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Numerical Analysis — Lecture 4!

2.4 Least-squares polynomial fitting

Consider a scalar product
b
(oot} = [ wiz)gl@h(z) da (23)

on Cla,b] where w(z) > 0 for x € (a,b). Given f € Cla,b] we want to find p € P,[z] so as to minimise
(f —p,f —p) = ||f —pll*>. Call the optimal polynomial p,,. The following theorem shows that p, can be
easily expressed in terms of the orthogonal polynomials associated to (2.3).

Theorem Let pg, p1, pa, . . . be orthogonal polynomials associated to the inner product (2.3). Let f € Cla, b].
Then the polynomial p,, € P,[x] that minimises || f — p||?> = (f — p, f — p) is given by
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Proof. Because po, ..., p, form a basis of P,[z], any p € P, can be written as p = Y ,_, cxpx for some
coefficients c;. Thus we have, using orthogonality of the pgs
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To minimise this expression we find values of the ¢xs that make the gradient equal to 0. We have:

0
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hence setting these to zero we get ¢ = <<pf L p’“>> which gives the expression (2.4). O

The approximation error we get with p,, is

<f _ﬁnvf _ﬁn> = <fa f> - 2{20k<pk;, - Ck<p]€’p/€ } - f7 Z pk7 (25)
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This identity can be rewritten as (f —pn, f—pn)+ (Pn, Pn) = {f, f), reminiscent of the Pythagoras theorem. It
is clear that increasing n brings the approximation error down. A natural question is: if we keep increasing n
does the approximation error eventually reach 07 The answer is yes and this is a consequence of Weierstrass’s
theorem (which we are going to admit without proof):

Theorem (Weierstrass theorem) Let [a, b] be finite and let f € Cla,b]. For any € > 0 there is a polynomial
p of high enough degree such that |f(x) — p(x)| < € for all = € [a, b].

To prove that ||f —pn||?> — 0 as n — oo, note that by our definition of inner product (2.3) we have, for any p

£ =l = [ " () (£ () — pla)?d < (max e >—p<w>)2 / " we)da.

z€[a,b]

For any § > 0 we know by Weierstrass theorem that there is a polynomial p of degree n (with n large enough)

such that max,epq,p) | f(2) — <4/6/ f x)dz. So for any N > n we have

2
§ b
||f_]5N||2 < ||f_p||2 < ( W) /a w(x)dz < 0.
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This is true for any § > 0 and so shows that ||f — p,||> — 0 as n — oco. Using the identity (2.5) we get the
following consequence:

Theorem (The Parseval identity) Let [a,b] be finite, and let pg, p1, pe, ... be orthogonal polynomials for
(2.3). Then for any f € Cla,?],
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2.5 Least-squares fitting to discrete function values

Consider now the following problem: we are given m function values f(x1), f(z2),..., f(zm), where the
zks are pairwise distinct, and seek p € P,,[z] that minimises Y ,_,(f(zx) — p(zx))?. This corresponds to
minimising (f — p, f — p) with the following inner product:

(9, h) = ZQ(%)M%) (2.7)
k=1
The result from the previous subsection extends directly to this situation as long as n < m—1 (note that (2.7)

does not define a valid inner product on polynomials of degree greater than or equal m). So forn < m —1
we can solve the problem as follows:

1. Employ the three-term recurrence (2.3) to calculate pg,p1,...,p, (of course, using the scalar product
(2.7);

. <pk7 f>
2. Form p(z) = — L pp(x).
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2.6 Gaussian quadrature

We are again in C|a, b] and a scalar product is defined as in subsection 2.1, namely (f, g) = fj w(z) f(z)g(z) dz,
where w(x) > 0 for z € (a,b). Our goal is to approximate integrals by finite sums,

b v
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The above is known as a quadrature formula. Here v is given, whereas the points by, ...,b, (the weights)
and ¢1,...,c¢, (the nodes) are independent of the choice of f.

A reasonable approach to achieving high accuracy is to require that the approximation is exact for all
f € P, [x], where m is as large as possible — this results in Gaussian quadrature and we will demonstrate
that m = 2v — 1 can be attained.

Firstly, we claim that m = 2v is impossible. To prove this, choose arbitrary nodes c1,...,c, and note that
p(x) := [Ti_ (@ — cx)? lives in Py, [z]. But ffw(a:)p(z) dz > 0, while >} _, bpp(c) = 0 for any choice of
weights b1,...,b,. Hence the integral and the quadrature do not match.

Let po, p1,p2, . . . denote, as before, the monic polynomials which are orthogonal w.r.t. the underlying scalar
product.

Theorem Given n > 1, p, has n real distinct zeros in the interval (a,b).

Proof. Let &;,...,&,, be the points in (a,b) where p,, changes signs (equivalently these are the zeros of p
of odd multiplicity) and let ¢(z) = [[\2,(z — &). Observe that the polynomial p,(z)g(z) does not change
signs in (a, b): this is because all the roots of p,(z)q(z) in (a,bd) have even multiplicity. It thus follows that
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Since p,, is orthogonal to all polynomials of degree < n — 1 it follows that ¢ must be of degree at least n,
i.e., m < n. On the other hand, since p,, is of degree n it can have at most n roots. Finally this means that
pr, has n distinct real roots in (a, b). O



