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Numerical Analysis — Lecture 13!

Pivoting Naive LU factorization fails when, for example, A; ; = 0. The remedy is to exchange rows of A, a
technique called pivoting. Specifically, at the k’th step of the algorithm we look for another row p > k such that
the entry (Ag_1)p,x is nonzero. We permute rows p and k and proceed. The algorithm with pivoting can thus
be written as follows:

o Let AO = A.

e For k = 1,...,n: find p > k such that (Ax_1),x # 0. Let Py be the permutation matrix® that swaps
positions k and p. Let u,I be the k’th row of P, Ax_; and I be m X (k’th column of PyAg_1).

Set Ak = PkAk,1 - lku;‘g

If we unroll the algorithm we have A3 = Py Ag — llu{, Ay = PP A— PgllulT — lgug, etc. and at the end, since
A, =0 (and P, the identity matrix):

Py PA=lul +-- +lu (5.2)

where l~k = P,_1...P;41l;. Note that the first £k — 1 components of ik are zero since this is the case for I and
since the permutations Py1, ..., P,_1 only permute components of index > k + 1. Therefore, Equation (5.2)
can be rewritten as:

PA=LU

where P = P,_; ... P, is a permutation matrix, and L = [l1 ... l,] is unit lower triangular, and U is upper
triangular.

There is one situation where the algorithm above can still fail: this if for some k, all the entries in the k’th
column of Ay 1 are zero. In this case one can choose l; to be the vector with a 1 at position k£ and zero
elsewhere, and choose ug to be the k’th row of Ag_1, and P, = I (identity matrix). With this choice, the first
k rows and columns of Ay = Ap_1 — l;fukT become zero as desired (this is not the only choice of Py, lx, uy that
works in this case; other choices are possible).

We have thus shown that for any matrix A (even singular) one can find a permutation matrix P such that PA
has an LU factorization.

Pivoting is not only important to find an element that is nonzero, but also for the overall numerical stability of
the algorithm. A common choice of pivot p is to take p > k such that |(Ag—1)p k| is maximum. This ensures in
particular that the entries of I, are all bounded above by 1 in magnitude.

Symmetric matrices Let A be an n x n symmetric matrix (i.e., Ay ¢ = Agr). An analogue of LU factorization
that takes advantage of symmetry consists in expressing A in the form of the product LDLT, where L is
n x n lower triangular, with ones on its diagonal and D is a diagonal matrix. This is a special case of an LU
factorization with U = DLT. If we let I,...,1, be the columns of L then this factorization takes the form
A= ZZ=1 Dk,klkl;. To compute this factorization, we can use an algorithm very similar to the one for the
computation of LU factorization (without pivoting): Set Ag = A and for k = 1,2,...,n let l; be the multiple
of the kth column of Aj_; such that Ly, = 1. Set Dy = (Ak—1)kr and form Ay, = Ax_q1 — Dk,klklkT.
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Example Let A = Ay = [ ] Hence 1 = { ; }7 Dy =2and

ICorrections and suggestions to these notes should be emailed to h.fawzi@damtp.can.ac.uk.

2A permutation matrix is a matrix with exactly one 1 in each row and in each column; the remaining entries being 0. For

example P = [[1) [1)] is a permutation matrix and PA exchanges the two rows of A.



Symmetric positive definite matrices Recall: A is positive definite if " Az > 0 for all = # 0.

Theorem Let A be a real n x n symmetric matrix. It is positive definite if and only if it has an LDLT
factorization in which the diagonal elements of D are all positive.

Proof. Suppose that A = LDLT and let € R™ \ {0}. Since L is nonsingular (it is lower triangular and
all diagonal elements are equal to 1), y := L'x # 0. Then ' Ax = y' Dy = Sor_i Dikyi > 0, hence A is
positive definite.

Conversely, suppose that A is positive definite. We wish to demonstrate that an LDLT factorization exists.
We denote by ej, € R™ the kth unit vector. Hence e Ae; = Ai1>0and l; & Dy are well defined. We now
show that (Ax—1)kxr > 0 for K =1,2,.... This is true for £k = 1 and we continue by induction, assuming that

A1 =A— Zj:ll Djyjljl;r has been computed successfully.

Define £ € R™ as the solution of the following system of equations: l;rac =0,7=1,...,k—1, x4y = 1 and
xj =0for j =k+1,...,n. This is a system of n linear equations in the unknown x € R". The matrix of this
system of equations is upper triangular with ones on the diagonal hence it is invertible and our system has a
unique solution. Now observe that since the first £k — 1 rows & columns of A;_; vanish, and since zy = 1 and
the components k+1,...,n of x vanish we have (Ax_1)kx = x " Aj_1x. Thus, from the definition of A;_; and
the choice of x,

k—1 k—1
(Ak—l)k,k = :cTAk_las = SCT A— Z Dj,jljl;»r xr = :nTAa: — Z Dj7j(l;r$)2 = acTAa: > O,
j=1 j=1
as required. Hence (Ax_1)gr >0, k =1,2,...,n, and the factorization exists. O

Conclusion It is possible to check if a symmetric matrix is positive definite by trying to form its LDLT
factorization.

Cholesky factorization Define D'/2 as the diagonal matrix whose (k, k) element is D;{,?, hence D'/2D'/2 = D.
Then, A being positive definite, we can write

A= (LDY2)(DY2LT) = (LD/?)(LD/?)7 .

In other words, letting L := LD'/2, we obtain the Cholesky factorization A= LLT.

Sparse matrices It is often required to solve very large systems Az = b (n = 10° is considered small in this
context!) where nearly all the elements of A are zero. Such a matrix is called sparse and efficient solution of
Ax = b should exploit sparsity. In particular, we wish the matrices L and U to inherit as much as possible of
the sparsity of A and for the cost of computation to be determined by the number of nonzero entries, rather
than by n. The following theorem shows that certain zeros of A are always inherited by an LU factorization.

Theorem Let A = LU be an LU factorization (without pivoting) of a sparse matrix. Then all leading zeros in
the rows of A to the left of the diagonal are inherited by L and all the leading zeros in the columns of A above
the diagonal are inherited by U.

Proof We assume that Uy # 0 for all & = 1,...,n which is the same as saying that (Axp_1)rr 7 0 when
running the LU factorization algorithm (without pivoting). If A;; = 0 this means that L; 1U;; = 0 and so
L; 1 = 0. If furthermore A; o = 0 we get L; 1U1 2+ L; 2Uz 2 = 0 which implies L; o = 0 since L; ; = 0. In general
we get that if A;; = --- = A; ; = 0 where j < i then L;; = --- = L;; = 0. A similar reasoning applies for
leading zeros in the columns of A above the diagonal. O

Banded matrices The matrix A is a banded matriz if there exists an integer r < n such that A; ; = 0 for
|t —j] > r, 4,5 =1,2,...,n. In other words, all the nonzero elements of A reside in a band of width 2r + 1
along the main diagonal. In that case, according to the previous theorem, A = LU implies that L; ; = U; ; =0
V |i — j| > r and sparsity structure is inherited by the factorization.

In general, the expense of calculating an LU factorization of an n x n dense matrix A is O(n3) operations and
the expense of solving Ax = b, provided that the factorization is known, is (’)(nQ). However, in the case of a
banded A, we need just O(rQn) operations to factorize and O(rn) operations to solve a linear system. If r < n
this represents a very substantial saving!



