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Numerical Analysis – Lecture 91

Formally, y(tn+1) = y(tn) +

∫ tn+1

tn

f(t,y(t))dt, and this can be ‘approximated’ by

yn+1 = yn + h

ν∑
l=1

blf(tn + clh,y(tn + clh)). (4.11)

except that, of course, the vectors y(tn + clh) are unknown! Runge–Kutta methods are a means of imple-
menting (4.11) by replacing unknown values of y by suitable linear combinations. The general form of a
ν-stage explicit Runge–Kutta method (RK) is

k1 = f(tn,yn),

k2 = f(tn + c2h,yn + hc2k1),

k3 = f(tn + c3h,yn + h(a3,1k1 + a3,2k2)), a3,1 + a3,2 = c3,

...

kν = f

tn + cνh,yn + h

ν−1∑
j=1

aν,jkj

 ,

ν−1∑
j=1

aν,j = cν ,

yn+1 = yn + h

ν∑
l=1

blkl.

The choice of the RK coefficients al,j is motivated at the first instance by order considerations.

Example Set ν = 2. We have k1 = f(tn,yn) and, Taylor-expanding about (tn,yn),

k2 = f(tn + c2h,yn + c2hf(tn,yn))

= f(tn,yn) + hc2

[
∂f(tn,yn)

∂t
+
∂f(tn,yn)

∂y
f(tn,yn)

]
+O

(
h2
)
.

But

y′ = f(t,y) ⇒ y′′ =
∂f(t,y)

∂t
+
∂f(t,y)

∂y
f(t,y).

Therefore, substituting the exact solution yn = y(tn), we obtain k1 = y′(tn) and k2 = y′(tn) + hc2y
′′(tn) +

O
(
h2
)
. Consequently, the local error is

y(tn+1)− (y(tn) + hb1k1 + hb2k2) = [y(tn) + hy′(tn) + 1
2h

2y′′(tn) +O
(
h3
)
]

− [y(tn) + h(b1 + b2)y′(tn) + h2b2c2y
′′(tn) +O

(
h3
)
].

We deduce that the RK method is of order 2 if b1 + b2 = 1 and b2c2 = 1
2 . We can demonstrate that no

such method may be of order ≥ 3. To show this consider the ODE y′ = y with y(0) = 1 whose solution is
y(t) = et. For this ODE we can write the local error explicitly: indeed we have k1 = f(tn, y(tn)) = etn and
k2 = f(tn + c2h, y(tn) + c2hk1) = y(tn) + c2hk1 = etn(1 + c2h). Then the local error is

y(tn+1)− (y(tn) + hb1k1 + hb2k2) = etn+1 − etn − etn(hb1 + hb2 + h2b2c2)

= etn(eh − 1− h(b1 + b2)− h2(b2c2))

= etn
(
h(1− b1 − b2) + h2(1/2− b2c2) +

h3

6
+O

(
h4
))

.

1Corrections and suggestions to these notes should be emailed to h.fawzi@damtp.cam.ac.uk.

1



We see that there is no choice of b1, b2, c2, c2 that will make the term h3 vanish, and so the method cannot
have order ≥ 3.

General RK methods A general ν-stage Runge–Kutta method is

kl = f

tn + clh,yn + h

ν∑
j=1

al,jkj

 where

ν∑
j=1

al,j = cl, l = 1, 2, . . . , ν,

yn+1 = yn + h

ν∑
l=1

blkl.

Obviously, al,j = 0 for all l ≤ j yields the standard explicit RK. Otherwise, an RK method is said to be
implicit.

4.4 Stiff equations

Consider the linear scalar system {
y′ = λy

y(0) = 1

where λ < 0. The solution is y(t) = eλt which decays to 0 as t→∞. If we solve our ODE using a numerical
method, we would like our sequence (yn) to also decay to zero. For example with Euler’s method we get
yn+1 = yn + hλyn = (1 + hλ)yn whose solution is yn = (1 + hλ)n. Thus the sequence yn converges to 0 as
n → ∞ provided that |1 + hλ| < 1, i.e., h < 2/|λ|. For large λ this can be a severe restriction on h: for
example for λ = −1000 this implies h < 2/1000 = 0.002.

Consider now the implicit Euler method. Here we have yn+1 = yn+hλyn+1 which gives yn+1 = (1−hλ)−1yn
and so yn = (1− hλ)−n which converges to 0 for any choice of h > 0 (we assumed λ < 0)!

Definition Suppose that a numerical method, applied to y′ = λy, y(0) = 1, with constant h, produces the
solution sequence {yn}n∈Z+ . We call the set

D = {hλ ∈ C : lim
n→∞

yn = 0}

the linear stability domain of the method. Noting that the set of λ ∈ C for which y(t)
t→∞−→ 0 is the left

half-plane C− = {z ∈ C : Re z < 0}, we say that the method is A-stable if C− ⊆ D.

Example We have already seen that for the explicit Euler’s method yn → 0 iff |1 + hλ| < 1, therefore
D = {z ∈ C : |1 + z| < 1} and the explicit Euler method is not A-stable. Moreover, solving y′ = λy with
the implicit Euler method we have seen that yn → 0 iff |1− hλ|−1 < 1, therefore the linear stability domain
is D = {z ∈ C : |1− z| > 1}, hence the implicit Euler method is A-stable.
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