 3. Let 𝑁 and 𝑑 be two integers and assume that 𝑑 divides 𝑁 . Then the
graph 𝐶𝑑

𝑁 has a chordal cover with Fourier support 𝒯 ⊂ ̂︁Z𝑁 where |𝒯 | ≤ 3𝑑 log(𝑁/𝑑).

Using Theorem 25, this proves Theorem 27 from the introduction concerning
nonnegative functions on Z𝑁 of degree 𝑑.

Theorem 27. Let 𝑁 and 𝑑 be two integers and assume that 𝑑 divides 𝑁 . Then there
exists 𝒯 ⊆ Z𝑁 with |𝒯 | ≤ 3𝑑 log(𝑁/𝑑) such that any nonnegative function on Z𝑁 of
degree at most 𝑑 has a sum-of-squares certificate with Fourier support 𝒯 .

Figure 5-6 shows the chordal cover of 𝐶2
16 obtained by applying Theorem 31 to 𝐶8

and applying the strong graph product with 𝐾2.

Cyclic polytopes

Observe that the moment polytope for 𝐺 = Z𝑁 and 𝒮 = {−𝑑, . . . , 𝑑} is

ℳ(Z𝑁 , {−𝑑, . . . , 𝑑}) = conv
{︁
(𝑒2𝑖𝜋𝑘𝑥/𝑁)𝑘=−𝑑,...,𝑑 : 𝑥 ∈ Z𝑁

}︁
⊂ C2𝑑.

This polytope is affinely isomorphic to the regular trigonometric cyclic polytope

𝑇𝐶(𝑁, 2𝑑) = conv
{︁
𝑇𝑀(2𝜋𝑥/𝑁) : 𝑥 = 0, 1, . . . , 𝑁 − 1

}︁
⊂ R2𝑑, (5.32)
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Figure 5-6: A chordal cover of the graph 𝐶2
16 obtained as the strong graph product

of Γ and 𝐾2, where Γ is the chordal cover of 𝐶8 obtained from Theorem 31 and
illustrated in Figure 5-4(left).

where 𝑇𝑀(𝜃) is the degree 𝑑 trigonometric moment curve

𝑇𝑀(𝜃) =
(︁
cos(𝜃), sin(𝜃), cos(2𝜃), sin(2𝜃), . . . , cos(𝑑𝜃), sin(𝑑𝜃)

)︁
.

Cyclic polytopes play an important role in polyhedral combinatorics [102] and satisfy
many interesting properties. For example the celebrated Upper Bound Theorem,
states that for any 2𝑑 dimensional polytope 𝑃 with 𝑁 vertices, 𝑓𝑖(𝑃 ) ≤ 𝑓𝑖(𝑇𝐶(𝑁, 2𝑑))
for any 𝑖 = 0, . . . , 2𝑑, where 𝑓𝑖(𝑃 ) is the number of 𝑖-dimensional faces of a polytope
𝑃 [102]. Another important property of cyclic polytopes is that they are neighborly
[45] (recall that a 2𝑑-dimensional polytope 𝑃 is called neighborly if any collection of
𝑑 vertices of 𝑃 span a face of 𝑃 ).

The results from this section allow us to obtain a positive semidefinite lift of
𝑇𝐶(𝑁, 2𝑑) of size 𝑂(𝑑 log(𝑁/𝑑)) when 𝑑 divides 𝑁 . More precisely, if we com-
bine Corollary 3 and Theorem 25D we get that 𝑇𝐶(𝑁, 2𝑑) has a Hermitian positive
semidefinite lift of size at most 3𝑑 log(𝑁/𝑑), proving Theorem 27D from the introduc-
tion.

Theorem 27D. Let 𝑁 and 𝑑 be two integers and assume that 𝑑 divides 𝑁 . Then the
trigonometric cyclic polytope 𝑇𝐶(𝑁, 2𝑑) has a Hermitian positive semidefinite lift of
size at most 3𝑑 log(𝑁/𝑑).

Comparison with LP lifts One can show that in the regime 𝑁 = Θ(𝑑2) our pos-
itive semidefinite lift for 𝑇𝐶(𝑁, 2𝑑) is provably smaller than any linear programming
lift of 𝑇𝐶(𝑁, 2𝑑). Indeed, the following lower bound on the LP extension complexity
of 𝑘-neighborly polytopes was proved in [40].

Proposition 16. ([40, Proposition 5.16]) If 𝑃 be a 𝑘-neighborly polytope with 𝑁
vertices then xcLP(𝑃 ) ≥ min(𝑁, (𝑘 + 1)(𝑘 + 2)/2).

124



Since 𝑇𝐶(𝑁, 2𝑑) is 𝑑-neighborly, if we choose for example𝑁 = 𝑑2 then the previous
proposition asserts that xcLP(𝑇𝐶(𝑑

2, 2𝑑)) ≥ Ω(𝑑2) whereas in this case our positive
semidefinite has size 𝑂(𝑑 log 𝑑). This allows us to prove the following result giving a
gap between SDP extension complexity and LP extension complexity.

Corollary 1. There exists a family (𝑃𝑑)𝑑∈N of polytopes where 𝑃𝑑 ⊂ R2𝑑 such that

xcSDP(𝑃𝑑)

xcLP(𝑃𝑑)
= 𝑂

(︂
log 𝑑

𝑑

)︂
.

The only nontrivial LP lift for cyclic polytopes that we are aware of is a recent
construction by Bogomolov et al. [12] for the cylic polytope

𝐶(𝑁, 𝑑) = conv
{︁
(𝑖, 𝑖2, . . . , 𝑖𝑑) : 𝑖 = 1, . . . , 𝑁

}︁

of size (log𝑁)⌊𝑑/2⌋. Note that this lift has smaller size than the “trivial” vertex lift of
𝐶(𝑁, 𝑑) only when 𝑑 < 𝑂((log𝑁)/(log log𝑁)). Their construction for 𝑑 = 2 is based
on the reflection relations framework of Kaibel and Pashkovich [62] and the case of
general 𝑑 is then obtained via a tensor product construction, see [12] for details.

5.7 Summary of chapter

∙ We consider the problem of finding sparse sum-of-squares certificates for
nonnegative functions defined on a finite abelian group 𝐺 that are sparse
with respect to the Fourier basis. Using results from the previous chap-
ters, the existence of such certificates translate to (equivariant) SDP lifts of
certain moment polytopes (see Equation (5.10)).

∙ Our main theorem gives a graph-theoretic method to guarantee the exis-
tence of such sparse certificates. We apply our main theorem to two specific
settings:

∙ We first show that any nonnegative quadratic function on the hypercube
𝐺 = {−1, 1}𝑛 is a sum of squares of polynomials of degree at most ⌈𝑛/2⌉
(Theorem 26). This establishes a conjecture of Laurent from 2003 [72] and
shows that the Lasserre hierarchy for the cut polytope is exact after ⌈𝑛/2⌉
levels.

∙ In the case where𝐺 = Z𝑁 we show that nonnegative functions of degree 𝑑 on
𝐺 admit sparse sum-of-squares certificate with support of size𝑂(𝑑 log(𝑁/𝑑))
(when 𝑑 divides 𝑁). This allows us to get an explicit sequence of polytopes
(trigonometric cyclic polytopes) in increasing dimensions where SDP lifts
are vanishingly smaller than LP lifts (Theorem 27 and Corollary 1).
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5.8 Proofs

5.8.1 Proof of Theorem 31: chordal cover of the cycle graph

In this appendix we prove Theorem 31 concerning constructing a chordal cover of the
cycle graph 𝐶𝑁 . Theorem 32 below shows how to construct a chordal cover of the
cycle graph 𝐶𝑁+1 on 𝑁 + 1 nodes, by induction. The chordal cover of 𝐶𝑁 used to
obtain Theorem 31 will then be obtained simply by contracting a certain edge of the
chordal cover of 𝐶𝑁+1 (more details below). We thus start by describing a chordal
cover of the 𝑁 + 1-cycle.

Theorem 32 (Chordal cover of the cycle graph on 𝑁 + 1 vertices). Let 𝑁 be an
integer greater than or equal 2. Let 𝑘1 < · · · < 𝑘𝑙 be the position of the nonzero digits
in the binary expansion of 𝑁 , i.e., 𝑁 =

∑︀𝑙
𝑖=1 2

𝑘𝑖. Let 𝑘 be the largest integer such
that 2𝑘 < 𝑁 (i.e., 𝑘 = 𝑘𝑙−1 if 𝑁 is a power of two and 𝑘 = 𝑘𝑙 otherwise). Then there
exists a chordal cover of the cycle graph 𝐶𝑁+1 on 𝑁 + 1 nodes with Fourier support

𝒯 = {0} ∪ {±2𝑖, 𝑖 = 0, . . . , 𝑘} ∪
{︃

𝑖∑︁

𝑗=1

2𝑘𝑗 , 𝑖 = 1, . . . , 𝑙 − 1

}︃
. (5.33)

Proof. The proof of the theorem is by induction on 𝑁 . Consider the cycle graph on
𝑁 +1 nodes where nodes are labeled 0, 1, . . . , 𝑁 . To construct a chordal cover of the
graph, we first put an edge between nodes 0 and 2𝑘 and another edge between nodes
2𝑘 and 𝑁 , where 2𝑘 is the largest power of two that is strictly smaller than 𝑁 . This
is depicted in Figure 5-7.

0 N

2k

(a) (b)

{−2k, 0, N − 2k}

Figure 5-7: Recursive construction of a chordal cover of the cycle 0 . . . 𝑁 on 𝑁 + 1
vertices

Note that the triangle {0, 2𝑘, 𝑁} is equivalent, by translation, to {−2𝑘, 0, 𝑁−2𝑘}.
We now use induction to construct a chordal cover of the two remaining parts of the
cycle (denoted (a) and (b) in Figure 5-7).

∙ For part (a), which is a cycle graph labeled 0 . . . 𝑁 ′ with 𝑁 ′ = 2𝑘, the induction
hypothesis gives us a chordal cover with Fourier support

𝒯𝑎 = {0} ∪ {±2𝑖, 𝑖 = 0, . . . , 𝑘 − 1}. (5.34)

∙ For part (b) of the graph, we use induction on the cycle 2𝑘 . . . 𝑁 which is, by
translation, equivalent to the cycle with labels 0 . . . 𝑁 ′′ where 𝑁 ′′ = 𝑁 − 2𝑘. We
distinguish two cases.
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– If 𝑁 = 2𝑘+1, then we have 𝑁 ′′ = 2𝑘 and induction gives a chordal cover of (b)
with the same Fourier support as for part (a). Thus in this case we get a chordal
cover of the full (𝑁 + 1)-cycle with Fourier support

𝒯𝑎 ∪ {−2𝑘, 0, 2𝑘} = {0} ∪ {±2𝑖, 𝑖 = 0, . . . , 𝑘}

which is what we want.

– Now assume that 𝑁 < 2𝑘+1, which means that the most significant bit of 𝑁 is
at position 𝑘 = 𝑘𝑙. Thus the binary expansion of 𝑁 ′′ = 𝑁 − 2𝑘 is the same as
that of 𝑁 except that the bit at position 𝑘 = 𝑘𝑙 is replaced with a 0. Let 𝑘′′ be
the largest integer such that 2𝑘′′ < 𝑁 ′′. Using induction we get a chordal cover
of the cycle 0 . . . 𝑁 ′′ with Fourier support

𝒯𝑏 = {0} ∪ {±2𝑖, 𝑖 = 0, . . . , 𝑘′′} ∪
{︃

𝑖∑︁

𝑗=1

2𝑘𝑗 , 𝑗 = 1, . . . , 𝑙 − 2

}︃
. (5.35)

Combining the chordal cover of parts (a) and part (b) we get a chordal cover of
the (𝑁 + 1)-cycle with Fourier support

{−2𝑘, 0, 𝑁 − 2𝑘}⏟  ⏞  
triangle {0, 2𝑘, 𝑁}

∪𝒯𝑎 ∪ 𝒯𝑏.

Given the expressions (5.34) and (5.35) for 𝒦𝑎 and 𝒦𝑏, and noting that 𝑘′′ ≤ 𝑘−1
and that 𝑁 − 2𝑘 =

∑︀𝑙−1
𝑗=1 2

𝑘𝑗 , one can check that the chordal cover has Fourier
support

𝒯 = {0} ∪ {±2𝑖, 𝑖 = 0, . . . , 𝑘} ∪
{︃

𝑖∑︁

𝑗=1

2𝑘𝑗 , 𝑖 = 1, . . . , 𝑙 − 1

}︃
.

which is exactly what we want.

