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Numerical Analysis – Lecture 11

What is numerical analysis?

Numerical analysis is the study of algorithms for problems in continuous mathematics.2 The key word here
is algorithms. We are looking for algorithms that run fast and that are stable against various sources of
errors and “noise”. Some examples of problems from continuous mathematics include:

• Algebraic equations: Solve f(x) = 0 where f : Rn → R is a given function.

• Differential equations: Solve dx
dt = f(x) where f : Rn → Rn is a given function.

• Optimization: Find min{f(x) : x ∈ Rn} where f : Rn → R is a given function.

Needless to say that such problems arise in many different application areas!

A note about computational complexity We measure the complexity of an algorithm by the number
of elementary operations (+,−,×,÷) it needs. We use the Big-Oh notation, e.g., O(n) or O

(
n2
)

where n is
the size of the input. More precisely an algorithm has complexity O(f(n)) if the number of operations it
needs is at most C · f(n) where C > 0 is a constant.

1 Polynomial interpolation

We denote by Pn[x] the linear space of all real polynomials of degree at most n.

1.1 The interpolation problem

Given n+1 distinct real points x0, x1, . . . , xn and real numbers f0, f1, . . . , fn, we seek a polynomial p ∈ Pn[x]
such that p(xi) = fi, i = 0, 1, . . . , n. Such a polynomial is called an interpolant. Note that a polynomial
p ∈ Pn[x] has n + 1 degrees of freedom, while interpolation at x0, x1, . . . , xn constitutes n + 1 conditions.
This, intuitively, justifies seeking an interpolant from Pn[x].

1.2 The Lagrange formula

Although, in principle, we may solve a linear problem with n + 1 unknowns to determine a polynomial
interpolant, this can be accomplished more easily by using the explicit Lagrange formula. We claim that

p(x) =

n∑
k=0

fk

n∏
`=0
` 6=k

x− x`
xk − x`

, x ∈ R.

Note that p ∈ Pn[x], as required. We wish to show that it interpolates the data. Define

Lk(x) :=

n∏
`=0
` 6=k

x− x`
xk − x`

, k = 0, 1, . . . , n

(Lagrange cardinal polynomials). It is trivial to verify that Lj(xj) = 1 and Lj(xk) = 0 for k 6= j, hence

p(xj) =

n∑
k=0

fkLk(xj) = fj , j = 0, 1, . . . , n,

1Corrections and suggestions to these notes should be emailed to h.fawzi@damtp.cam.ac.uk.
2This definition is taken from the essay The definition of numerical analysis by L. N. Trefethen.
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and p is an interpolant,
Uniqueness Suppose that both p ∈ Pn[x] and q ∈ Pn[x] interpolate to the same n + 1 data. Then the

nth degree polynomial p − q vanishes at n + 1 distinct points. But the only nth-degree polynomial with
≥ n+ 1 zeros is the zero polynomial. Therefore p− q ≡ 0 and the interpolating polynomial is unique.

Complexity For each k = 0, . . . , n, evaluating Lk(x) takes O(n) operations, and thus the total complex-
ity of evaluating p(x) using the Lagrange formula is O

(
n2
)
.

1.3 The error of polynomial interpolation

Let [a, b] be a closed interval of R. We denote by C[a, b] the space of all continuous functions from [a, b] to R
and let Cs[a, b], where s is a positive integer, stand for the linear space of all functions in C[a, b] that possess
s continuous derivatives.

Theorem Given f ∈ Cn+1[a, b], let p ∈ Pn[x] interpolate the values f(xi), i = 0, 1, . . . , n, where
x0, . . . , xn ∈ [a, b] are pairwise distinct. Then for every x ∈ [a, b] there exists ξ ∈ [a, b] such that

f(x)− p(x) =
1

(n+ 1)!
f (n+1)(ξ)

n∏
i=0

(x− xi). (1.1)

Proof. The formula (1.1) is true when x = xj for j ∈ {0, 1, . . . , n}, since both sides of the equation vanish.
Let x ∈ [a, b] be any other point and define

φ(t) := f(t)−
(
p(t) + (f(x)− p(x))

∏n
i=0(t− xi)∏n
i=0(x− xi)

)
, t ∈ [a, b].

[Note: The variable in φ is t, whereas x is a fixed parameter.] Note that φ(xj) = 0, j = 0, 1, . . . , n, and
φ(x) = 0. Hence, φ has at least n+ 2 distinct zeros in [a, b]. Moreover, φ ∈ Cn+1[a, b].
We now apply the Rolle theorem: if the function g ∈ C1[a, b] vanishes at two distinct points in [a, b] then its
derivative vanishes at an intermediate point. We deduce that φ′ vanishes at (at least) n+ 1 distinct points
in [a, b]. Next, applying Rolle to φ′, we conclude that φ′′ vanishes at n points in [a, b]. In general, we prove
by induction that φ(s) vanishes at n+ 2− s distinct points of [a, b] for s = 0, 1, . . . , n+ 1. Letting s = n+ 1,
we have φ(n+1)(ξ) = 0 for some ξ ∈ [a, b]. Hence

0 = φ(n+1)(ξ) = f (n+1)(ξ)−
(
p(n+1)(ξ) + (f(x)− p(x))

(n+ 1)!∏n
i=0(x− xi)

)
where we used the fact that dn+1

dtn+1

∏n
i=0(t − xi) = (n + 1)!. Using the fact that p(n+1) ≡ 0 (since p is a

polynomial of degree n) we finally get (1.1). 2

Runge’s example We interpolate f(x) = 1/(1 + x2), x ∈ [−5, 5], at the equally-spaced points xj =
−5 + 10 jn , j = 0, 1, . . . , n. Some of the errors are displayed below

x f(x)− p(x)
∏n
i=0(x− xi)

0.75 3.2× 10−3 −2.5× 106

1.75 7.7× 10−3 −6.6× 106

2.75 3.6× 10−2 −4.1× 107

3.75 5.1× 10−1 −7.6× 108

4.75 4.0× 10+2 −7.3× 1010

Table: Errors for n = 20 Figure: Errors for n = 15
The growth in the error is explained by the product term in (1.1) (the rightmost column of the table).

Adding more interpolation points makes the largest error even worse. A remedy to this state of affairs is to

cluster points toward the end of the range. A considerably smaller error is attained for xj = 5 cos (n−j)π
n ,

j = 0, 1, . . . , n (so-called Chebyshev points). It is possible to prove that this choice of points minimizes the
magnitude of maxx∈[−5,5] |

∏n
i=0(x− xi)|.
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