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Numerical Analysis — Lecture 9'
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Formally, y(t,+1) = y(tn) +/ f(t,y(t))dt, and this can be ‘approximated’ by
t
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except that, of course, the vectors y(t, + ¢;h) are unknown! Runge—Kutta methods are a means of imple-
menting (4.11) by replacing unknown values of y by suitable linear combinations. The general form of a
v-stage explicit Runge—Kutta method (RK) is

kl = f(tnvyn)y
ky = f(tn + c2h,y,, + heaky),
ks = f(tn + c3h,y,, + h(az ki + a3 2kz)), as,1 +azz2 = cs,
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The choice of the RK coefficients a; ; is motivated at the first instance by order considerations.
Example Set v = 2. We have k1 = f(tn,vy,,) and, Taylor-expanding about (t,,¥,,),

k2 = .f(tn + CQhayn + Cth(tn7yn))

= f(tw yn) + hes 3112;yn>+_afwgzyn>

Ftn,y,) | +0O(R).

But
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y=fty = Yy = + ft,y).
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Therefore, substituting the exact solution y,, = y(t,), we obtain k; = y'(¢,,) and ko = y'(tn) + he2y” (8) +
O(hQ). Consequently, the local error is

Y(tns1) — (Y(tn) + hbiky + hboka) = [y(tn) + hy'(tn) + 8%y (t,) + O(h*)]
— [y(tn) + h(by +b2)y'(tn) + h2bacay” (t,) + O (h?)].

We deduce that the RK method is of order 2 if by + by = 1 and bocy = % We can demonstrate that no

such method may be of order > 3. To show this consider the ODE y’ = y with y(0) = 1 whose solution is
y(t) = e'. For this ODE we can write the local error explicitly: indeed we have k1 = f(t,,y(t,)) = e'» and
ko = f(tn + c2h, y(tn) + cahky) = y(t,) + cahky = €' (1 + cah). Then the local error is

y(tn+1) — (y(tn) + hbiki + hbgkg) = elntl —gln — et"(hbl + hby + h2b202)
= el (e" — 1 — h(by + by) — h2(bacs))

3
=eln <h(1 — b1 —ba) + h*(1/2 = baca) + % + O(h4)) :
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We see that there is no choice of by, b, ¢2, co that will make the term A% vanish, and so the method cannot
have order > 3.

General RK methods A general v-stage Runge—Kutta method is

1% v
ki =f tn+clh,yn+h2al_’jkj where Zau:cl, l=1,2,...,v,
j=1
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Obviously, a;; = 0 for all [ < j yields the standard explicit RK. Otherwise, an RK method is said to be
implicit.

4.4 Stiff equations

Consider the linear scalar system

Yy =Ny
y(0) =1

where A < 0. The solution is y(t) = e* which decays to 0 as t — oco. If we solve our ODE using a numerical
method, we would like our sequence (y,) to also decay to zero. For example with Euler’s method we get
Ynt1 = Yn + ANy, = (1 + ANy, whose solution is y,, = (1 + hA)™. Thus the sequence y,, converges to 0 as
n — oo provided that |1 + hA| < 1, i.e., h < 2/|A|. For large A this can be a severe restriction on h: for
example for A = —1000 this implies h < 2/1000 = 0.002.

Consider now the implicit Euler method. Here we have y,, 11 = ¥ +hAyn11 which gives y, 11 = (1—h\) "1y,
and so y, = (1 — hA)~™ which converges to 0 for any choice of h > 0 (we assumed A < 0)!

Definition Suppose that a numerical method, applied to y" = Ay, y(0) = 1, with constant h, produces the
solution sequence {yy },ez+. We call the set

D={hAeC: 1Lm Yn =0}
t—o0

the linear stability domain of the method. Noting that the set of A € C for which y(¢t) — 0 is the left
half-plane C~ = {z € C : Rez < 0}, we say that the method is A-stable if C~ C D.

Example We have already seen that for the explicit Euler’s method y,, — 0 iff |1 + hA| < 1, therefore
D={2€C : |1+ 2| <1} and the explicit Euler method is not A-stable. Moreover, solving ' = Ay with
the implicit Euler method we have seen that y,, — 0 iff [I — hA|~! < 1, therefore the linear stability domain
isD={2¢€C : |1 —z| > 1}, hence the implicit Euler method is A-stable.