To complete the proof, it remains to show the base case of the induction. We will
show the base cases 𝑁 = 2 and 𝑁 = 3. For 𝑁 = 2, note that the (𝑁 + 1)-cycle
is simply a triangle which is already chordal has Fourier support {−1, 0, 1}. If we
evaluate expression (5.33) for 𝑁 = 2 (note that here 𝑘 = 0) we get 𝒯 = {−1, 0, 1},
as needed.

For 𝑁 = 3 (the 4-cycle), we have 𝑘 = 1 and 𝑙 = 2 with 𝑘1 = 0 and 𝑘2 = 1. Thus
expression (5.33) evaluates to 𝒯 = {0}∪{±1,±2}∪{1} = {−2,−1, 0, 1, 2}. It is easy
to construct a chordal cover of the 4-cycle with such Fourier support (one can even
construct one where 𝒯 = 𝒦 ∪ (−𝒦) = {−1, 0, 1}).
Example 17. Figure 5-8 shows the recursive construction for the case 𝑁 = 8. We
have indicated in each triangle (3-clique) the associated Fourier support. ♦

Proof of Theorem 31. To prove Theorem 31 for the 𝑁 -cycle, we use the chordal cover
of the (𝑁 +1)-cycle of Theorem 32 except that we regard nodes 0 and 𝑁 as the same
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Figure 5-8: Illustration of the recursive chordal cover of the (𝑁 +1)-cycle for 𝑁 = 8.

nodes (they collapse into a single one). Thus this means that the triangle in Figure
5-7 labeled {−2𝑘, 0, 𝑁 − 2𝑘} also collapses and we only have to look at the Fourier
support for parts (a) and (b). It is not hard to show that the Fourier support we get
is the same as Equation (5.33) except that in the middle term the index 𝑖 goes from 0
to 𝑘− 1 (instead of from 0 to 𝑘), and in the last term the index 𝑖 goes from 1 to 𝑙− 2
(instead of from 1 to 𝑙 − 1). This modification gives exactly the set 𝒯 of Equation
(5.28).

Note that there are actually many different ways of constructing chordal covers
for the cycle graph, and different constructions will lead to different valid Fourier
supports. For instance, for the cycle graph 𝐶𝑁 one can actually construct a chordal
cover where the size of the Fourier support is related to the logarithm of 𝑁 base 3.
When 𝑁 is a power of three the Fourier support consists precisely of the powers of
3 that are smaller than 𝑁 . We omit the precise description of this construction, but
Figure 5-9 shows the chordal cover for the 9-cycle and 27-cycle.

5.8.2 Proof of Proposition 12: chordal cover of half-cube graph

Proof of Proposition 12. The proof proceeds as follows. First we define a graph Γ
and prove that it is a chordal cover of Cay( ̂︀𝐺,𝒮). We then characterize the maximal
cliques of Γ. Finally we show that for any maximal clique 𝒞 of Γ there is some 𝑆 ∈ 2[𝑛]

such that 𝑆△𝒞 ⊆ 𝒯 , establishing the stated result. We consider the two cases ⌈𝑛/2⌉
even and ⌈𝑛/2⌉ odd separately. We describe the argument in detail in the case where
⌈𝑛/2⌉ is even, and just sketch the required modifications in the case where ⌈𝑛/2⌉ is
odd.

Assume that ⌈𝑛/2⌉ is even. Let Γ be the graph with vertex set 2[𝑛] such that two
vertices 𝑆, 𝑇 are adjacent in Γ if and only if either

∙ |𝑆| and |𝑇 | are both even and ||𝑆| − |𝑇 || ≤ 2 or
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Figure 5-9: Chordal cover of the 9-cycle with Fourier support 𝒯 = {0,±1,±3} and
of the 27-cycle with Fourier support 𝒯 = {0,±1,±3,±9}.

∙ |𝑆| and |𝑇 | are both odd and ||𝜑(𝑆)| − |𝜑(𝑇 )|| ≤ 2.

Note that just like Cay( ̂︀𝐺,𝒮), the graph Γ also has two connected components with
vertex sets 𝒯even and 𝒯odd. Furthermore, 𝜑 (defined in Section 5.5.2) is also an au-
tomorphism of Γ that exchanges these two connected components. Observe that if
|𝑆△𝑇 | = 2 (i.e. 𝑆 and 𝑇 are adjacent in Cay( ̂︀𝐺,𝒮)) then both ||𝑆| − |𝑇 || ≤ 2 and
||𝜑(𝑆)| − |𝜑(𝑇 )|| ≤ 2 hold. Hence if 𝑆 and 𝑇 are adjacent in Cay( ̂︀𝐺,𝒮) they are also
adjacent in Γ.

We now show that Γ is a chordal graph. Let the vertices 𝑆1, 𝑆2, 𝑆3, . . . , 𝑆𝑘 form a
𝑘-cycle (with 𝑘 ≥ 4) in Γ such that each of the 𝑆𝑖 ∈ 𝒯even. Without loss of generality
assume that |𝑆1| ≤ |𝑆𝑖| for 1 ≤ 𝑖 ≤ 𝑘. We show that the cycle 𝑆1, 𝑆2, 𝑆3, . . . , 𝑆𝑘 has a
chord. If |𝑆2| = |𝑆1| then ||𝑆1|−|𝑆3|| = ||𝑆2|−|𝑆3|| ≤ 2 (since 𝑆2 and 𝑆3 are adjacent)
and so there is a chord between 𝑆1 and 𝑆3. Otherwise suppose |𝑆2| = |𝑆1|+2. Because
𝑆1 and 𝑆𝑘 are adjacent we see that either |𝑆𝑘| = |𝑆1| = |𝑆2|−2 or |𝑆𝑘| = |𝑆1|+2 = |𝑆2|
and so there is a chord between 𝑆2 and 𝑆𝑘. Now suppose 𝑆1, 𝑆2, 𝑆3, . . . , 𝑆𝑘 form a
𝑘-cycle (with 𝑘 ≥ 4) in Γ such that each of the 𝑆𝑖 ∈ 𝒯odd. Then the image of the
cycle under 𝜑 is a 𝑘-cycle in Γ with vertices in 𝒯even and so it has a chord. Since 𝜑
is an automorphism of Γ it follows that 𝑆1, 𝑆2, 𝑆3, . . . , 𝑆𝑘 also has a chord. So Γ is a
chordal cover of Cay( ̂︀𝐺,𝒮).

The subgraphs of Γ induced by the vertex sets 𝒞𝑘 := 𝒯𝑘∪𝒯𝑘+2 (for 𝑘 = 0, 2, . . . , 2⌊𝑛/2⌋−
2) and the vertex sets 𝜑(𝒞𝑘) (for 𝑘 = 0, 2, . . . , 2⌊𝑛/2⌋ − 2) are cliques in Γ. In fact,
these are maximal cliques in Γ. To show that each 𝒞𝑘 is a maximal clique, suppose 𝑆
is a vertex that is not in 𝒞𝑘. Then either |𝑆| is odd (in which case 𝑆 is not adjacent
to any element of 𝒞𝑘) or |𝑆| ≤ 𝑘−2 (in which case 𝑆 is not adjacent to any 𝑇 ∈ 𝒯𝑘+2)
or |𝑆| ≥ 𝑘 + 4 (in which case 𝑆 is not adjacent to any 𝑇 ∈ 𝒯𝑘). Hence there is
no inclusion-wise larger clique of Γ containing 𝒞𝑘. Since 𝜑 is an automorphism of Γ
it follows that the 𝜑(𝒞𝑘) are also maximal cliques of Γ. Finally, there are no other
maximal cliques in Γ because every edge of Γ is contained either in 𝒞𝑘 or 𝜑(𝒞𝑘) for
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some 𝑘 = 0, 2, . . . , 2⌊𝑛/2⌋ − 2.
It remains to show that for any maximal clique 𝒞𝑘 (for 𝑘 = 0, 2, . . . , 2⌊𝑛/2⌋ − 2)

of Γ there is 𝑆𝑘 ∈ 2[𝑛] such that 𝑆𝑘△𝒞𝑘 ⊆ 𝒯 . This is sufficient to establish that
Cay( ̂︀𝐺,𝒮) has a chordal cover with Fourier support 𝒯 because for the cliques 𝜑(𝒞𝑘)
we have that 𝜑(𝑆𝑘)△𝜑(𝒞𝑘) = 𝑆𝑘△𝒞𝑘 ⊆ 𝒯 . The following gives valid choices of 𝑆𝑘 (for
𝑘 = 0, 2, . . . , 2⌊𝑛/2⌋ − 2).

∙ If 𝑘 ≤ ⌈𝑛/2⌉ − 2 then 𝒞𝑘 ⊆ 𝒯 so we can take 𝑆𝑘 = ∅.

∙ If 𝑘 ≥ ⌈𝑛/2⌉ and 𝑛 is even then 𝑛 = 2⌈𝑛/2⌉ and so 𝑛 − 𝑘 − 2 ≤ ⌈𝑛/2⌉ − 2.
Hence [𝑛]△𝒞𝑘 = 𝒞𝑛−𝑘−2 ⊆ 𝒯 so we can take 𝑆𝑘 = [𝑛].

∙ If 𝑘 ≥ ⌈𝑛/2⌉ and 𝑛 is odd then 𝑛 = 2⌈𝑛/2⌉−1 and so 𝑛−𝑘+1 ≤ ⌈𝑛/2⌉. Hence

𝜑([𝑛])△𝒞𝑘 = [𝑛]△𝜑(𝒞𝑘) ⊆ [𝑛]△(𝒯𝑘−1∪𝒯𝑘+1∪𝒯𝑘+3) ⊆ 𝒯𝑛−𝑘−3∪𝒯𝑛−𝑘−1∪𝒯𝑛−𝑘+1 ⊆ 𝒯

so we can take 𝑆𝑘 = 𝜑([𝑛]).

This completes the argument in the case where ⌈𝑛/2⌉ is even.
In the case where ⌈𝑛/2⌉ is odd we exchange the roles of the odd and even com-

ponents in the definition of Γ and throughout the argument. More precisely, two
vertices 𝑆, 𝑇 are adjacent in Γ if and only if either

∙ |𝑆| and |𝑇 | are both odd and ||𝑆| − |𝑇 || ≤ 2 or

∙ |𝑆| and |𝑇 | are both even and ||𝜑(𝑆)| − |𝜑(𝑇 )|| ≤ 2.

It is still the case that Γ is a chordal cover of Cay( ̂︀𝐺,𝒮). Its maximal cliques are
now 𝒞𝑘 := 𝒯𝑘 ∪ 𝒯𝑘+2 for 𝑘 = 1, 3, . . . , 2⌈𝑛/2⌉ − 3 together with the 𝜑(𝒞𝑘). Note that
the cliques are now indexed by odd integers. As before, we can choose the 𝑆𝑘 (for
𝑘 = 1, 3, . . . , 2⌈𝑛/2⌉ − 3) to be 𝑆𝑘 = ∅ if 𝑘 ≤ ⌈𝑛/2⌉ − 2, 𝑆𝑘 = [𝑛] if 𝑘 ≥ ⌈𝑛/2⌉ and 𝑛
is even, and 𝑆𝑘 = 𝜑([𝑛]) if 𝑘 ≥ ⌈𝑛/2⌉ and 𝑛 is odd.

This completes the argument in the case where ⌈𝑛/2⌉ is odd.
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Chapter 6

Beyond sums of squares: convex
proof systems

In Chapter 2 we showed how certificates of nonnegativity give us a concrete way to
think about lifts of polytopes. We saw in particular that LP and SDP lifts can be
understood in terms of producing specific certificates of nonnegativity of the facet
inequalities of the polytope.

In this chapter we depart from the specific problem of constructing lifts and we
consider the general problem of proving global nonnegativity of an arbitrary real-
valued function defined on some domain 𝑋. We explore new ways to produce cer-
tificates of nonnegativity beyond the LP and SDP framework, using general convex
duality. The framework we consider unifies existing techniques for certifying non-
negativity, and opens up the possibility of constructing new relaxations for problems
that could not be handled using existing technology (e.g., non-polynomial problems).
As an illustration we develop in the last section of this chapter a new relaxation
for optimization problems involving entropy-like functions (i.e., functions involving
terms of the form 𝑥𝛼 log 𝑥) and we apply it to the problem of computing the so-called
logarithmic Sobolev constant of finite Markov chains.
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6.1 Conic certificates of nonnegativity
The general question of interest in this chapter is to obtain a computationally tractable
way of checking whether a given function 𝑓 : 𝑋 → R is globally nonnegative, i.e.,
𝑓(𝑥) ≥ 0 for all 𝑥 ∈ 𝑋. At this point the set 𝑋 is arbitrary and we will simply assume
that 𝑓 is given as a linear combination of some basis functions (𝜑𝑖)𝑖∈𝐼 :

𝑓 =
∑︁

𝑖∈𝐼
𝑓𝑖𝜑𝑖.

