
Mathematical Tripos Part IB: Lent 2019

Numerical Analysis – Lecture 111

4.6 Implementation of ODE methods

The step size h is not some preordained quantity: it is a parameter of the method (in reality, many parameters,
since we may vary it from step to step). The basic input of a well-written computer package for ODEs is not
the step size but the error tolerance: the level of precision, as required by the user. The choice of h > 0 is an
important tool at our disposal to keep a local estimate of the error beneath the required tolerance in the solution
interval. In other words, we need not just a time-stepping algorithm, but also mechanisms for error control and
for amending the step size.

The Milne device Suppose that we wish to monitor the error of the trapezoidal rule

yn+1 = yn + 1
2h[f(tn,yn) + f(tn+1,yn+1)]. (4.12)

We already know that the order is 2. Moreover, substituting the true solution we deduce that

y(tn+1)− {y(tn) + 1
2h[y′(tn) + y′(tn+1)]} = − 1

12h
3y′′′(tn) +O

(
h4

)
.

Therefore, the error in each step is increased roughly by − 1
12h

3y′′′(tn). The number cTR = − 1
12 is called the

error constant of TR. Similarly, each multistep method (but not RK!) has its own error constant. For example,
the 2nd order 2-step Adams–Bashforth method

yn+1 − yn = 1
2h[3f(tn,yn)− f(tn−1,yn−1)], (4.13)

has the error constant cAB = 5
12 .

The idea behind the Milne device is to use two multistep methods of the same order, one explicit and the second
implicit (e.g., (4.13) and (4.12), respectively), to estimate the local error of the implicit method. For example,
locally,

yAB
n+1 ≈ y(tn+1)− cABh

3y′′′(tn) = y(tn+1)− 5
12h

3y′′′(tn),

yTR
n+1 ≈ y(tn+1)− cTRh

3y′′′(tn) = y(tn+1) + 1
12h

3y′′′(tn).

Subtracting, we obtain the estimate h3y′′′(tn) ≈ −2(yAB
n+1 − yTR

n+1), therefore

yTR
n+1 − y(tn+1) ≈ 1

6 (yTR
n+1 − yAB

n+1)

and we use the right hand side as an estimate of the local error.

Note that TR is a far better method than AB: it is A-stable, hence its global behaviour is superior. We employ
AB solely to estimate the local error. This adds very little to the overall cost of TR, since AB is an explicit
method.

Implementation of the Milne device We work with a pair of multistep methods of the same order, one
explicit (predictor) and the other implicit (corrector), e.g.

Predictor : yn+2 = yn+1 + h[ 5
12f(tn−1,yn−1)− 4

3f(tn,yn) + 23
12f(tn+1,yn+1)],

Corrector : yn+2 = yn+1 + h[− 1
12f(tn,yn) + 2

3f(tn+1,yn+1) + 5
12f(tn+2,yn+2)],

the third-order Adams–Bashforth and Adams–Moulton methods respectively.
The predictor is employed not just to estimate the error of the corrector, but also to provide an initial guess in
the solution of the implicit corrector equations. Typically, for nonstiff equations, we iterate correction equations
at most twice, while stiff equations require iteration to convergence, otherwise the typically superior stability
features of the corrector are lost.

1Corrections and suggestions to these notes should be emailed to h.fawzi@damtp.cam.ac.uk.

1



Let TOL > 0 be a user-specified tolerance: the maximal error allowed in approximating the ODE. Having
completed a single step and estimated the error, there are three possibilities:

(a) 1
10TOL ≤ ‖ error ‖ ≤ TOL, say: Accept the step, continue to tn+2 with the same step size.

(b) ‖ error ‖ < 1
10TOL, say: Accept the step and increase the step length;

(c) ‖ error ‖ > TOL: Reject the step, recommence integration from tn with smaller h.

Amending step size can be done easily with polynomial interpolation, although this means that we need to store
past values well in excess of what is necessary for simple implementation of both multistep methods.

Error estimation per unit step Let e be our estimate of local error. Then e/h is our estimate for the
global error in an interval of unit length. It is usual to require the latter quantity not to exceed TOL since
good implementations of numerical ODEs should monitor the accumulation of global error. This is called error
estimation per unit step.

Embedded Runge–Kutta methods The situation is more complicated with RK, since no single error constant
determines local growth of the error. The approach of embedded RK requires, again, two (typically explicit)
methods: an RK method of ν stages and order p, say, and another method, of ν + l stages, l ≥ 1, and order
p + 1, such that the first ν stages of both methods are identical. (This means that the cost of implementing the
higher-order method is marginal, once we have computed the lower-order approximation.) For example, consider
(and verify!)

k1 = f(tn,yn),

k2 = f
(
tn + 1

2h,yn + 1
2hk1

)
,

y
[1]
n+1 = yn + hk2 =⇒ order 2,

k3 = f(tn + h,yn − hk1 + 2hk2),

y
[2]
n+1 = yn + 1

6h(k1 + 4k2 + k3) =⇒ order 3.

We thus estimate y
[1]
n+1 − y(tn+1) ≈ y

[1]
n+1 − y

[2]
n+1. [It might look paradoxical, at least at first glance, but the only

purpose of the higher-order method is to provide error control for the lower-order one!]

The Zadunaisky device Suppose that the ODE y′ = f(t,y), y(0) = y0, is solved by an arbitrary numerical
method of order p and that we have stored (not necessarily equidistant) past solution values yn,yn−1, . . . ,yn−p.
We form an interpolating pth degree polynomial (with vector coefficients) d such that d(tn−i) = yn−i, i =
0, 1, . . . , p, and consider the differential equation

z′ = f(t, z) + d′(t)− f(t,d), z(tn) = yn. (4.14)

There are two important observations with regard to (4.14)

(1) Since d(t) − y(t) = O
(
hp+1

)
, the term d′(t) − f(t,d) is usually small (because y′(t) − f(t,y(t)) ≡ 0).

Therefore, (4.14) is a small perturbation of the original ODE.

(2) The exact solution of (4.14) is known: z(t) = d(t).

Now, having produced yn+1 with our numerical method, we proceed to evaluate zn+1 as well, using exactly the
same method and implementation details. We then evaluate the error in zn+1, namely zn+1 − d(tn+1), and use
it as an estimate of the error in yn+1.

Solving nonlinear algebraic systems We have already observed that the implementation of an implicit ODE
method, whether multistep or RK, requires the solution of (in general, nonlinear) algebraic equations in each
step. For example, for an s-step method, we need to solve in each step the algebraic system

yn+s = σshf(tn+s,yn+s) + v, (4.15)

where the vector v can be formed from past (hence known) solution values and their derivatives. The easiest
approach is functional iteration

y
[j+1]
n+s = σshf(tn+s,y

[j]
n+s) + v, j = 0, 1, . . . ,

where y
[0]
n+s is typically provided by the predictor scheme. It is very effective for nonstiff equations but fails for

stiff ODEs, since the convergence of this iterative scheme requires similar restriction on h as that we strive to
avoid by choosing an implicit method in the first place!

2


