
Mathematical Tripos Part IB: Lent 2018

Numerical Analysis – Exercise Sheet 11

1. Suppose that the function values f(0), f(1), f(2) and f(3) are given and that we wish
to estimate

f(6), f ′(0) and
∫ 3

0
f(x) dx.

One method is to let p be the cubic polynomial that interpolates these function values, and
then to employ the approximants

p(6), p′(0) and
∫ 3

0
p(x) dx

respectively. Deduce from the Lagrange formula for p that each approximant is a linear
combination of the four data with constant coefficients. Calculate the numerical values of
these constants. Verify your work by showing that the approximants are exact when f is an
arbitrary cubic polynomial.

2. Let f be a function in C4[0, 1] and let p be a cubic polynomial that interpolates
f(0), f ′(0), f(1) and f ′(1). Deduce from the Rolle theorem that for every x ∈ [0, 1] there
exists ξ ∈ [0, 1] such that the equation

f(x)− p(x) = 1
24
x2(x− 1)2f (4)(ξ)

is satisfied.

3. Let a, b and c be distinct real numbers (not necessarily in ascending order), and let
f(a), f(b), f ′(a), f ′(b) and f ′(c) be given. Because there are five data, one might try to
approximate f by a polynomial of degree at most four that interpolates the data. Prove by
a general argument that this interpolation problem has a solution and the solution is unique
if and only if there is no nonzero polynomial p ∈ P4[x] that satisfies p(a) = p(b) = p′(a) =
p′(b) = p′(c) = 0. Hence, given a and b, show that there exists a unique value of c 6= a, b
such that there is no unique solution.
[Note: This form of interpolation when both function values and derivatives are fitted, perhaps
at different points, is known as Birkhoff–Hermite interpolation.]

4. Let f : R → R be a given function and let p be the polynomial of degree at most n
that interpolates f at the pairwise distinct points x0, x1, . . . , xn. Further, let x be any real
number that is not an interpolation point. Deduce the identity

f(x)− p(x) = f [x0, x1, . . . , xn, x]
n∏

j=0

(x− xj)

from the definition of the divided difference f [x0, x1, . . . , xn, x].

5. Simulating a computer that works to only four decimal places, form the table of divided
differences of the values f(0) = 0, f(0.1) = 0.0998, f(0.4) = 0.3894 and f(0.7) = 0.6442 of

1Corrections and suggestions should be emailed to h.fawzi@damtp.cam.ac.uk.
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sinx. Hence identify the polynomial that is given by Newton’s interpolation method. Due
to rounding errors, this polynomial should differ from the one that would be given by exact
arithmetic. Take the view, however, that the computed values of f [0.0, 0.1], f [0.0, 0.1, 0.4]
and f [0.0, 0.1, 0.4, 0.7] and the function value f(0) are correct. Then, by working backwards
through the difference table, identify the values of f(0), f(0.1), f(0.4) and f(0.7) that would
give these divided differences in exact arithmetic.

6. Set f(x) = 2x− 1, x ∈ [0, 1]. We require a function of form

p(x) =
n∑

k=0

ak cos(kπx), 0 ≤ x ≤ 1,

that satisfies the condition ∫ 1

0
[f(x)− p(x)]2 dx < 10−4.

Explain why it is sufficient if the value of a20+
1
2

∑n
k=1 a

2
k exceeds 1

3
−10−4, where the coefficients

{ak}nk=0 are calculated to minimize this integral. Hence find the smallest acceptable value of
n.

7. The polynomials {pn}n∈Z+ are defined by the three-term recurrence formula

p0(x) ≡ 1,

p1(x) = 2x,

pn+1(x) = 2xpn(x)− pn−1(x), n = 1, 2, . . . .

Prove that they are orthogonal with respect to the inner product

〈f, g〉 =
∫ 1

−1
f(x)g(x)

√
1− x2 dx

and evaluate 〈pn, pn〉 for n ∈ Z+. [Hint: Prove that pn(x) = sin(n + 1)θ/ sin θ, where
x = cos θ.]
[Note: These pns are known as Chebyshev polynomials of the second kind and denoted by
pn = Un.]

8. Calculate the coefficients b1, b2, c1 and c2 so that the approximant∫ 1

0
f(x) dx ≈ b1f(c1) + b2f(c2)

is exact when f is a cubic polynomial. You may exploit the fact that c1 and c2 are the
zeros of a quadratic polynomial that is orthogonal to all linear polynomials. Verify your
calculation by testing the formula when f(x) = 1, x, x2 and x3.

9. The functions p0, p1, p2, . . . are generated by the Rodrigues formula

pn(x) = ex
dn

dxn
(xne−x), 0 ≤ x <∞.

Show that these functions are polynomials and prove by integration by parts that for every
p ∈ Pn−1[x] we have the orthogonality condition 〈pn, p〉 = 0 with respect to the scalar product

〈f, g〉 :=
∫ ∞
0

e−xf(x)g(x) dx.
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Derive the coefficients of p3, p4 and p5 from the Rodrigues formula. Verify that these coeffi-
cients are compatible with a three term recurrence relation of the form

p5(x) = (γx− α)p4(x)− βp3(x), x ∈ R,

where α, β and γ are constants.
[Note: Ln = 1

n!
pn or, if you want to be really sophisticated, L(0)

n = 1
n!
pn, are known as

Laguerre polynomials.]

10. Let p(1
2
) = 1

2
(f(0) + f(1)), where f is a function in C2[0, 1]. Find the least constants

c0, c1 and c2 such that the error bounds

|f(1
2
)− p(1

2
)| ≤ ck‖f (k)‖∞ , k = 0, 1, 2,

are valid.
[Note: The cases k = 0 and k = 1 are easy if one works from first principles, and the Peano
kernel theorem is suitable when k = 2. Also try the Peano kernel theorem when k = 1.]

11. Express the divided difference f [0, 1, 2, 4] in the form

f [0, 1, 2, 4] =
∫ 4

0
K(θ)f ′′′(θ) dθ,

assuming that f ′′′ exists and is continuous. Sketch the kernel function K(θ) for 0 ≤ θ ≤ 4.
By integrating K(θ) analytically and using the mean value theorem prove that

f [0, 1, 2, 4] = 1
6
f ′′′(ξ)

for some point ξ ∈ [0, 4]. Note that another proof of this result was given in the lecture on
divided differences.

12. Let f be a function in C4[0, 1] and let ξ be any fixed point in [0, 1]. Calculate the
coefficients α, β, γ and δ such that the approximant

f ′′′(ξ) ≈ αf(0) + βf(1) + γf ′(0) + δf ′(1)

is exact for all cubic polynomials. Prove that the inequality

|f ′′′(ξ)− αf(0)− βf(1)− γf ′(0)− δf ′(1)| ≤
{
1
2
− ξ + 2ξ3 − ξ4

}
‖f (4)‖∞

is satisfied. Show that this inequality holds as an equation if we allow f to be the function

f(x) =

 −(x− ξ)4, 0 ≤ x ≤ ξ,

(x− ξ)4, ξ ≤ x ≤ 1.

13. [Not easy!] Given f and g in C[a, b], let h := fg. Prove by induction that the divided
differences of h satisfy the equation

h[x0, x1, . . . , xn] =
n∑

j=0

f [x0, x1, . . . , xj]g[xj, xj+1, . . . , xn].

By expressing the differences in terms of derivatives and by letting the points x0, x1, . . . , xn
become coincident, deduce the Leibniz formula for the nth derivative of a product of two
functions.
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