Conic certificates of nonnegativity We now describe the general form of a conic
certificate of nonnegativity. Let 𝐾 ⊂ 𝐸 be a given convex cone in some Euclidean
space 𝐸, and assume we have a map 𝐴 : 𝑋 → 𝐾 that can be expressed in the basis
𝜑𝑖, i.e.,

𝐴(𝑥) =
∑︁

𝑖∈𝐼
𝜑𝑖(𝑥)𝐴𝑖

where 𝐴𝑖 ∈ 𝐸. Such a map 𝐴 will be called a lifting map. If 𝑓 : 𝑋 → R is a real-
valued function on 𝑋, we can try to decide the nonnegativity of the function 𝑓 by
solving the following conic feasibility problem:

find 𝐵 ∈ 𝐾* such that 𝑓(𝑥) = ⟨𝐴(𝑥), 𝐵⟩ ∀𝑥 ∈ 𝑋. (6.1)

Recall that 𝐾* is the dual of 𝐾 and is defined as

𝐾* = {𝑦 ∈ 𝐸 : ⟨𝑥, 𝑦⟩ ≥ 0 ∀𝑥 ∈ 𝐾}.

As such if 𝐴(𝑥) ∈ 𝐾 and 𝐵 ∈ 𝐾* then ⟨𝐴(𝑥), 𝐵⟩ is nonnegative, by definition. Thus
if (6.1) is feasible it provides a certificate of nonnegativity for the function 𝑓 . Note
that the constraint 𝑓(𝑥) = ⟨𝐴(𝑥), 𝐵⟩ for all 𝑥 ∈ 𝑋 can be written in an alternative
way in terms of the coefficients of 𝑓 and 𝐴 in the basis (𝜑𝑖)𝑖∈𝐼 , namely as 𝑓𝑖 = ⟨𝐴𝑖, 𝐵⟩
for all 𝑖 ∈ 𝐼.

Lifting map Of course the main question in coming up with such a proof system
is to find a “good” cone 𝐾 and an associated lifting map 𝐴 : 𝑋 → 𝐾. We show later
how existing certificates of nonnegativity (LP, SOS, geometric programming based
method [46], signomials [24], etc.) can be understood as special cases of (6.1) with
a well-defined cone 𝐾 and lifting map 𝐴. The framework of conic certificates also
allows us to come up with new ways to certify nonnegativity for, say, non-polynomial
functions. We show how this can be done in Section 6.6 for a class of entropy-like
functions.

Connection with lifts of convex sets Certificates of nonnegativity of the form
(6.1) have first been proposed by Gouveia, Parrilo, Thomas [50] in the study of 𝐾-lifts
of convex sets. A convex set 𝐶 is said to have a 𝐾-lift if there exists an affine subspace
𝐿 ⊂ 𝐸 and a linear map 𝜋 such that 𝐶 = 𝜋(𝐾 ∩ 𝐿). Note that LP and SDP lifts
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are special cases of 𝐾-lifts where 𝐾 is respectively the nonnegative orthant and the
positive semidefinite cone. It was shown in [50] that (under some mild conditions) a
convex set 𝐶 has a 𝐾-lift if, and only if, all the valid linear inequalities of 𝐶 admit a
conic certificate of nonnegativity of the form (6.1) (the set 𝑋 in this case is the set of
extreme points of 𝐶). This result generalizes Theorem 1 and Theorem 3 on LP and
SDP lifts.

Optimization The problem of certifying nonnegativity is in dual relationship with
minimization (or maximization) problems. Indeed given a function 𝑓 : 𝑋 → R the
minimum of 𝑓 on 𝑋 can be written in the following primal-dual way:

𝑓 * = min
𝑥∈𝑋

𝑓(𝑥) = max
𝛾∈R

{𝛾 : 𝑓 − 𝛾 is nonnegative on 𝑋} . (6.2)

The equality above simply expresses the fact that the minimum of 𝑓 on 𝑋 is equal to
the largest global lower bound on 𝑓 . Thus being able to decide whether for a given
𝛾 ∈ R the function 𝑓 − 𝛾 is nonnegative, is equivalent to the problem of minimizing
𝑓 . Of course the optimization problem (6.2) is hard in general. One way to obtain
a relaxation is to replace the constraint that “𝑓 − 𝛾 is nonnegative on 𝑋” by “𝑓 − 𝛾
has a conic certificate of nonnegativity of the form (6.1)”. This gives the following
relaxation of (6.2) whose optimal value is a lower bound on 𝑓 *:

maximize 𝛾
subject to 𝑓0 − 𝛾 = ⟨𝐴0, 𝐵⟩

𝑓𝑖 = ⟨𝐴𝑖, 𝐵⟩ ∀𝑖 ∈ 𝐼 ∖ {0}
𝐵 ∈ 𝐾*.

(6.3)

We assumed here that the function 𝜑0 in the basis (𝜑𝑖)𝑖∈𝐼 is the constant function
equal to 1 on 𝑋. The constraints simply express the fact that 𝑓 − 𝛾 has a certificate
of nonnegativity of the form ⟨𝐴(𝑥), 𝐵⟩ where 𝐵 ∈ 𝐾*. It is useful to look at the
(Lagrangian) dual of (6.3), which takes the form:

minimize
∑︀

𝑖∈𝐼 𝑓𝑖𝑦𝑖
subject to 𝑦0 = 1∑︀

𝑖∈𝐼 𝑦𝑖𝐴𝑖 ∈ 𝐾.

(6.4)

The variables 𝑦𝑖 can be interpreted as 𝜑𝑖-moments of a “pseudo-expectation” ̃︀𝐸 on
𝑋, i.e., 𝑦𝑖 = ̃︀𝐸[𝜑𝑖(𝑥)] (recall the notion of a pseudo-expectation from Sections 2.1.5
and 2.2.5). The constraint 𝑦0 = 1 expresses the fact that ̃︀𝐸[1] = 1 and the constraint∑︀

𝑖∈𝐼 𝑦𝑖𝐴𝑖 ∈ 𝐾 corresponds to ̃︀𝐸𝑥[𝐴(𝑥)] ∈ 𝐾 which follows from the fact that 𝐴(𝑥) ∈
𝐾 for all 𝑥 ∈ 𝑋 and that 𝐾 is convex.

Organization In Sections 6.2 to 6.5 we review some of the existing certificates of
nonnegativity (LP, sum-of-squares, etc.) in light of the framework described here. In
Section 6.6 we propose a new method to certify nonnegativity of certain entropy-like
functions and we apply it to the problem of computing logarithmic Sobolev constants
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of finite Markov chains.

6.2 LP certificates
LP certificates are probably the simplest way of certifying nonnegativity of functions:
assume we have a set of functions 𝑓1, . . . , 𝑓𝑁 on 𝑋 that we know a priori are non-
negative on 𝑋. Then given 𝑓 : 𝑋 → R, one way to certify that 𝑓 is nonnegative is
to try to write 𝑓 as a nonnegative linear combination of 𝑓1, . . . , 𝑓𝑁 , i.e., to solve the
problem:

find 𝑏1, . . . , 𝑏𝑁 ≥ 0 such that 𝑓 =
𝑁∑︁

𝑖=1

𝑏𝑖𝑓𝑖. (6.5)

It is easy to see that this feasibility problem is a special case of (6.1) where the cone
𝐾 is the nonnegative orthant R𝑁

+ and the lifting map 𝐴 is given by:

𝐴(𝑥) =

⎡
⎢⎣
𝑓1(𝑥)

...
𝑓𝑁(𝑥)

⎤
⎥⎦ .

Several well-known relaxation methods in optimization are based on LP certifi-
cates. Consider for example the problem of optimizing a function 𝑓 on a set 𝑋
described using inequalities:

𝑋 = {𝑥 ∈ R𝑛 : 𝑔1(𝑥) ≥ 0, . . . , 𝑔𝑚(𝑥) ≥ 0}.

We saw earlier that the minimum of 𝑓 on 𝑋 can be expressed in the following primal-
dual way:

𝑓 * := min
𝑥∈𝑋

𝑓(𝑥) = max
𝛾∈R

{𝛾 : 𝑓 − 𝛾 is nonnegative on 𝑋}. (6.6)

One way to certify that 𝑓 − 𝛾 is nonnegative on 𝑋 is to require that there exist
coefficients 𝑏1, . . . , 𝑏𝑁 such that 𝑓 − 𝛾 =

∑︀𝑁
𝑖=1 𝑏𝑖𝑔𝑖. This yields the following lower

bound on 𝑓 *:

𝑓 * ≥ max
𝛾∈R

{︃
𝛾 : 𝑓 − 𝛾 =

𝑁∑︁

𝑖=1

𝑏𝑖𝑔𝑖 where 𝑏1, . . . , 𝑏𝑁 ≥ 0

}︃
. (6.7)

This is precisely the so-called Lagrangian relaxation of (6.6) and the scalars 𝑏1, . . . , 𝑏𝑁
play the role of the Lagrange variables. In some cases, for example when 𝑓 and the
𝑔𝑖 are affine, we know that we have equality in (6.7), in which case we have strong
duality.

One can also formulate more general relaxations: it is clear that for any (𝛼1, . . . , 𝛼𝑚) ∈
N𝑚 the function 𝑥 ↦→ 𝑔1(𝑥)

𝛼1 · · · 𝑔𝑚(𝑥)𝛼𝑚 is nonnegative on 𝑋. Thus one can attempt
to show that 𝑓 − 𝛾 is nonnegative on 𝑋 by searching for nonnegative scalars 𝑏𝛼 such
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that
𝑓 − 𝛾 =

∑︁

𝛼1,...,𝛼𝑚

𝑏𝛼𝑔
𝛼1
1 · · · 𝑔𝛼𝑚

𝑚 . (6.8)

Such certificates were considered by Krivine in 1964 [66] where he studied conditions
for having a converse (Positivstellensatz) that guarantees the existence of coefficients
𝑏𝛼 ≥ 0 whenever 𝑓 − 𝛾 is nonnegative. These certificates also form the basis of
the well-known relaxation schemes such as Sherali-Adams [96] or the Handelman
hierarchy [58, 75] (see also Section 2.3.1 in Chapter 2 for a related discussion in the
context of lifts).

6.3 Sum-of-squares certificates
Another way to certify nonnegativity of functions is using the sum-of-squares method.
Let 𝜓1, . . . , 𝜓𝑑 be a set of functions on 𝑋 (not necessarily nonnegative) and let 𝑉
be the subspace of R𝑋 spanned by these functions. For example if 𝑋 = R and
𝜓1(𝑥) = 1, 𝜓2(𝑥) = 𝑥, . . . , 𝜓𝑑(𝑥) = 𝑥𝑑−1 then 𝑉 consists of polynomials of degree at
most 𝑑 − 1. Given a function 𝑓 : 𝑋 → R one way to certify that 𝑓 is nonnegative
on 𝑋 is to write 𝑓 as a sum of squares of functions in 𝑉 , i.e., to solve the following
feasibility problem:

find 𝑔1, . . . , 𝑔𝑚 ∈ 𝑉 such that 𝑓 =
𝑚∑︁

𝑖=1

𝑔2𝑖 . (6.9)

Observe that the feasibility problem (6.9) is of the form (6.1) where 𝐾 = S𝑑
+ and the

lifting map 𝐴𝜓 is given by:

𝐴𝜓(𝑥) = 𝜓(𝑥)𝜓(𝑥)
𝑇 where 𝜓(𝑥) =

⎡
⎢⎣
𝜓1(𝑥)

...
𝜓𝑑(𝑥)

⎤
⎥⎦ . (6.10)

To see why this is the case assume that there exists 𝐵 ∈ (S𝑑
+)

* = S𝑑
+ such that

𝑓(𝑥) = ⟨𝐴𝜓(𝑥), 𝐵⟩ ∀𝑥 ∈ 𝑋. (6.11)

Since 𝐵 ∈ S𝑑
+ we can write 𝐵 =

∑︀𝑚
𝑖=1 𝑏𝑖𝑏

𝑇
𝑖 . Thus Equation (6.11) corresponds to

𝑓(𝑥) =

⟨
𝜓(𝑥)𝜓(𝑥)𝑇 ,

𝑚∑︁

𝑖=1

𝑏𝑖𝑏
𝑇
𝑖

⟩
=

𝑚∑︁

𝑖=1

(𝑏𝑇𝑖 𝜓(𝑥))
2 =

𝑚∑︁

𝑖=1

𝑔𝑖(𝑥)
2

where 𝑔𝑖 = 𝑏𝑇𝑖 𝜓 ∈ 𝑉 . Conversely it is not hard to show that if (6.9) is feasible, then
there exists 𝐵 ∈ S𝑑

+ such that (6.11) is true.

