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Numerical Analysis – Lecture 71

4.2 Multistep methods

It is often useful to use past solution values in computing a new value to the ODE (4.1). Assuming that
yn,yn+1, . . . ,yn+s−1 are available, where s ≥ 1, we say that

s∑
l=0

ρlyn+l = h

s∑
l=0

σlf(tn+l,yn+l), n = 0, 1, . . . , (4.4)

where ρs = 1, is an s-step method. If σs = 0, the method is explicit, otherwise it is implicit. If s ≥ 2, we
need to obtain extra starting values y1, . . . ,ys−1 by different time-stepping method.

Examples: The following are some common multistep methods:

Euler: yn+1 − yn = hf(tn,yn),

Implicit Euler: yn+1 − yn = hf(tn+1,yn+1),

Trapezoidal rule: yn+1 − yn = 1
2h[f(tn,yn) + f(tn+1,yn+1)]

Theta rule: yn+1 − yn = h[θf(tn,yn) + (1− θ)f(tn+1,yn+1)]

2-step Adams-Bashforth: yn+2 − yn+1 = h[ 32f(tn+1,yn+1)− 1
2f(tn,yn)]

2-step Adams-Moulton: yn+2 − yn+1 = h[ 5
12f(tn+2,yn+2) + 2

3f(tn+1,yn+1)− 1
12f(tn,yn)].

For example Adams-Bashforth is a 2-step method (s = 2) with ρ2 = 1, ρ1 = −1, ρ0 = 0 and σ2 = 0, σ1 = 3
2

and σ0 = − 1
2 . The implicit Euler method, trapezoidal rule, theta rule for 0 ≤ θ < 1, and Adams-Moulton

are implicit methods. The reason these are called implicit is that yn+s appears in the right-hand side of
(4.4) and so one has to solve a (generally nonlinear) algebraic equation to compute the new value yn+s from
the recursion rule.

Our goal is to develop some general tools to study the convergence of multistep methods. We first introduce
the definition or order.

Order: The order of the multistep method (4.4) is the largest integer p ≥ 0 such that

s∑
l=0

ρly(tn+l)− h
s∑

l=0

σly
′(tn+l) = O

(
hp+1

)
(4.5)

for all sufficiently smooth functions y. The order is a local measure of accuracy for the method: it measures
the error incurred by applying the rule (4.4), assuming that the correct value of y at the previous points is
known. Let us evaluate the order of some of the methods given above:

The order of Euler’s method: For Euler’s method, the left-hand side of (4.5) is

y(tn+1)− [y(tn) + hy′(tn,y(tn))] = [y(tn) + hy′(tn) + 1
2h

2y′′(tn) + · · ·]− [y(tn) + hy′(tn)] = O
(
h2
)

and we deduce that Euler’s method is of order 1.

The order of the theta method: From Taylor’s theorem we have:

y(tn+1)− y(tn)− h[θy′(tn) + (1− θ)y′(tn+1)]

= [y(tn) + hy′(tn) + 1
2h

2y′′(tn) + 1
6h

3y′′′(tn)]− y(tn)− θhy′(tn)

− (1− θ)h[y′(tn) + hy′′(tn) + 1
2h

2y′′′(tn)] +O
(
h4
)

= (θ − 1
2 )h2y′′(tn) + ( 1

2θ −
1
3 )h3y′′′(tn) +O

(
h4
)
.

1Corrections and suggestions to these notes should be emailed to h.fawzi@damtp.cam.ac.uk.
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Therefore the theta method is of order 1, except that the trapezoidal rule (θ = 1/2) is of order 2.

Let ρ(w) =
∑s

l=0 ρlw
l, σ(w) =

∑s
l=0 σlw

l.

Theorem The multistep method (4.4) is of order p ≥ 1 iff

ρ(ez)− zσ(ez) = O
(
zp+1

)
, z → 0. (4.6)

Proof. Substituting the exact solution and expanding into Taylor series about tn,

s∑
l=0

ρly(tn+l)− h
s∑

l=0

σly
′(tn+l) =

s∑
l=0

ρl

∞∑
k=0

1

k!
y(k)(tn)lkhk − h

s∑
l=0

σl

∞∑
k=0

1

k!
y(k+1)(tn)lkhk

=

(
s∑

l=0

ρl

)
y(tn) +

∞∑
k=1

1

k!

(
s∑

l=0

lkρl − k
s∑

l=0

lk−1σl

)
hky(k)(tn).

Thus, to obtain O
(
hp+1

)
regardless of the choice of y, it is necessary and sufficient that

s∑
l=0

ρl = 0,

s∑
l=0

lkρl = k

s∑
l=0

lk−1σl, k = 1, 2, . . . , p. (4.7)

On the other hand, expanding again into Taylor series,

ρ(ez)− zσ(ez) =

s∑
l=0

ρle
lz − z

s∑
l=0

σle
lz =

s∑
l=0

ρl

( ∞∑
k=0

1

k!
lkzk

)
− z

s∑
l=0

σl

( ∞∑
k=0

1

k!
lkzk

)

=

∞∑
k=0

1

k!

(
s∑

l=0

lkρl

)
zk −

∞∑
k=1

1

(k − 1)!

(
s∑

l=0

lk−1σl

)
zk

=

(
s∑

l=0

ρl

)
+

∞∑
k=1

1

k!

(
s∑

l=0

lkρl − k
s∑

l=0

lk−1σl

)
zk.

The theorem follows from (4.7). 2

Example For the 2-step Adams–Bashforth method we have ρ(w) = w2 − w, σ(w) = 3
2w −

1
2 and so

ρ(ez)− zσ(ez) = [1 + 2z+ 2z2 + 4
3z

3]− [1 + z+ 1
2z

2 + 1
6z

3]− 3
2z[1 + z+ 1

2z
2] + 1

2z+O
(
z4
)

= 5
12z

3 +O
(
z4
)
.

Hence the method is of order 2.

2


