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Numerical Analysis – Lecture 81

Definition We say that a polynomial obeys the root condition if all its zeros reside in |w| ≤ 1 and all zeros
of unit modulus are simple.

Theorem (The Dahlquist equivalence theorem) The multistep method (4.5) is convergent iff it is of
order p ≥ 1 and the polynomial ρ obeys the root condition.2

Example For the Adams–Bashforth method (see last lecture) we have ρ(w) = (w − 1)w and the root
condition is obeyed. Also we saw that the Adams–Bashforth has order 2. By the Dahlquist equivalence
theorem it is convergent.

Example (Absence of convergence) Consider the 2-step method

yn+2 − 2yn+1 + yn = 0. (4.10)

Here ρ(w) = w2 − 2w + 1 = (w − 1)2 and σ(w) = 0. We have ρ(ez)− zσ(ez) = (ez − 1)2 = (z + O(z2))2 =
z2 +O(z3) and so the method has order 1. However ρ does not obey the root condition since the zero w = 1
has multiplicity 2. In fact the method (4.10) is obviously not convergent since it does not use the function
f which defines the ODE!

A technique A useful procedure to generate multistep methods which are convergent and of high order is
as follows. According to (4.6), order p ≥ 1 implies ρ(1) = 0. Choose an arbitrary s-degree polynomial ρ that
obeys the root condition and such that ρ(1) = 0. To maximize order, we let σ be the s-degree (alternatively,
(s− 1)-degree for explicit methods) polynomial arising from the truncation of the Taylor expansion of

ρ(w)

logw

about the point w = 1. Thus, for example, for an implicit method,

σ(w) =
ρ(w)

logw
+O

(
|w − 1|s+1

)
⇒ ρ(ez)− zσ(ez) = O

(
zs+2

)
and (4.6) implies order at least s+ 1.

Example The choice ρ(w) = ws−1(w − 1) corresponds to Adams methods: Adams–Bashforth methods if
σs = 0, whence the order is s, otherwise order-(s+1) (but implicit) Adams–Moulton methods. For example,
letting s = 2 and ξ = w − 1, we obtain the 3rd-order Adams–Moulton method by expanding

w(w − 1)

logw
=

ξ + ξ2

log(1 + ξ)
=

ξ + ξ2

ξ − 1
2ξ

2 + 1
3ξ

3 − · · ·
=

1 + ξ

1− 1
2ξ + 1

3ξ
2 − · · ·

= (1 + ξ)[1 + ( 1
2ξ −

1
3ξ

2) + ( 1
2ξ −

1
3ξ

2)2 +O
(
ξ3
)
] = 1 + 3

2ξ + 5
12ξ

2 +O
(
ξ3
)

= 1 + 3
2 (w − 1) + 5

12 (w − 1)2 +O
(
|w − 1|3

)
= − 1

12 + 2
3w + 5

12w
2 +O

(
|w − 1|3

)
.

Therefore the 2-step, 3rd-order Adams–Moulton method is

yn+2 − yn+1 = h[− 1
12f(tn,yn) + 2

3f(tn+1,yn+1) + 5
12f(tn+2,yn+2)].

BDF methods For reasons that will be made clear in the sequel, we wish to consider s-step, s-order methods
s.t. σ(w) = σsw

s for some σs ∈ R \ {0}. In other words,

s∑
l=0

ρlyn+l = hσsf(tn+s,yn+s), n = 0, 1, . . . .

1Corrections and suggestions to these notes should be emailed to h.fawzi@damtp.cam.ac.uk.
2If ρ obeys the root condition, the method (4.5) is sometimes said to be zero-stable: we will not use this terminology.
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Such methods are called backward differentiation formulae (BDF).

Theorem The explicit form of the s-step BDF method is

ρ(w) = σs

s∑
l=1

1

l
ws−l(w − 1)l, where σs =

(
s∑
l=1

1

l

)−1
. (4.11)

Proof We are looking for ρ such that the order condition ρ(w) = σsw
s logw + O

(
|w − 1|s+1

)
for w → 1

holds. Note that

log(w) = − log

(
1

w

)
= − log

(
1− w − 1

w

)
=

∞∑
l=1

(w − 1)l

l · wl
.

With the choice of ρ(w) given in (4.11) we get

ρ(w)− σsws log(w) = −σs
∞∑

l=s+1

1

l
(w − 1)lws−l = O

(
|w − 1|s+1

)
(w → 1)

and so the order condition is satisfied. The value of σs in (4.11) is such that ρs = 1. 2

Example Let s = 2. Substitution in (4.11) yields σ2 = 2
3 and simple algebra results in ρ(w) = w2− 4

3w+ 1
3 .

Hence the 2-step BDF is
yn+2 − 4

3yn+1 + 1
3yn = 2

3hf(tn+2,yn+2).

Remark We cannot take it for granted that BDF methods are convergent. It is possible to prove that they
are convergent iff s ≤ 6. They must not be used outside this range!

4.3 Runge–Kutta methods

Recalling quadrature We may approximate∫ h

0

f(t)dt ≈ h
ν∑
l=1

blf(clh),

where the weights bl are chosen in accordance with an explicit formula from Lecture 5 (with weight function
w ≡ 1). This quadrature formula is exact for all polynomials of degree ν−1 and, provided that

∏ν
k=1(x−ck)

is orthogonal w.r.t. the weight function w(x) ≡ 1, 0 ≤ x ≤ 1, the formula is exact for all polynomials of
degree 2ν − 1.

Suppose that we wish to solve the ‘ODE’ y′ = f(t), y(0) = y0. The exact solution is y(tn+1) = y(tn) +∫ tn+1

tn
f(t)dt and we can approximate it by quadrature. In general, we obtain the time-stepping scheme

yn+1 = yn + h

ν∑
l=1

blf(tn + clh) n = 0, 1, . . . .

Here h = tn+1 − tn (the points tn need not be equispaced). Can we generalize this to genuine ODEs of the
form y′ = f(t,y)?
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