Remark 18. Note that the lifting map (6.10) is rank-one i.e., rank(𝐴𝜓(𝑥)) = 1. One
can also define higher-rank lifting maps and these correspond to expressing the func-
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tion 𝑓 as a sum of norm squared of vector-valued functions i.e.,

𝑓(𝑥) =
𝑚∑︁

𝑖=1

‖𝑔𝑖(𝑥)‖22

where 𝑔𝑖 : 𝑋 → R𝑟.
We saw in Chapter 2 that sum of squares certificates form the basis of the

Lasserre/theta-body relaxations where the function 𝑓 correspond to the facet in-
equalities of a polytope 𝑃 . More generally, sum-of-squares relaxations have been
applied in different areas of science and engineering including dynamical systems and
control, optimal power flow, quantum information theory, and more. Several results
in real algebraic geometry known as Positivstellensatz can be used to guarantee the
existence of sum-of-squares certificates for positive polynomials. We refer the reader
to the books [10, 70] for more details on sum-of-squares relaxations for polynomial
optimization problems.

6.4 Geometric programming certificates for homoge-
neous polynomials

In [46] a method based on geometric programming was proposed to certify nonneg-
ativity of polynomials. One appealing aspect of this method is that it results in
problems that can be solved faster than the SDPs obtained from the sum-of-squares
hierarchy. In this section we show that this method can be cast in the framework of
conic certificates of nonnegativity, where the cone 𝐾 corresponds to a direct prod-
uct of power cones. The main result underlying the method proposed in [46] is the
following theorem proved in [39].

Theorem 33 ([39]). Let 𝑎 ∈ N𝑛 with |𝑎| = 2𝑑 and consider the homogeneous polyno-
mial in 𝑛 variables (𝑥1, . . . , 𝑥𝑛) of degree 2𝑑

𝑛∑︁

𝑖=1

𝑏𝑖𝑥
2𝑑
𝑖 − 𝜇𝑥𝑎 (6.12)

where 𝑏𝑖 ≥ 0 for all 𝑖 = 1, . . . , 𝑛 and 𝜇 ∈ R. Assume that −𝜇𝑥𝑎 is not a square
in R[𝑥1, . . . , 𝑥𝑛] (i.e., either 𝜇 > 0 or at least one of the 𝑎𝑖 is odd). Then (6.12) is
globally nonnegative if and only if

𝑛∏︁

𝑖=1
𝑎𝑖 ̸=0

(︂
𝑏𝑖

𝑎𝑖/2𝑑

)︂𝑎𝑖/2𝑑

≥ |𝜇|. (6.13)

Based on this theorem, [46] proposed to certify that a given homogeneous polyno-
mial 𝑓(𝑥) of degree 2𝑑 is nonnegative by trying to express it as a sum of nonnegative
polynomials of the form (6.12). The main observation is that searching for such a
decomposition can be done using geometric programming.
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The cone and the lifting map We now show that such certificates of nonnega-
tivity can be interpreted using a natural lifting map from R𝑛 to power cones. Given
𝛼𝑖 ≥ 0 and

∑︀𝑛
𝑖=1 𝛼𝑖 = 1 define the power cone 𝐾pow,𝛼 by:

𝐾pow,𝛼 =

{︃
(𝑥, 𝑧) ∈ R𝑛

+ × R :
𝑛∏︁

𝑖=1

𝑥𝛼𝑖
𝑖 ≥ |𝑧|

}︃
.

The cone 𝐾pow,𝛼 is a well-known closed convex cone, see e.g., [25] for properties and
applications of this cone. For any 𝑎 ∈ N𝑛 with |𝑎| := ∑︀𝑛

𝑖=1 𝑎𝑖 = 2𝑑 we can consider
the following lifting map 𝐴pow,𝑎 : R𝑛 → 𝐾pow,𝑎/2𝑑:

𝐴pow,𝑎(𝑥) =

⎡
⎢⎢⎢⎣

𝑥2𝑑1
...
𝑥2𝑑𝑛
𝑥𝑎

⎤
⎥⎥⎥⎦ ∈ 𝐾pow,𝑎/2𝑑.

Note that 𝐴pow,𝑎(𝑥) ∈ 𝐾pow,𝑎/2𝑑 because
∏︀𝑛

𝑖=1(𝑥
2𝑑
𝑖 )𝑎𝑖/2𝑑 =

∏︀𝑛
𝑖=1 |𝑥𝑖|𝑎𝑖 = |𝑥𝑎|. The fol-

lowing proposition shows that one can characterize the set of nonnegative polynomials
of the form (6.12) in terms of the dual cone (𝐾pow,𝑎/2𝑑)

*.

Proposition 17. Let 𝑓(𝑥) =
∑︀𝑛

𝑖=1 𝑏𝑖𝑥
2𝑑
𝑖 − 𝜇𝑥𝑎 and assume that 𝑏𝑖 ≥ 0 for all 𝑖 =

1, . . . , 𝑛 and that −𝜇𝑥𝑎 is not a square in R[𝑥1, . . . , 𝑥𝑛]. Then 𝑓 is globally nonnegative
if and only if there exists 𝐵 ∈ (𝐾pow,𝑎/2𝑑)

* such that 𝑓(𝑥) = ⟨𝐴pow,𝑎(𝑥), 𝐵⟩.

Proof. We can prove this proposition in two ways. The first way is to get an analytical
expression of the dual of 𝐾pow,𝑎/2𝑑 and show that the conditions 𝐵 ∈ (𝐾pow,𝑎/2𝑑)

* and
𝑓(𝑥) = ⟨𝐴pow,𝑎(𝑥), 𝐵⟩ coincide with the conditions (6.13). We prefer however to prove
the proposition directly using simply the definition of conic duality.

Let 𝑓(𝑥) =
∑︀𝑛

𝑖=1 𝑏𝑖𝑥
2𝑑
𝑖 − 𝜇𝑥𝑎 and assume that 𝑏𝑖 ≥ 0 for all 𝑖 = 1, . . . , 𝑛 and that

−𝜇𝑥𝑎 is not a square in R[𝑥1, . . . , 𝑥𝑛]. First, note that given 𝐵 ∈ R𝑛+1 we have, by
matching coefficients,

𝑓(𝑥) = ⟨𝐴pow,𝑎(𝑥), 𝐵⟩ ⇐⇒ 𝐵 = (𝑏1, . . . , 𝑏𝑛,−𝜇).

(we assume here that 𝑎𝑖 ̸= 2𝑑 for all 𝑖 = 1, . . . , 𝑛; the case where there is 𝑖0 such
that 𝑎𝑖0 = 2𝑑 and 𝑎𝑖 = 0 for 𝑖 ̸= 𝑖0 can be easily treated separately and we omit the
details here). Thus to prove the proposition we need to show that 𝑓(𝑥) is globally
nonnegative if and only if (𝑏1, . . . , 𝑏𝑛,−𝜇) ∈ (𝐾pow,𝑎/2𝑑)

*.
We are first going to treat the case 𝜇 ≥ 0 for simplicity. The case 𝜇 ≤ 0 will then
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follow. We have the following equivalences:

𝑛∑︁

𝑖=1

𝑏𝑖𝑥
2𝑑
𝑖 − 𝜇𝑥𝑎 ≥ 0 ∀𝑥 ∈ R𝑛 (𝑎)⇐⇒

𝑛∑︁

𝑖=1

𝑏𝑖𝑥
2𝑑
𝑖 − 𝜇𝑥𝑎 ≥ 0 ∀𝑥 ∈ R𝑛

+

(𝑏)⇐⇒
𝑛∑︁

𝑖=1

𝑏𝑖𝑦𝑖 − 𝜇𝑦𝑎/2𝑑 ≥ 0 ∀𝑦 ∈ R𝑛
+

(𝑐)⇐⇒
𝑛∑︁

𝑖=1

𝑏𝑖𝑦𝑖 − 𝜇𝑧 ≥ 0 ∀(𝑦, 𝑧) ∈ R𝑛
+ × R : 𝑦𝑎/2𝑑 ≥ |𝑧|

(𝑑)⇐⇒ (𝑏1, . . . , 𝑏𝑛,−𝜇) ∈ (𝐾pow,𝛼)
*

In (𝑎), for the implication ⇐ we use the assumption that 𝜇 ≥ 0 which implies that
for any 𝑥 ∈ R𝑛 we have

∑︀𝑛
𝑖=1 𝑏𝑖𝑥

2𝑑
𝑖 −𝜇𝑥𝑎 ≥∑︀𝑛

𝑖=1 𝑏𝑖𝑥
2𝑑
𝑖 −𝜇|𝑥|𝑎 ≥ 0. For (𝑏) we simply

used the change of variables 𝑦𝑖 = 𝑥2𝑑𝑖 which implies that 𝑦𝑎𝑖/2𝑑𝑖 = 𝑥𝑖 for 𝑥 ≥ 0. Step (𝑐)
is trivial using the fact that 𝜇 ≥ 0 and step (𝑑) is simply the definition of (𝐾pow,𝛼)

*.
Thus this completes the proof in the case 𝜇 ≥ 0.

Now if 𝜇 ≤ 0 since we assumed that −𝜇𝑥𝑎 is not a square, this means that at
least one of the 𝑎𝑖, say 𝑎𝑖0 is odd. By doing a change of variables ̃︀𝑥𝑖0 = −𝑥𝑖0 we see
that the following is true:

𝑛∑︁

𝑖=1

𝑏𝑖𝑥
2𝑑
𝑖 − 𝜇𝑥𝑎 ≥ 0 ∀𝑥 ∈ R𝑛 ⇐⇒

𝑛∑︁

𝑖=1

𝑏𝑖𝑥
2𝑑
𝑖 + 𝜇𝑥𝑎 ≥ 0 ∀𝑥 ∈ R𝑛.

By the reasoning above the latter is equivalent to having (𝑏1, . . . , 𝑏𝑛, 𝜇) ∈ (𝐾pow,𝛼)
*.

By definition of 𝐾pow,𝛼 it is easy to see that in turn this is equivalent to having
(𝑏1, . . . , 𝑏𝑛,−𝜇) ∈ (𝐾pow,𝛼)

* which proves the claim in the case 𝜇 ≤ 0.

Remark 19. Note that one can get a closed-form expression for the dual of the power
cone (see for example [25]):

(𝐾pow,𝛼)
* =

⎧
⎪⎨
⎪⎩
(𝑥*, 𝑧*) ∈ R𝑛

+ × R :
𝑛∏︁

𝑖=1
𝛼𝑖 ̸=0

(︂
𝑥*𝑖
𝛼𝑖

)︂𝛼𝑖

≥ |𝑧*|

⎫
⎪⎬
⎪⎭
. (6.14)

Thus we can verify that condition (6.13) of Theorem 33 can be written as (𝑏1, . . . , 𝑏𝑛,−𝜇) ∈
(𝐾pow,𝑎/2𝑑)

*.

Given a homogeneous polynomial 𝑓 of degree 2𝑑 in 𝑛 variables, the approach
of [46] to certify nonnegativity of 𝑓 is to try to express 𝑓 as a sum of nonnegative
functions of the form (6.12). Let supp(𝑓) ⊂ N𝑛 be the support of 𝑓 , i.e.,

supp(𝑓) = {𝑎 ∈ N𝑛 : 𝑓𝑎 ̸= 0}

where 𝑓𝑎 is the coefficient of the monomial 𝑥𝑎 in the expansion of 𝑓 in the monomial
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basis. Let Δ(𝑓) be the set of monomials in 𝑓 that are not squares

Δ(𝑓) = {𝑎 ∈ supp(𝑓) and 𝑓𝑎𝑥𝑎 is not a square in R[𝑥1, . . . , 𝑥𝑛]}
= {𝑎 ∈ supp(𝑓) : 𝑓𝑎 < 0 or at least one of the 𝑎𝑖 is odd}.

If 𝑎 ∈ supp(𝑓) ∖Δ(𝑓) then 𝑎𝑖 is even for all 𝑖 and we can consider the following map
into R+,

𝐴sq,𝑎 : 𝑥 ∈ R𝑛 ↦→ 𝑥𝑎 ∈ R+.

Consider the lifting map 𝐴𝑓 from R𝑛 to the Cartesian product of cones

𝐾 =
∏︁

𝑎∈Δ(𝑓)

𝐾pow,𝑎/2𝑑 ×
∏︁

𝑎∈supp(𝑓)∖Δ(𝑓)

R+

obtained by stacking together the maps 𝐴pow,𝑎 for 𝑎 ∈ Δ(𝑓) and the 𝐴sq,𝑎 for 𝑎 ∈
supp(𝑓) ∖Δ(𝑓). To certify that 𝑓 is globally nonnegative we can search for 𝐵 ∈ 𝐾*

such that:
𝑓(𝑥) = ⟨𝐴𝑓 (𝑥), 𝐵⟩.

