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Numerical Analysis – Lecture 41

2.4 Least-squares polynomial fitting

Consider a scalar product

〈g, h〉 =

∫ b

a

w(x)g(x)h(x) dx (2.3)

on C[a, b] where w(x) > 0 for x ∈ (a, b). Given f ∈ C[a, b] we want to find p ∈ Pn[x] so as to minimise
〈f − p, f − p〉 = ‖f − p‖2. Call the optimal polynomial p̂n. The following theorem shows that p̂n can be
easily expressed in terms of the orthogonal polynomials associated to (2.3).

Theorem Let p0, p1, p2, . . . be orthogonal polynomials associated to the inner product (2.3). Let f ∈ C[a, b].
Then the polynomial p̂n ∈ Pn[x] that minimises ‖f − p‖2 = 〈f − p, f − p〉 is given by

p̂n(x) =

n∑
k=0

〈f, pk〉
〈pk, pk〉

pk(x). (2.4)

Proof. Because p0, . . . , pn form a basis of Pn[x], any p ∈ Pn can be written as p =
∑n
k=0 ckpk for some

coefficients ck. Thus we have, using orthogonality of the pks

〈f − p, f − p〉 =

〈
f −

n∑
k=0

ckpk, f −
n∑
k=0

ckpk

〉
= 〈f, f〉 − 2

n∑
k=0

ck〈pk, f〉+

n∑
k=0

c2k〈pk, pk〉.

To minimise this expression we find values of the cks that make the gradient equal to 0. We have:

∂

∂ck
〈f − p, f − p〉 = −2〈pk, f〉+ 2ck〈pk, pk〉, k = 0, 1, . . . , n,

hence setting these to zero we get ck = 〈f,pk〉
〈pk,pk〉 which gives the expression (2.4). 2

The approximation error we get with p̂n is

〈f − p̂n, f − p̂n〉 = 〈f, f〉 −
n∑
k=0

{2ck〈pk, f〉 − c2k〈pk, pk〉} = 〈f, f〉 −
n∑
k=0

〈pk, f〉2

〈pk, pk〉
. (2.5)

This identity can be rewritten as 〈f−p̂n, f−p̂n〉+〈p̂n, p̂n〉 = 〈f, f〉, reminiscent of the Pythagoras theorem. It
is clear that increasing n brings the approximation error down. A natural question is: if we keep increasing n
does the approximation error eventually reach 0? The answer is yes and this is a consequence of Weierstrass’s
theorem (which we are going to admit without proof):

Theorem (Weierstrass theorem) Let [a, b] be finite and let f ∈ C[a, b]. For any ε > 0 there is a polynomial
p of high enough degree such that |f(x)− p(x)| ≤ ε for all x ∈ [a, b].

To prove that ‖f − p̂n‖2 → 0 as n→∞, note that by our definition of inner product (2.3) we have, for any p

‖f − p‖2 =

∫ b

a

w(x)(f(x)− p(x))2dx ≤
(

max
x∈[a,b]

|f(x)− p(x)|
)2 ∫ b

a

w(x)dx.

For any δ > 0 we know by Weierstrass theorem that there is a polynomial p of degree n (with n large enough)

such that maxx∈[a,b] |f(x)− p(x)| ≤
√
δ/
∫ b
a
w(x)dx. So for any N ≥ n we have

‖f − p̂N‖2 ≤ ‖f − p‖2 ≤

(√
δ∫ b

a
w(x)dx

)2 ∫ b

a

w(x)dx ≤ δ.

1Corrections and suggestions to these notes should be emailed to h.fawzi@damtp.cam.ac.uk.
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This is true for any δ > 0 and so shows that ‖f − p̂n‖2 → 0 as n→∞. Using the identity (2.5) we get the
following consequence:

Theorem (The Parseval identity) Let [a, b] be finite, and let p0, p1, p2, . . . be orthogonal polynomials for
(2.3). Then for any f ∈ C[a, b],

∞∑
k=0

〈pk, f〉2

〈pk, pk〉
= 〈f, f〉. (2.6)

2.5 Least-squares fitting to discrete function values

Consider now the following problem: we are given m function values f(x1), f(x2), . . . , f(xm), where the
xks are pairwise distinct, and seek p ∈ Pn[x] that minimises

∑n
k=0(f(xk) − p(xk))2. This corresponds to

minimising 〈f − p, f − p〉 with the following inner product:

〈g, h〉 :=

m∑
k=1

g(xk)h(xk). (2.7)

The result from the previous subsection extends directly to this situation as long as n ≤ m−1 (note that (2.7)
does not define a valid inner product on polynomials of degree greater than or equal m). So for n ≤ m− 1
we can solve the problem as follows:

1. Employ the three-term recurrence (2.3) to calculate p0, p1, . . . , pn (of course, using the scalar product
(2.7));

2. Form p(x) =

n∑
k=0

〈pk, f〉
〈pk, pk〉

pk(x).

2.6 Gaussian quadrature

We are again in C[a, b] and a scalar product is defined as in subsection 2.1, namely 〈f, g〉 =
∫ b
a
w(x)f(x)g(x) dx,

where w(x) > 0 for x ∈ (a, b). Our goal is to approximate integrals by finite sums,∫ b

a

w(x)f(x) dx ≈
ν∑
k=1

bkf(ck), f ∈ C[a, b].

The above is known as a quadrature formula. Here ν is given, whereas the points b1, . . . , bν (the weights)
and c1, . . . , cν (the nodes) are independent of the choice of f .
A reasonable approach to achieving high accuracy is to require that the approximation is exact for all
f ∈ Pm[x], where m is as large as possible – this results in Gaussian quadrature and we will demonstrate
that m = 2ν − 1 can be attained.
Firstly, we claim that m = 2ν is impossible. To prove this, choose arbitrary nodes c1, . . . , cν and note that

p(x) :=
∏ν
k=1(x − ck)2 lives in P2ν [x]. But

∫ b
a
w(x)p(x) dx > 0, while

∑ν
k=1 bkp(ck) = 0 for any choice of

weights b1, . . . , bν . Hence the integral and the quadrature do not match.
Let p0, p1, p2, . . . denote, as before, the monic polynomials which are orthogonal w.r.t. the underlying scalar
product.

Theorem Given n ≥ 1, pn has n real distinct zeros in the interval (a, b).
Proof. Let ξ1, . . . , ξm be the points in (a, b) where pn changes signs (equivalently these are the zeros of p

of odd multiplicity) and let q(x) =
∏m
i=1(x − ξi). Observe that the polynomial pn(x)q(x) does not change

signs in (a, b): this is because all the roots of pn(x)q(x) in (a, b) have even multiplicity. It thus follows that

|〈q, pn〉| =

∣∣∣∣∣
∫ b

a

w(x)q(x)pn(x) dx

∣∣∣∣∣ =

∫ b

a

w(x)|q(x)pn(x)|dx > 0.

Since pn is orthogonal to all polynomials of degree ≤ n − 1 it follows that q must be of degree at least n,
i.e., m ≤ n. On the other hand, since pn is of degree n it can have at most n roots. Finally this means that
pn has n distinct real roots in (a, b). 2
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