This corresponds exactly to the geometric programming approach of Ghasemi and
Marshall [46, Theorem 2.3].

6.5 Signomials
Consider the set of functions defined on 𝑋 = R𝑛 of the the form

𝑁∑︁

𝑖=1

𝑐𝑖 exp(𝛼
𝑇
𝑖 𝑥) (6.15)

where 𝛼1 ∈ R𝑛, . . . , 𝛼𝑁 ∈ R𝑛, and 𝑐1, . . . , 𝑐𝑁 ∈ R. Such functions are known as
signomial functions. In [24] a method based on convex optimization was proposed to
certify nonnegativity of signomial functions. In this section we show that the method
of [24] can be understood in the framework described here with a natural lifting map
from R𝑛 to a certain product of exponential cones.

SAGE certificates We first recall the method proposed in [24] to certify non-
negativity of signomial functions. The main result underlying the method of [24] is
stated in Proposition 18 below and shows that one can exactly certify nonnegativity
of (6.15) when at most one of the coefficients 𝑐𝑖 is negative. For the statement of the
proposition, define

𝐷KL(𝑢‖𝑣) :=
𝑙∑︁

𝑗=1

𝑢𝑗 log(𝑢𝑗/𝑣𝑗)

to be the relative entropy function defined for (𝑢, 𝑣) ∈ R𝑙
++×R𝑙

++. The function 𝐷KL

is well-known to be convex. The following proposition was proved in [24]:
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Proposition 18 ([24]). Consider a signomial function of the form

𝑙∑︁

𝑗=1

𝑐𝑗 exp(𝛼
𝑇
𝑗 𝑥) + 𝑐 exp(𝛼𝑇𝑥) (6.16)

where 𝑐𝑗 ≥ 0 for 𝑗 = 1, . . . , 𝑙 and 𝑐 ∈ R. Then (6.16) is globally nonnegative if and
only if there exists 𝜈 ∈ R𝑙

+ such that

𝐷KL(𝜈‖𝑒 · 𝑐) ≤ 𝑐 and
𝑙∑︁

𝑗=1

𝜈𝑗(𝛼− 𝛼𝑗) = 0 (6.17)

where 𝑒 is the constant 𝑒 = exp(1).

Note that since 𝐷KL is a convex function the conditions (6.17) are convex in
(𝜈, 𝑐, 𝑐). Given Proposition 18, the approach proposed in [24] to certify that a sig-
nomial function (6.15) is nonnegative is to try to express it as a sum of nonnegative
signomial functions where each one has at most one negative coefficient. Since the
conditions (6.17) are convex one can search over such decompositions efficiently using
convex optimization. More precisely, given 𝛼1, . . . , 𝛼𝑁 ∈ R𝑛, define AGE(𝛼𝑖;𝛼−𝑖)
to be the set of signomial functions of the form (6.15) that are nonnegative and
where 𝑐𝑗 ≥ 0 for all 𝑗 ̸= 𝑖 (here the notation 𝛼−𝑖 refers to (𝛼𝑗)𝑗 ̸=𝑖). Then define
SAGE(𝛼1, . . . , 𝛼𝑁) to be the set of functions that can be expressed as a sum of func-
tions each in AGE(𝛼𝑖;𝛼−𝑖) for 𝑖 = 1, . . . , 𝑁 , i.e.,:

SAGE(𝛼1, . . . , 𝛼𝑁) = AGE(𝛼1;𝛼−1) + · · ·+ AGE(𝛼𝑁 ;𝛼−𝑁). (6.18)

In [24] a nonnegative signomial function with at most one negative coefficient is
called a “AM-GM exponential”, hence the notation AGE. Checking that a function
is in SAGE(𝛼1, . . . , 𝛼𝑁) can be done using convex optimization, and more precisely
using relative entropy optimization [23].

The cone and the lifting map We now give an interpretation of SAGE certificates
(6.18) using a naturally defined lifting map from 𝑋 = R𝑛 to a certain product of
exponential cones. Let 𝐾(𝑙)

AGE be the cone in R2𝑙+1 defined as:

𝐾
(𝑙)
AGE = cl

{︀
(𝑡, 𝑦, 𝑧) ∈ R𝑙 × R++ × R𝑙

+ : 𝑦𝑒𝑡𝑗/𝑦 ≤ 𝑧𝑗 ∀𝑗 = 1, . . . , 𝑙
}︀
.

Note that 𝐾(𝑙)
AGE is related to the well-known exponential cone:

𝐾exp = cl
{︀
(𝑡, 𝑦, 𝑧) ∈ R× R++ × R++ : 𝑦𝑒𝑡/𝑦 ≤ 𝑧

}︀
. (6.19)

Indeed 𝐾(𝑙)
AGE is the intersection of the Cartesian product (𝐾exp)

𝑙 = 𝐾exp × · · · ×𝐾exp

with the subspace {(𝑡, 𝑦, 𝑧) ∈ R3𝑙 : 𝑦1 = · · · = 𝑦𝑙}.
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Given 𝛼1, . . . , 𝛼𝑙, 𝛼 ∈ R𝑛, consider the map 𝐴𝛼;𝛼 : R𝑛 → 𝐾
(𝑙)
AGE:

𝐴𝛼;𝛼(𝑥) =

⎡
⎢⎢⎣

[︀
exp(𝛼𝑇𝑥) · (𝛼𝑗 − 𝛼)𝑇𝑥

]︀
𝑗=1,...,𝑙

exp(𝛼𝑇𝑥)
[︀
exp(𝛼𝑇

𝑗 𝑥)
]︀
𝑗=1,...,𝑙

⎤
⎥⎥⎦ . (6.20)

It is a straightforward calculation to verify that 𝐴𝛼;𝛼(𝑥) ∈ 𝐾
(𝑙)
AGE. The next proposi-

tion shows that one can characterize the set of nonnegative signomial functions with
at most one negative coefficient in terms of 𝐴𝛼;𝛼.

Proposition 19. Consider the signomial 𝑓 defined in (6.16) where 𝑐𝑗 ≥ 0 for all
𝑗 = 1, . . . , 𝑙 and 𝑐 ∈ R. Then 𝑓 is globally nonnegative if and only if there exists
𝐵 ∈ (𝐾

(𝑙)
AGE)

* such that 𝑓(𝑥) = ⟨𝐴𝛼;𝛼(𝑥), 𝐵⟩.

Proof. Similarly to Proposition 17, one can prove this proposition in two ways. One
way is to compute an analytical expression for (𝐾(𝑙)

AGE)
* and show that the conditions

𝐵 ∈ (𝐾
(𝑙)
AGE)

* and 𝑓(𝑥) = ⟨𝐴𝛼;𝛼(𝑥), 𝐵⟩ coincide with (6.17). We give here another
proof that simply uses the definition of duality for convex cones and does not involve
computing the dual (𝐾(𝑙)

AGE)
*.

∙ We first simplify the condition 𝑓(𝑥) = ⟨𝐴𝛼,𝛼(𝑥), 𝐵⟩ and 𝐵 ∈ (𝐾
(𝑙)
AGE)

*. Observe
that if 𝐵 = (𝑡*, 𝑦*, 𝑧*) ∈ R𝑙 × R× R𝑙 then by matching coefficients we have:

𝑓(𝑥) = ⟨𝐴𝛼;𝛼(𝑥), 𝐵⟩ ⇐⇒

⎧
⎪⎨
⎪⎩

𝑧*𝑗 = 𝑐𝑗 ∀𝑗 = 1, . . . , 𝑙

𝑦* = 𝑐∑︀𝑙
𝑗=1 𝑡

*
𝑗(𝛼𝑗 − 𝛼) = 0.

(6.21)

For convenience let us introduce the matrix 𝑀 ∈ R𝑙×𝑛 given by:

𝑀 =

⎡
⎢⎣
(𝛼1 − 𝛼)𝑇

...
(𝛼𝑙 − 𝛼)𝑇

⎤
⎥⎦ ∈ R𝑙×𝑛.

The last condition on 𝑡* in the right-hand side of (6.21) is equivalent to 𝑡* ∈
Ker(𝑀𝑇 ) = Im(𝑀)⊥. Thus from (6.21) we have the equivalence:

∃𝐵 ∈ (𝐾
(𝑙)
AGE)

* s.t. 𝑓(𝑥) = ⟨𝐴𝛼;𝛼(𝑥), 𝐵⟩

⇔

∃𝑡* ∈ Im(𝑀)⊥ s.t. (𝑡*, 𝑐, 𝑐) ∈ (𝐾
(𝑙)
AGE)

*.

(6.22)

∙ Second, observe that nonnegativity of the signomial 𝑓(𝑥) can be equivalently
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written as:
∑︁𝑙

𝑗=1
𝑐𝑗 exp(𝛼

𝑇
𝑗 𝑥) + 𝑐 exp(𝛼𝑇𝑥) ≥ 0 ∀𝑥 ∈ R𝑛

⇐⇒
∑︁𝑙

𝑗=1
𝑐𝑗 exp((𝛼𝑗 − 𝛼)𝑇𝑥) + 𝑐 ≥ 0 ∀𝑥 ∈ R𝑛

⇐⇒
∑︁𝑙

𝑗=1
𝑐𝑗 exp(𝑡𝑗) + 𝑐 ≥ 0 ∀𝑡 ∈ Im(𝑀)

⇐⇒
∑︁𝑙

𝑗=1
𝑐𝑗𝑧𝑗 + 𝑐 ≥ 0 ∀(𝑡, 𝑧) ∈ Im(𝑀)× R𝑙

+ s.t. 𝑒𝑡𝑗 ≤ 𝑧𝑗, 𝑗 = 1, . . . , 𝑙

⇐⇒
∑︁𝑙

𝑗=1
𝑐𝑗𝑧𝑗 + 𝑐𝑦 ≥ 0 ∀(𝑡, 𝑦, 𝑧) ∈ Im(𝑀)× R++ × R𝑙

+

s.t. 𝑦𝑒𝑡𝑗/𝑦 ≤ 𝑧𝑗, 𝑗 = 1, . . . , 𝑙.

The last condition is, by definition of duality, equivalent to saying that (0, 𝑐, 𝑐) ∈
(𝐾

(𝑙)
AGE ∩ 𝐿)* where 𝐿 ⊂ R2𝑙+1 is the subspace 𝐿 = Im(𝑀) × R × R𝑙. Using well-

known properties of conic duality we have (𝐾
(𝑙)
AGE ∩ 𝐿)* = (𝐾

(𝑙)
AGE)

* + 𝐿⊥ and 𝐿⊥ =
Im(𝑀)⊥ × {0} × {0}. Thus this means that

(0, 𝑐, 𝑐) ∈ (𝐾
(𝑙)
AGE ∩ 𝐿)* ⇐⇒ ∃𝑡* ∈ Im(𝑀)⊥ s.t. (𝑡*, 𝑐, 𝑐) ∈ (𝐾

(𝑙)
AGE)

*. (6.23)

This completes the proof since it is the same as condition (6.22).

Consider now a general signomial function of the form (6.15). For each 𝑖 =

1, . . . , 𝑁 , we can consider the lifting map 𝐴𝛼𝑖,𝛼−𝑖
: R𝑛 → 𝐾

(𝑁−1)
AGE where 𝛼−𝑖 = (𝛼𝑗)𝑗 ̸=𝑖.

Define
𝐴SAGE,𝛼 : R𝑛 → 𝐾

(𝑁−1)
AGE × · · · ×𝐾

(𝑁−1)
AGE =

(︁
𝐾

(𝑁−1)
AGE

)︁𝑁

obtained by stacking together all the 𝐴𝛼𝑖,𝛼−𝑖
, i.e.,

𝐴SAGE,𝛼(𝑥) =
[︀
𝐴𝛼𝑖,𝛼−𝑖

(𝑥)
]︀
𝑖=1,...,𝑁

∈
(︁
𝐾

(𝑁−1)
AGE

)︁𝑁
.

Then it is easy to see that a signomial 𝑓 is in SAGE(𝛼1, . . . , 𝛼𝑁) if and only if there

exists 𝐵 ∈
(︂(︁

𝐾
(𝑁−1)
AGE

)︁𝑁)︂*
such that 𝑓(𝑥) = ⟨𝐴SAGE,𝛼(𝑥), 𝐵⟩.

6.6 New certificates for entropy-like functions and
applications

In this section we introduce new certificates of nonnegativity for a class of entropy-like
functions, i.e., functions of the form:

𝑝0(𝑥) +
𝑛∑︁

𝑖=1

𝑝𝑖(𝑥) log 𝑥𝑖 (6.24)
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where 𝑝0, 𝑝1, . . . , 𝑝𝑛 are polynomials and 𝑥 ∈ R𝑛
++. We first propose a proof system

relying on the concavity of log. We then see how to improve this proof system by
exploiting the matrix concavity of the logarithm. Finally we discuss an application
of our method to the problem of computing the log-Sobolev constant of a given finite
Markov chain.

6.6.1 Certificates based on classical relative entropy

In this section we see how to exploit the concavity of the logarithm function to derive
a proof system for functions of the form (6.24).

Concavity of log Since the function log is concave one can easily characterize all
the nonnegative univariate functions of the form

𝛼 + 𝛽𝑥− log 𝑥 (6.25)

where 𝛼, 𝛽 ∈ R. Indeed nonnegative functions of the form (6.25) correspond to affine
functions that lie above the curve of log and are encoded in the Fenchel conjugate of
log. From (6.25) one can generate nonnegative functions on R𝑛

++ as follows:

If 𝑓 is a univariate nonnegative function of the form (6.25) (or a non-
negative multiple of it) then 𝑥 ∈ R𝑛

++ ↦→ 𝑥𝑟𝑓(𝑥𝑠−𝑟) is nonnegative
on R𝑛

++ where 𝑟, 𝑠 ∈ N𝑛.

(6.26)

In (6.26) the notation 𝑥𝑟 corresponds to
∏︀𝑛

𝑖=1 𝑥
𝑟𝑖
𝑖 . For example if 𝑓(𝑥) = 𝑥−1−log(𝑥)

(which is nonnegative and corresponds to 𝛼 = −1 and 𝛽 = 1 in (6.25)) and if we take
𝑟 = (2, 1) ∈ N2 and 𝑠 = (1, 0) ∈ N2 we get that the bivariate function of 𝑥1, 𝑥2

𝑥21𝑥2(𝑥
−1
1 𝑥−1

2 − 1− log(𝑥−1
1 𝑥−1

2 )) = 𝑥1 − 𝑥21𝑥2 + 𝑥21𝑥2 log(𝑥1) + 𝑥21𝑥2 log(𝑥2)

is nonnegative on R2
++. By varying (𝑟, 𝑠) ∈ N𝑛×N𝑛 we get from (6.26) different classes

of nonnegative functions that are all of the form (6.24). Thus in order to certify that
an entropy-like function is nonnegative, we can try to express it as a sum of functions
obtained from (6.26) with different values of (𝑟, 𝑠) ∈ N𝑛 × N𝑛. This defines a proof
system for entropy-like functions of the form (6.24), and we will see that it can be
cast in the framework considered in this chapter, by defining an appropriate lifting
map from R𝑛

++ to the relative entropy cone.

Relative entropy cone and lifting map The relative entropy cone, denoted 𝐾re,
is the epigraph of the relative entropy function (𝑢, 𝑣) ↦→ 𝑢 log(𝑢/𝑣):

𝐾re = cl
{︁
(𝑢, 𝑣, 𝑤) ∈ R++ × R++ × R : 𝑢 log

(︁𝑢
𝑣

)︁
≤ 𝑤

}︁
. (6.27)
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The cone 𝐾re is related to the exponential cone 𝐾exp that we considered in a previous
section (cf. Equation (6.19)). In fact one can show that:

(𝑢, 𝑣, 𝑤) ∈ 𝐾re ⇔ (𝑥 = −𝑤, 𝑦 = 𝑢, 𝑧 = 𝑣) ∈ 𝐾exp.

We are now going to define a lifting map from R𝑛
++ to 𝐾re which allows us to capture

the certificates of nonnegativity described in (6.26). Given (𝑟, 𝑠) ∈ N𝑛 ×N𝑛, consider
the map 𝐴𝑟,𝑠 : R𝑛

++ → 𝐾re defined by:

𝐴𝑟,𝑠(𝑥) =

⎡
⎣

𝑥𝑟

𝑥𝑠

𝑥𝑟(𝑟 − 𝑠)𝑇 log 𝑥

⎤
⎦ . (6.28)

In (6.28) the notation log 𝑥 for 𝑥 = (𝑥1, . . . , 𝑥𝑛) corresponds to the vector (log 𝑥1, . . . , log 𝑥𝑛)
and the term (𝑟 − 𝑠)𝑇 log 𝑥 thus corresponds to

∑︀𝑛
𝑖=1(𝑟𝑖 − 𝑠𝑖) log 𝑥𝑖. It is straightfor-

ward to verify that 𝐴𝑟,𝑠(𝑥) ∈ 𝐾re for all 𝑥 ∈ R𝑛
++. Indeed we have:

𝑥𝑟 log

(︂
𝑥𝑟

𝑥𝑠

)︂
= 𝑥𝑟 log

(︀
𝑥𝑟−𝑠

)︀
= 𝑥𝑟

𝑛∑︁

𝑖=1

(𝑟𝑖 − 𝑠𝑖) log 𝑥𝑖 = 𝑥𝑟(𝑟 − 𝑠)𝑇 log 𝑥.

The next proposition shows that nonnegative functions obtained from the lifting map
(6.28) are precisely those obtained from (6.26).

Proposition 20. Let 𝑟, 𝑠 ∈ N𝑛 fixed. The nonnegative functions obtained according
to (6.26) are precisely those of the form 𝑥 ↦→ ⟨𝐴𝑟,𝑠(𝑥), 𝐵⟩ where 𝐵 ∈ 𝐾*

re.

Proof. Observe that since 𝐴𝑟,𝑠(𝑥) = 𝑥𝑟𝐴0,1(𝑥
𝑠−𝑟), the functions of the form 𝑥 ↦→

⟨𝐴𝑟,𝑠(𝑥), 𝐵⟩ are exactly those of the form 𝑥 ↦→ 𝑥𝑟𝑓(𝑥𝑠−𝑟) where 𝑓 is a univariate
function 𝑓(𝑥) = ⟨𝐴0,1(𝑥), 𝐵⟩. Thus to prove the proposition we just need to consider
the case 𝑟 = 0, 𝑠 = 1 and show that the nonnegative univariate functions of the form
𝛼 + 𝛽𝑥− 𝛾 log 𝑥 (where 𝛾 ≥ 0) are exactly those that can be written as ⟨𝐴0,1(𝑥), 𝐵⟩
where 𝐵 ∈ 𝐾*

re. Since for any 𝐵 = (𝛼, 𝛽, 𝛾) ∈ R3 we have

⟨𝐴0,1(𝑥), 𝐵⟩ = 𝛼 + 𝛽𝑥− 𝛾 log 𝑥

what we just need to show is that 𝛼+ 𝛽𝑥− 𝛾 log 𝑥 is nonnegative on R++ if and only
if (𝛼, 𝛽, 𝛾) ∈ 𝐾*

re. This follows directly from the definition of 𝐾*
re, indeed:

(𝛼, 𝛽, 𝛾) ∈ 𝐾*
re ⇐⇒ 𝛼𝑢+ 𝛽𝑣 + 𝛾𝑤 ≥ 0 ∀(𝑢, 𝑣, 𝑤) : 𝑢 log(𝑢/𝑣) ≤ 𝑤

(𝑎)⇐⇒ 𝛼𝑢+ 𝛽𝑣 + 𝛾𝑢 log(𝑢/𝑣) ≥ 0 ∀𝑢, 𝑣 > 0

(𝑏)⇐⇒ 𝛼 + 𝛽𝑥− 𝛾 log(𝑥) ≥ 0 ∀𝑥 > 0

(6.29)

where in (𝑎) we used the fact that 𝛾 ≥ 0 and in (𝑏) we used the change of variables
𝑥 = 𝑣/𝑢.
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Examples We now give two simple examples to illustrate the proof system we just
defined.

Example 18 (Univariate example). Let 𝑓(𝑥) = 𝑥2 − 3𝑥 + 2 + 𝑥 log 𝑥. From the
nonnegative function 𝑥−1−log 𝑥 and using different choices of (𝑟, 𝑠), we get according
to (6.26) the following inequalities which are valid on R++:

(𝑟 = 1, 𝑠 = 0) −𝑥+ 1 + 𝑥 log(𝑥) ≥ 0

(𝑟 = 1, 𝑠 = 2) 𝑥2 − 𝑥− 𝑥 log(𝑥) ≥ 0

By multiplying the first inequality by 2 and adding it to the second inequality we get
that 𝑓(𝑥) = 𝑥2 − 3𝑥+ 2 + 𝑥 log 𝑥 ≥ 0. ♦
Example 19 (Motzkin polynomial). Let

𝑀(𝑥, 𝑦) = 𝑥4𝑦2 + 𝑥2𝑦4 + 1− 3𝑥2𝑦2

be the dehomogenized Motzkin polynomial which is globally nonnegative on R2. Note
that 𝑀(𝑥, 𝑦) = 𝑃 (𝑥2, 𝑦2) where

𝑃 (𝑥, 𝑦) = 𝑥2𝑦 + 𝑥𝑦2 + 1− 3𝑥𝑦.

Since 𝑀 is globally nonnegative, 𝑃 is nonnegative on R2
+. The certificates of nonneg-

ativity we just defined allow us to prove nonnegativity of 𝑃 on R2
+. Indeed from the

inequality 𝑥− 1− log(𝑥) ≥ 0 and using different choices of 𝑟, 𝑠 we get from (6.26) the
following inequalities which are valid on R2

++:

(𝑟 = (1, 1), 𝑠 = (0, 0)) −𝑥𝑦 + 1 + 𝑥𝑦(log(𝑥) + log(𝑦)) ≥ 0

(𝑟 = (1, 1), 𝑠 = (2, 1)) −𝑥𝑦 + 𝑥2𝑦 + 𝑥𝑦(− log(𝑥) + log(𝑦)) ≥ 0

(𝑟 = (1, 1), 𝑠 = (1, 2)) −𝑥𝑦 + 𝑥𝑦2 + 𝑥𝑦(log(𝑥)− log(𝑦)) ≥ 0

Summing these inequalities gives 𝑃 (𝑥, 𝑦) ≥ 0 for all 𝑥, 𝑦 > 0. ♦

Operator concavity of logarithm The proof system we just defined exploits
the concavity of the logarithm. It turns out however that the logarithm function is
concave in a much stronger sense, in fact it is operator concave. This means that
for any integer 𝑛 ≥ 1 and any two positive definite matrices 𝑋, 𝑌 ∈ S𝑛

++ and any
𝜆 ∈ [0, 1] the following matrix inequality holds:

log (𝜆𝑋 + (1− 𝜆)𝑌 ) ⪰ 𝜆 log(𝑋) + (1− 𝜆) log(𝑌 ).

The operator concavity of logarithm can be exploited to define a stronger proof system
for entropy-like functions. In the next section we first review some basic results
concerning operator concavity before proceeding to the definition of such a proof
system.
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6.6.2 Operator convexity

In this section we review some results dealing with convexity of matrix-valued maps.
Good references include [8, 19]. If 𝑓 : 𝐼 → R is a function defined on an interval 𝐼 of
R and if 𝐴 is a symmetric matrix with eigenvalues in 𝐼 then we define 𝑓(𝐴) via the
spectral decomposition of 𝐴:

𝑓(𝐴) =
∑︁

𝑖

𝑓(𝜆𝑖)𝑃𝑖

where
𝐴 =

∑︁

𝑖

𝜆𝑖𝑃𝑖

is the spectral decomposition of 𝐴 (𝑃𝑖 is the orthogonal projection on the eigenspace
associated to 𝜆𝑖).

Definition 19 (Operator convex functions). Let 𝑓 : 𝐼 → R where 𝐼 is an interval of
R. We say that 𝑓 is operator convex if for any integer 𝑑 ≥ 1 and any 𝑋, 𝑌 ∈ S𝑑 with
eigenvalues in 𝐼 and 𝜆 ∈ [0, 1] we have:

𝑓(𝜆𝑋 + (1− 𝜆)𝑌 ) ⪯ 𝜆𝑓(𝑋) + (1− 𝜆)𝑓(𝑌 ). (6.30)

The definition of operator concave is similar except that the sign ⪯ is replaced by ⪰
in (6.30).

Clearly if 𝑓 is operator convex then it must be convex in the usual sense (this
is obtained by taking 𝑑 = 1 in the definition). However not all convex functions
are operator convex. For example the function 𝑓(𝑥) = 𝑥4 is convex on R but not
operator convex. One can check for example that the inequality (6.30) is violated
with 𝑋 = [ 1 0

0 2 ] , 𝑌 = [ 0 1
1 0 ] , 𝜆 = 1/2. An important result however due to Löwner is

the following.

Theorem 34 (Löwner). For any 𝑡 ∈ [0, 1] the function 𝑓(𝑥) = 𝑥𝑡 is operator concave.

One consequence of this theorem is that the logarithm function is operator con-
cave. Indeed one can easily verify that for any 𝑋 ≻ 0

log𝑋 = lim
𝑡→0

1

𝑡
(𝑋 𝑡 − 𝐼). (6.31)

Since for any 𝑡 ∈ [0, 1] the map 1
𝑡
(𝑥𝑡 − 1) is operator concave, it follows that log 𝑥 is

also operator concave.

Matrix perspective It is well-known in convex analysis that if 𝑓 is a convex func-
tion whose domain is a convex cone, then the perspective of 𝑓 defined by 𝑔(𝑥, 𝑦) =
𝑦𝑓(𝑥/𝑦) on dom 𝑓 × R++ is also convex. A similar result can be shown to hold in
the matrix case where the scaling parameter 𝑦 is a positive definite matrix (instead
of being a scalar).
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Theorem 35. Let 𝑓 : R++ → R and assume that 𝑓 is operator convex. For any
integer 𝑑 ≥ 1, define 𝑔 by

𝑔(𝑋, 𝑌 ) = 𝑌 1/2𝑓
(︀
𝑌 −1/2𝑋𝑌 −1/2

)︀
𝑌 1/2

where 𝑋 ∈ S𝑑
++ and 𝑌 ∈ S𝑑

++. Then 𝑔 is convex in the Löwner ordering, namely for
any (𝑋1, 𝑌1), (𝑋2, 𝑌2) and 𝜆 ∈ [0, 1] we have

𝑔 (𝜆𝑋1 + (1− 𝜆)𝑋2, 𝜆𝑌1 + (1− 𝜆)𝑌2) ⪯ 𝜆𝑔(𝑋1, 𝑌1) + (1− 𝜆)𝑔(𝑋2, 𝑌2).

Proof. See [98, Theorem 8.6.2].

Remark 20. An equivalent way of formulating the convexity of 𝑔 in the Löwner or-
dering, is to say that its matrix epigraph, defined by

{(𝑋, 𝑌, 𝑇 ) ∈ S𝑑
++ × S𝑑

++ × S𝑑 : 𝑔(𝑋, 𝑌 ) ⪯ 𝑇}

is convex.

6.6.3 Certificates based on matrix relative entropy

Define Ψ to be the matrix perspective function of log:

Ψ(𝐴,𝐵) = 𝐴1/2 log
(︀
𝐴−1/2𝐵𝐴−1/2

)︀
𝐴1/2 ∀(𝐴,𝐵) ∈ S𝑛

++ × S𝑛
++. (6.32)

Since log is operator concave, Theorem 35 asserts that Ψ is also concave in the Löwner
ordering. The function Ψ was considered by Fujii and Kamei [43] as a matrix-valued
relative entropy. Some properties of this function are studied in [42] and [44].

Cone and lifting map Since Ψ is a homogeneous matrix concave function, its
matrix hypograph 𝒦𝑛 is a convex cone:

𝒦𝑛 = {(𝐴,𝐵,𝐶) ∈ domΨ× S𝑛 : Ψ(𝐴,𝐵) ⪰ 𝐶}. (6.33)

To obtain certificates of nonnegativity for entropy-like functions of the form (6.24)
we are going to define a lifting map 𝐴 from R𝑛

++ to 𝒦𝑚 for some 𝑚. Given 𝑥 =
(𝑥1, . . . , 𝑥𝑛), denote by [𝑥]𝑑 the vector of all monomials up to degree 𝑑. If 𝑖 ∈ {1, . . . , 𝑛}
we can define the following map from R𝑛

++ to 𝒦𝑚 where 𝑚 = dimR[𝑥1, . . . , 𝑥𝑛]≤𝑑−1.

𝐴𝑖(𝑥) =
(︁
[𝑥]𝑑[𝑥]

𝑇
𝑑 , 𝑥𝑖[𝑥]𝑑[𝑥]

𝑇
𝑑 , log(𝑥𝑖)[𝑥]𝑑[𝑥]

𝑇
𝑑

)︁
. (6.34)

Note that even though the definition (6.32) assumes 𝐴 and 𝐵 to be invertible, the
function Ψ can in fact be extended to the case where ker𝐵 ⊆ ker𝐴, see e.g., [42]. In
(6.34) the matrices 𝐴 = [𝑥]𝑑[𝑥]

𝑇
𝑑 and 𝐵 = 𝑥𝑖[𝑥]𝑑[𝑥]

𝑇
𝑑 commute in which case the value

of Ψ(𝐴,𝐵) can be shown to be log(𝑥𝑖)[𝑥]𝑑[𝑥]
𝑇
𝑑 which shows that 𝐴𝑖(𝑥) ∈ 𝒦𝑚 for all

𝑥 > 0. Also note that all the entries of 𝐴𝑖(𝑥) are of the form 𝑥𝛼 log 𝑥𝑖 and are thus of
“entropy-like” form.
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The dual cone to 𝒦𝑛 is, by definition,

(𝒦𝑛)* = {(𝑈, 𝑉,𝑊 ) ∈ S𝑛 × S𝑛 × S𝑛 : Tr[𝑈𝐴+ 𝑉 𝐵 +𝑊𝐶] ≥ 0 ∀(𝐴,𝐵,𝐶) ∈ 𝒦𝑛}.
(6.35)

Unfortunately we do not have a closed form expression of this dual cone 𝒦𝑛. In
general gradients (and more generally Fenchel conjugates) of matrix functions are
difficult to obtain due to the noncommuting nature of the arguments 𝐴 and 𝐵.

Another important question is whether we can actually numerically solve convex
optimization problems over (6.33) efficiently. Even though this cone is not natively
supported by any solver we are aware of, one can obtain a sequence of tighter and
tighter approximations of this cone using semidefinite programming, based on a limit
formula similar to (6.31). In fact for the matrix perspective of log one can show that
we have

Ψ(𝐴,𝐵) = lim
𝑡→0

1

𝑡
(𝐴#𝑡𝐵 − 𝐴) (6.36)

where 𝐴#𝑡𝐵 is the matrix perspective of the power function (also known as the
𝑡-weighted matrix geometric mean of 𝐴 and 𝐵):

𝐴#𝑡𝐵 := 𝐴1/2
(︀
𝐴−1/2𝐵𝐴−1/2

)︀𝑡
𝐴1/2.

When 𝑡 is rational, the function (𝐴,𝐵) ↦→ 𝐴#𝑡𝐵 admits a semidefinite programming
formulation [35, 91]. By taking 𝑡 small enough one can get a semidefinite approx-
imation of the cone 𝒦𝑛, via (6.36). These are the approximations we use for the
numerical experiments presented in the next section.

6.6.4 Application: logarithmic Sobolev constants

In this section we use the certificates proposed here to compute lower bounds on the
logarithmic Sobolev constant of any given finite Markov chain. These constants play
an important role in bounding the mixing time of Markov chains [29].

We start by giving a brief description of the setting and notations needed to define
these constants. We omit any discussion on the history and original motivation behind
these constants and we refer instead to [29] for more information.

Setting Let 𝒱 be a finite state-space and consider a Markov chain on 𝒱 described
by a transition matrix 𝐾, i.e., 𝐾 : 𝒱 × 𝒱 → R+ is such that 𝐾(𝑢, 𝑣) ≥ 0 and∑︀

𝑣𝐾(𝑢, 𝑣) = 1 for all 𝑢 ∈ 𝒱 . We assume that 𝐾 is reversible with stationary
distribution 𝜋, i.e., 𝜋(𝑢)𝐾(𝑢, 𝑣) = 𝜋(𝑣)𝐾(𝑣, 𝑢) for all 𝑢, 𝑣 ∈ 𝒱 × 𝒱 . The Laplacian
matrix associated to the Markov chain is

𝐿 = 𝐼 −𝐾. (6.37)

and the differential equation describing the continuous-time Markov chain is:

𝑑𝜇

𝑑𝑡
= −𝜇𝐿 (6.38)
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where 𝜇 is a row vector representing a probability distribution on 𝒱 . Assuming that𝐾
is irreducible (i.e., that the undirected graph where edge 𝑢𝑣 has weight 𝜋(𝑢)𝐾(𝑢, 𝑣) =
𝜋(𝑣)𝐾(𝑣, 𝑢) is connected) then for any initial distribution 𝜇(0) on 𝒱 we have 𝜇(𝑡) → 𝜋
when 𝑡 → +∞. A main concern in the study of Markov chains is to study how fast
this convergence happens. We now introduce two important quantities, namely the
spectral gap and the logarithmic Sobolev constant, that can be used to bound the
mixing time of this Markov chain.

Spectral gap Since (𝐾, 𝜋) is reversible the Laplacian 𝐿 defined in (6.37) is a self-
adjoint map on R𝒱 for the inner product

⟨𝑓, 𝑔⟩𝜋 =
∑︁

𝑢∈𝒱
𝜋(𝑢)𝑓(𝑢)𝑔(𝑢).

As such the eigenvalues of 𝐿 are all real; furthermore they are all nonnegative since
𝐿 is diagonally dominant. The smallest eigenvalue of 𝐿 is zero since 𝐿 1 = 0 where
1 is the all-ones vector. The spectral gap 𝜆 of the Markov chain 𝐾 is defined as the
second smallest eigenvalue of 𝐿. It has the following variational formulation:

𝜆 = min
𝑓∈R𝒱

{⟨𝑓, 𝐿𝑓⟩𝜋 : E𝜋[𝑓 ] = 0, E𝜋[𝑓
2] = 1}. (6.39)

The constraint E𝜋[𝑓 ] = 0 states that 𝑓 is orthogonal to the all-ones vector 1, and
E𝜋[𝑓

2] = 1 is equivalent to ⟨𝑓, 𝑓⟩𝜋 = 1. The spectral gap allows us to bound the rate
at which 𝜇 converges to 𝜋. For example it is not difficult to show, using standard
comparison theorems for dynamical systems, that for any initial distribution 𝜇(0) on
𝒱 the trajectory 𝜇(𝑡) satisfies

‖𝜇(𝑡)− 𝜋‖2TV ≤ 1

4
· 1

𝜋*
𝑒−2𝜆𝑡 (6.40)

where ‖𝜇− 𝜋‖TV is the total variation distance

‖𝜇− 𝜋‖TV :=
1

2

∑︁

𝑢∈𝒱
|𝜇(𝑢)− 𝜋(𝑢)|

and where 𝜋* = min𝑢∈𝒱 𝜋(𝑢) (note that the dependence on the initial distribution
𝜇(0) does not appear in (6.40), and instead it was bounded above by the term 1/𝜋*),
see e.g., [29]. The spectral gap is probably the most popular way to bound the
mixing time of a Markov chain. In some cases however one wants to resort to other
techniques that yield more accurate bounds. One such technique is based on the
logarithmic Sobolev constant.
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Log-Sobolev constant Recall that if 𝜇 and 𝜋 are two probability distributions on
𝒱 then their KL-divergence is defined as:

𝐷KL(𝜇‖𝜋) =
∑︁

𝑢∈𝒱
𝜇(𝑢) log(𝜇(𝑢)/𝜋(𝑢)).

Definition 20 (Logarithmic Sobolev constant). Let (𝐾, 𝜋) be a finite reversible
Markov chain and let 𝐿 = 𝐼 − 𝐾 be the associated Laplacian. The logarithmic
Sobolev constant associated to (𝐾, 𝜋) is defined as:

𝛼 = min
𝑓∈R𝒱

{︂ ⟨𝑓, 𝐿𝑓⟩𝜋
𝐷KL(𝑓 2𝜋‖𝜋) : E𝜋[𝑓

2] = 1

}︂
. (6.41)

Equivalently, it is the largest constant 𝑐 such that ⟨𝑓, 𝐿𝑓⟩𝜋 ≥ 𝑐𝐷KL(𝑓
2𝜋‖𝜋) holds for

all 𝑓 ∈ R𝒱 satisfying E𝜋[𝑓
2] = 1.

Note that in (6.41) the expression 𝑓 2𝜋 corresponds to the probability distribution
𝜇(𝑢) = 𝑓 2(𝑢)𝜋(𝑢) (this is a valid probability distribution since E𝜋[𝑓

2] = 1). The
importance of the constant 𝛼 comes from the fact that it gives a bound on the mixing
time of the Markov chain (𝐾, 𝜋). Indeed it is shown in [29] that for any initial
distribution 𝜇(0) on 𝒱 the solution 𝜇(𝑡) of (6.38) satisfies:

‖𝜇(𝑡)− 𝜋‖2TV ≤ 1

2
log

(︂
1

𝜋*

)︂
𝑒−2𝛼𝑡. (6.42)

Note that if 𝛼 ≈ 𝜆, the estimate (6.42) can be much better than (6.40), especially
when the state space has exponential size. Indeed if for example 𝒱 = {0, 1}𝑛 and
𝜋* is the uniform distribution then the coefficient in (6.40) is 1/𝜋* = 2𝑛 whereas in
(6.42) it is log(1/𝜋*) = 𝑛.

Lower bound on 𝛼 using convex optimization Unfortunately the problem of
computing the logarithmic Sobolev constant of a given Markov chain is very difficult
[92, page 336] (we are not aware though of any formal complexity result concerning
the computation of 𝛼). The objective of this section is to show how the certificates
presented earlier can be used to compute a lower bound on 𝛼. We also present
numerical experiments indicating that the bounds we get are very close to the correct
values of 𝛼 (when it is known).

First, observe that the problem of computing 𝛼 can be formulated as the prob-
lem of certifying nonnegativity of an entropy-like function. Indeed if we expand the
definition of ⟨𝑓, 𝐿𝑓⟩𝜋 and of 𝐷KL(𝑓

2𝜋‖𝜋) in (6.41), and use the fact that 𝑓 can be
assumed positive (since ⟨|𝑓 |, 𝐿|𝑓 |⟩𝜋 ≤ ⟨𝑓, 𝐿𝑓⟩𝜋) we see that 𝛼 is the largest constant
𝑐 such that the following expression

1

2

∑︁

𝑢,𝑣∈𝒱
𝜋(𝑢)𝐾(𝑢, 𝑣)(𝑓(𝑢)− 𝑓(𝑣))2 − 2𝑐

∑︁

𝑢∈𝒱
𝑓(𝑢)2𝜋(𝑢) log(𝑓(𝑢)) (6.43)

is nonnegative on {𝑓 ∈ R𝒱
++ : E𝜋[𝑓

2] = 1}. Note that the expression (6.43) (where
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the variables are the 𝑓(𝑢), 𝑢 ∈ 𝒱) is an “entropy-like” function of the form (6.24). Let
𝐴𝑢 : R𝑛 → 𝒦𝑛+1 for 𝑢 ∈ 𝒱 be the lifting map defined in (6.34) with 𝑑 = 1:

𝐴𝑢(𝑥) =
(︁
[𝑥]1[𝑥]

𝑇
1 , 𝑥𝑢[𝑥]1[𝑥]

𝑇
1 , log(𝑥𝑢)[𝑥]1[𝑥]

𝑇
1

)︁
.

We can use this lifting map, together with the sum-of-squares proof system, to define
a lower bound 𝛼cvx on 𝛼 that can be computed using convex optimization. This is
the object of the next definition.

Definition 21. Given a reversible Markov chain (𝐾, 𝜋) on state space {1, . . . , 𝑛}
we define 𝛼cvx to be the largest constant 𝑐 such that there exist 𝐵𝑢 ∈ (𝒦𝑛+1)* for
𝑢 ∈ {1, . . . , 𝑛}, 𝑠𝑜𝑠 ∈ SOS𝑛,4 (a sum-of-squares polynomial of degree at most 4), and
𝑝 ∈ R[𝑥1, . . . , 𝑥𝑛]≤2 such that the following identity holds for all 𝑥 ∈ R𝑛

++:

1

2

∑︁

1≤𝑢,𝑣≤𝑛

𝜋(𝑢)𝐾(𝑢, 𝑣)(𝑥𝑢 − 𝑥𝑣)
2 − 2𝑐

∑︁

𝑢∈𝒱
𝑥2𝑢𝜋(𝑢) log(𝑥𝑢)

=
∑︁

1≤𝑢≤𝑛

⟨𝐴𝑢(𝑥), 𝐵𝑢⟩+ 𝑠𝑜𝑠(𝑥) + 𝑝(𝑥)

(︃ ∑︁

1≤𝑢≤𝑛

𝜋(𝑢)𝑥2𝑢 − 1

)︃
.

(6.44)

Note that we used the notation 𝑥𝑢 instead of 𝑓(𝑢) to denote the indeterminates
in (6.44), to make it more consistent with the previous sections. Since the right-hand
side of (6.44) is nonnegative whenever

∑︀
1≤𝑢≤𝑛 𝜋(𝑢)𝑥

2
𝑢 = 1 we see that the constant

𝛼cvx satisfies 𝛼cvx ≤ 𝛼 where 𝛼 is the log-Sobolev constant of (𝐾, 𝜋). Furthermore
𝛼cvx can be computed as the solution of a convex optimization problem involving the
positive semidefinite cone (for the 𝑠𝑜𝑠 term) and the cone 𝒦𝑛+1 that we introduced
in the previous section.

Numerical examples We tested our approach on some examples of transition ma-
trices 𝐾 for which the log-Sobolev constant is known, and some where it is unknown.
More specifically we looked at the following three examples of Markov chain:

∙ Two-point space: This is a Markov chain on a two-point space 𝒱 = {−1, 1}
with the transition matrix

𝐾 =

[︂
𝜃 1− 𝜃
𝜃 1− 𝜃

]︂

where 𝜃 ∈ (0, 1/2]. This chain is reversible with respect to the stationary
distribution 𝜋 = (𝜃, 1− 𝜃). The spectral gap of this chain is equal to 1, and the
log-Sobolev constant, computed in [29, Theorem A.2] is equal to (1−𝜃)/ log((1−
𝜃)/𝜃).

∙ Complete graph: This is a Markov chain on the complete graph where each
node has probability 1/(𝑛 − 1) of transitioning to one of its neighbors. The
transition matrix is thus 𝐾 = 1

𝑛−1
(1 1𝑇 −𝐼𝑛) and the stationary distribution is

uniform 𝜋 = 1 /𝑛. The log-Sobolev constant was shown in [29, Corollary A.5]
to be equal to 𝑛−2

(𝑛−1) log(𝑛−1)
.
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∙ Cycle graph: Finally the last example we consider is the cycle graph on 𝑛
nodes where each node has probability 1/2 of transitioning to one of its two
neighbors. Thus 𝐾(𝑢, 𝑢 ± 1) = 1

2
for 𝑢 ∈ Z𝑛 and 0 otherwise. The stationary

distribution is the uniform distribution. The log-Sobolev constant was shown
in [26] to be equal to 1

2
(1 − cos(2𝜋/𝑛)) when 𝑛 is even. However the value for

𝑛 odd is unknown.

Table 6.1 shows the numerical results obtained on the different chains discussed above.
To compute 𝛼cvx we used the approximation given by the limit formula (6.36), with
the semidefinite programming formulation of the matrix geometric mean given in [35]
with 𝑡 = 2−6. The computations were done on Matlab using CVX [54, 53] and the
solver Sedumi.

Markov chain
𝛼cvx

(approx. (6.36),
𝑡 = 2−6)

Exact 𝛼
(if known) 𝜆/2

Two-point space
[29, Thm. A.2]
𝐾 =

[︀
𝜃 1−𝜃
𝜃 1−𝜃

]︀

𝜋 = (𝜃, 1− 𝜃)

𝛼 = (1−𝜃)
log((1−𝜃)/𝜃)

𝜃 = 0.1 0.3602 0.3641 0.5000
𝜃 = 0.2 0.4289 0.4328 0.5000
𝜃 = 0.3 0.4682 0.4721 0.5000
𝜃 = 0.4 0.4894 0.4933 0.5000
𝜃 = 0.5 0.4969 0.5000 0.5000

Complete graph
[29, Cor. A.5]

𝐾 = 1
𝑛−1

(1 1𝑇 −𝐼𝑛)
𝜋 = 1 /𝑛

𝛼 = 𝑛−2
(𝑛−1) log(𝑛−1)

𝑛 = 3 0.7155 0.7213 0.7500
𝑛 = 4 0.6017 0.6068 0.6667
𝑛 = 5 0.5362 0.5410 0.6250
𝑛 = 6 0.4924 0.4971 0.6000
𝑛 = 7 0.4606 0.4651 0.5833
𝑛 = 8 0.4360 0.4405 0.5714

Cycle graph [26]
For 𝑛 even

𝛼 = 1
2
(1− cos

(︀
2𝜋
𝑛

)︀
)

𝑛 = 4 0.4970 0.5000 0.5000
𝑛 = 5 0.3446 ? 0.3455
𝑛 = 6 0.2491 0.2500 0.2500
𝑛 = 7 0.1878 ? 0.1883
𝑛 = 8 0.1465* 0.1464 0.1464

Table 6.1: Numerical lower bounds on the log-Sobolev constants for some finite
Markov chains. The last column gives the value of 𝜆/2 (𝜆 is the spectral gap) which
is always an upper bound on the log-Sobolev constant [92, Lemma 2.2.2].
*The quantity 𝛼cvx is always a lower bound to 𝛼 however numerical errors can cause small violations
of the inequality 𝛼cvx ≤ 𝛼.

Comments and open questions We see from Table 6.1 that 𝛼cvx gets very close
to the true value of 𝛼 for the different chains that were considered. There are several
open questions concerning 𝛼cvx that it would be interesting to explore further:
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∙ Tensorization: One important property of the log-Sobolev constant 𝛼 is ten-
sorization. Assume (𝐾1, 𝜋1) and (𝐾2, 𝜋2) are two reversible Markov chains on
state spaces 𝒱1 and 𝒱2. Consider the product Markov chain 𝐾 on state space
𝒱 = 𝒱1 ×𝒱2 defined as follows: from state (𝑢1, 𝑢2) ∈ 𝒱1 ×𝒱2 we choose a coor-
dinate 𝑖 = 1 or 2 with probability 1/2 and we update the 𝑖’th component using
transition matrix 𝐾𝑖. In matrix terms, the transition matrix 𝐾 of the product
chain is given by:

𝐾 =
1

2
(𝐾1 ⊗ 𝐼 + 𝐼 ⊗𝐾2)

where ⊗ denotes Kronecker product. If we let 𝜋(𝑢1, 𝑢2) = 𝜋1(𝑢1)𝜋2(𝑢2) then it
is not hard to see that (𝐾, 𝜋) is reversible. The remarkable property about the
log-Sobolev constant of (𝐾, 𝜋) is that it satisfies:

𝛼 =
1

2
min(𝛼1, 𝛼2)

where 𝛼1, 𝛼2 are respectively the log-Sobolev constants of (𝐾1, 𝜋1) and (𝐾2, 𝜋2).
This property allows us for example to get the log-Sobolev constant of the
random walk on the hypercube {0, 1}𝑛 where at each step we flip one coordinate
chosen at random, from the log-Sobolev constant of the two-point space. As
this is a crucial property of 𝛼 an important question is to know whether the
relaxation 𝛼cvx also satisfies such a tensorization property.

∙ Modified log-Sobolev constants: There are other constants similar to 𝛼 that have
been proposed to quantify the mixing time of Markov chains and are sometimes
called modified log-Sobolev constants [11]. These constants can give sharper
estimates about the convergence of the Markov chain to the stationary distri-
bution. One interesting question is to know whether the approach proposed
here can be applied also to compute modified logarithmic Sobolev constants.

∙ Fastest Markov chain in terms of log-Sobolev constant: In [14] Boyd, Diaconis
and Xiao studied the following problem: given an unweighted undirected graph
𝐺 find a symmetric transition probability matrix such that the resulting Markov
chain (with the uniform stationary distribution) has the “fastest” mixing, in
terms of the spectral gap. The resulting optimization problem can be shown to
be a semidefinite program [14]. A natural question is to study the same problem
where the notion of “fastest” is measured according to the log-Sobolev constant,
rather than the spectral gap (in fact the authors of [14] pose this question at
the end of their paper). It would be interesting to know whether the fastest
Markov chains in both cases can be very different from each other.
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6.7 Summary of chapter

∙ We consider the general problem of certifying global nonnegativity of a
function 𝑓 defined on some set 𝑋.

∙ A conic certificate of nonnegativity on 𝑋 is given by the choice of a convex
cone 𝐾 and a lifting map 𝐴 : 𝑋 → 𝐾. Given 𝑓 : 𝑋 → R one can try to
certify that 𝑓 is nonnegative by finding 𝐵 ∈ 𝐾* such that

𝑓(𝑥) = ⟨𝐴(𝑥), 𝐵⟩ ∀𝑥 ∈ 𝑋.

∙ Many existing certificates of nonnegativity fall into this framework: LP
certificates (Farkas, Krivine, Handelman, Sherali-Adams), SOS certificates,
certificates based on geometric programming [46], certificates for signomial
functions [24].

∙ We use this framework to develop a new way to certify nonnegativity of
entropy-like functions, i.e., functions of the form 𝑝0(𝑥)+

∑︀𝑛
𝑖=1 𝑝𝑖(𝑥) log(𝑥𝑖).

Our certificates exploit the matrix concavity of the logarithm function. As
an application we show how it can be used to numerically estimate the
logarithm Sobolev constant of finite Markov chains.
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